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Global Stability of a Fractional Virus Infection Model in the Presence of Humoral
Immunity and Two Classes of Infected Cell

Fereshteh Keshavarz and Vahid Roomi

abstract: It is well known that the benefit of fractional differentiation makes strong utility to model
natural realities with vast range memory, hereditary properties, and viral infections such as SARS, COVID,
HIV, and Dengue fever. According to biological evidence, complicated systems are more inclined to stability in
comparison to simple systems, so in this article, we focused on a fractional derivative order system. Adequate
qualifications for the global steady state of stationary points of a Caputo fractional derivative order system
with Beddington-DeAngelis functional response will be obtained by using Lyapunov’s method and LaSalle’s
invariance principle. We prove the global stability of the equilibria of the system by the values of the primary
reproductive number (Br) and the reproductive number for humoral immune response (RH) as a natural
reaction of antibodies. We support the analytical results through numerical simulations.
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1. Introduction

Viral infections occur due to infection with a virus like the human immunodeficiency virus (HIV) that
attacks CD4 cells and causes of the drastic illness known as acquired immunodeficiency syndrome (AIDS),
the hepatitis B virus (HBV) and hepatitis C virus (HCV) that are responsible for most cases of chronic
liver disease which can make progress to cirrhosis or liver cancer, as well as the severe acute respiratory
syndrome coronavirus 2 (SARS-COV-2) that causes coronavirus disease 2019 (COVID-19). These viral
infections represent a major health problem by causing many deaths. According to estimates from the
World Health Organization (WHO) in 2023, approximately 630 000 people died from HIV-related causes
and 1.3 million people acquired HIV [1]. Also, WHO estimated that 254 million people worldwide are
living with chronic HBV in 2022 and 50 million people are living with HCV, and 1.3 million people died
from HCV and HBV [2]. Furthermore, COVID-19 continue to emerge in the world attaining over 704
million people, and over 7 million deaths [3].

In the literature, numerous mathematical organic models have been proposed in order to understand
and describe the dynamics viral infection. One of the basic of these models was introduced in 1996
by Nowak and Bangham [4] to study HIV infection, and later adapted to HBV [5,6] and HCV [7]
infections. A general version of such viral infective model was offered by Hattaf et al. [8]. A category of
HIV infection models with cure of infected cells in eclipse stage was investigated in [9]. In 2015, Elaiw
[10] considered an ordinary differential equation (ODE) system including latently and actively infected
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cells with Beddington-DeAngelis functional response and in [11], Hattaf et al. considered a completely
different ODE system including latently and actively infected cells with general incidence function.

On the other hand, the above-mentioned models used the classical integer derivative which is a
local operator unlike the fractional derivative operators. Furthermore, fractional order models are more
consistent with real phenomena than integer order models because fractional derivatives allow to describe
the memory and hereditary traits inherent in various materials and processes [12,13,14,15,16]. Nowadays,
fractional approximations are used in many applied and medical sciences widely.

The focal aim of the present study is to investigate the effect of memory on the dynamics of viral
infection model presented in [10] by using the Caputo fractional derivative [17]. To do this, the next
section presents some preliminaries and our model formulation with Caputo fractional derivative. Section
3 determines the threshold parameters and equilibria of our fractional model with humoral immunity.
Section 4 discusses the uniqueness, positivity and boundedness of solutions. Section 5 establishes the
global stability of the three equilibria. Section 6 presents numerical simulations to demonstrate the
analytical outcomes. Finally, Section 7 draws some deductions.

2. Preliminaries and Model Formulation

In this part, we bring forward the fractional model below:

DηX1(t) = ξ − µ1X1 −
ρX1X4

1 + a1X1 + a2X4
,

DηX2(t) =
(1− h)ρX1X4

1 + a1X1 + a2X4
− (µ2 + r)X2, (2.1)

DηX3(t) =
hρX1X4

1 + a1X1 + a2X4
+ rX2 − aX3,

DηX4(t) = kX3 − uX4 − pX4X5,

DηX5(t) = cX4X5 − bX5,

where X1(t), X2(t), X3(t), X4(t) and X5(t) are the condensations of the uninfected CD4 cells, latently
infected cells which are part time unable to produce new infectious virus, actively infected cells which
have that potential to produce new infectious virus, free virus particles and antibodies produced by B
cells at time t, arranged orderly.

We considered nonlinear incidence function Beddington-DeAngelis which describes HIV infection with
infectious rate ρ. Fractions h and (1 − h) with 0 ≤ h ≤ 1 are the probabilities of uninfected cells that
will become either latently infected or actively infected.

System (2.1) has to be studied with this initial conditions:

X1(0) > 0, X2(0) > 0, X3(0) > 0, X4(0) > 0, X5(0) > 0.

Definition 2.1 The Caputo fractional derivative of order α > 0 for an arbitrary function g is given
as follows:

Dαg(t) =
1

Γ(1− α)

∫ t

0

(t− x)−αg′(x)dx

where Γ(.) is the Gamma function and 0 < α ≤ 1.

Definition 2.2 The Mittag-Leffler function of parameter η > 0 specified by

Eη(x) =

∞∑
i=0

xi

Γ(ηi+ 1)
.

3. Threshold Parameters and Equilibria

Clearly, system (2.1) has every time an infection-free equilibeium (IFE) Q0

(
X10 = ξ

µ1
, 0, 0, 0, 0

)
.

Then the primary reproductive number of (2.1) is given by

Br =
kρX10(µ2h+ r)

au(µ2 + r)(1 + a1X10)
. (3.1)
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This first threshold parameter measures the mean number of the infections which right come after one
productive infected cell starts producing the viruses throughout the duration of infection when all cells
are still healthy. For Br > 1, we discuss two cases:

• In absence of humoral immunity, system (2.1) has a only IE without humoral immunity

Q1(X11, X21, X31, X41, 0), where

X11 =

X10

(
au(µ2+r)+ξka2(µ2h+r)

)
au(µ2+r)

(
a1X10(Br−1)+Br

)
+µ1ka2X10(µ2h+r)

,

X21 = a(1−h)X31

(µ2h+r) ,

X31 = (ξ−µ1X11)(µ2h+r)
a(µ2+r) ,

X41 = kX31

u .

• In presence of humoral immunity, system (2.1) has a only IE with humoral immunity

Q2(X12, X22, X32, X42, X52), where

X12 =
ξa1−(ρX42+µ1a2X42+µ1)+

√
(ρX42+µ1a2X42+µ1−ξa1)2+4a1µ1ξ(1+a2X42)

2a1µ1
,

X22 = (1−h)ρX12X42

(µ2+r)(1+a1X12+a2X42)
,

X32 = (µ2h+r)ρX12X42

a(µ2+r)(1+a1X12+a2X42)
,

X42 = b
c ,

X52 = u
p (

kX32

uX42
− 1).

By a simple computation, we have X52 = u
p (RH − 1), where

RH =
kρX12(µ2h+ r)

au(µ2 + r)(1 + a1X12 + a2X42)
. (3.2)

This second threshold parameter named the reproductive number for humoral immunity. Hence, Q2

exists only when RH > 1.
We sum up the above discussions in the following results.

Theorem 3.1

(i) If Br ≤ 1, then system (2.1) has one IFE of the form Q0

(
ξ
µ1
, 0, 0, 0, 0

)
, where X10 = ξ

µ1
.

(ii) If Br > 1, then system (2.1) has an IE without humoral immunity of the form
Q1 = (X11, X21, X31, X41, 0), where

X11 =

X10

(
au(µ2+r)+ξka2(µ2h+r)

)
au(µ2+r)

(
a1X10(Br−1)+Br

)
+µ1ka2X10(µ2h+r)

,

X21 = a(1−h)X31

(µ2h+r) , X31 = (ξ−µ1X11)(µ2h+r)
a(µ2+r) , and X41 = kX31

u .

(iii) If RH > 1, then system (2.1) has an IE with humoral immunity of the form
Q2(X12, X22, X32, X42, X52), where
X42 = b

c ,

X12 =
ξa1−(ρX42+µ1a2X42+µ1)+

√
(ρX42+µ1a2X42+µ1−ξa1)2+4a1µ1ξ(1+a2X42)

2a1µ1
,

X22 = (1−h)ρX12X42

(µ2+r)(1+a1X12+a2X42)
, X32 = (µ2h+r)ρX12X42

a(µ2+r)(1+a1X12+a2X42)
, and X52 = u

p (RH − 1).
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4. Features of Solutions

In this part, for any positive initial conditions, the uniqueness, non-negativity, and boundedness of
responses of system (2.1) will be set. Since model (2.1) represents the growth and evolution of the cell
particles, hence, biologically it is acceptable that the number of cells must remain positive and bounded.

Lemma 4.1 Consider the fractional order system

Dηx(t) = g(x),

x(t0) = x0,

with 0 < η < 1, t0 ∈ R, and x0 ∈ Rn. Now assume that g satisfies the conditions below:
a) g and ∂g are continuous for all x ∈ Rn and g is Lebesgue measurable with respect to t.
b) ∥ g(x) ∥≤ ν + ρ ∥ x ∥ for all x ∈ Rn, where ν and ρ are two positive constants.
Then, the above system has a unique solution on [t0,+∞).

The proof follows sharply from [18].

Theorem 4.1 All solutions of system (2.1) with non-negative initial conditions exist uniquely for all
t > 0 and remain bounded and non-negative.

Proof: Since (2.1), we have
DηX1(t) |X1=0= ξ ≥ 0,

DηX2(t) |X2=0=
(1−h)ρX1X4

1+a1X1+a2X4
≥ 0, for all X1, X4 ≥ 0,

DηX3(t) |X3=0=
hρX1X4

1+a1X1+a2X4
+ rX2 ≥ 0, for all X1, X2, X4 ≥ 0,

DηX4(t) |X4=0= kX3 ≥ 0, for all X3 ≥ 0,
DηX5(t) |X5=0= 0 , for all X5 ≥ 0.
Hence, the nonnegativity of solutions is established.

Let

Λ(t) =


X1(t)
X2(t)
X3(t)
X4(t)
X5(t)

 and χ =


ξ
0
0
0
0

. Clearly, system (2.1) satisfies the first conditions of Lemma (4.1). For

proving the second condition, consider cases as follows:
a) If a1 ̸= 0, then our system can be written as

DηΛ(t) = χ+H1Λ +
a1X1

1 + a1X1 + a2X4
H2Λ +X5H3Λ +X4H4Λ,

where

H1 =


−µ1 0 0 0 0
0 −(µ2 + r) 0 0 0
0 δ −a 0 0
0 0 k −u 0
0 0 0 0 −b

 ,

H2 =


0 0 0 −ρ

a1
0

0 0 0 (1−h)ρ
a1

0

0 0 0 hρ
a1

0

0 0 0 0 0
0 0 0 0 0

 .

H3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −p
0 0 0 0 0

 .
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H4 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 c

 .

So, we have

∥ DηΛ(t) ∥≤Triangle
Cauchy−Schwarz∥ χ ∥ +

(
∥ H1 ∥ + ∥ H2 ∥ + ∥ X5 ∥∥ H3 ∥ + ∥ X4 ∥∥ H4 ∥

)
∥ Λ ∥ .

b) If a2 ̸= 0, then

DηΛ(t) = χ+H1Λ +
a2X1

1 + a1X1 + a2X4
H5Λ +X5H3Λ +X4H4Λ,

where

H5 =


0 0 0 −ρ

a2
0

0 0 0 (1−h)ρ
a2

0

0 0 0 hρ
a2

0

0 0 0 0 0
0 0 0 0 0

 .

Hence,

∥ DηΛ(t) ∥≤∥ χ ∥ +

(
∥ H1 ∥ + ∥ H5 ∥ + ∥ X5 ∥∥ H3 ∥ + ∥ X4 ∥∥ H4 ∥

)
∥ Λ ∥ .

c) If a1 = a2 = 0, then

DηΛ(t) = χ+H1Λ +X4H6Λ +X5H3Λ +X4H4Λ,

where

H6 =


−ρ 0 0 0 0

(1− h)ρ 0 0 0 0
hρ 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

Thus,

∥ DηΛ(t) ∥≤∥ χ ∥ +

(
∥ X4 ∥ (∥ H6 ∥ + ∥ H4 ∥)+ ∥ H1 ∥ + ∥ X5 ∥∥ H3 ∥

)
∥ Λ ∥ .

Therefore, our system has a unique solution on [0,∞).
Consider the function below:

N1(t) = X1(t) +X2(t) +X3(t).

We have

DηN1(t) = ξ − µ1X1 − µ2X2 − aX3

≤ ξ − p1N1(t),

where p1 = min{µ1, µ2, a}
Hence,

N1(t) ≤ N1(0)Eη(−p1t
η) +

ξ

p1

(
1− Eη(−p1t

η)

)
.

Since 0 ≤ Eη(−p1t
η) ≤ 1, we get

N1(t) ≤ N1(0) +
ξ

p1
.
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Therefore, X1(t), X2(t), X3(t) are bounded.
Now assume the following function:

N2(t) = X4(t) +
p

c
X5(t).

We have

DηN2(t) = kX3 − uX4 −
bp

c
X5 ≤ kL1 − p2

(
X4 +

p

c
X5

)
= kL1 − p2N2,

DηN2(t) ≤ kL1 − p2N2(t),

where p2 = min{u, b}. Hence,

N2(t) ≤ N2(0)Eη(−p2t
η) +

kL1

p2
(1− Eη(−p2t

η)).

Since 0 ≤ Eη(−p2t
η) ≤ 1, we get

N2(t) ≤ N2(0) +
kL1

p2
.

So X4(t), X5(t) are bounded and this ends the proof.
2

5. Globally Stable Concepts

Clearly, the portraying ordinary differential equations (ODEs) of system (2.1) is given by

u̇ = f(u), (5.1)

where u =


X1

X2

X3

X4

X5

 and f(u) =


ξ − µ1X1 − ρX1X4

1+a1X1+a2X4
(1−h)ρX1X4

1+a1X1+a2X4
− (µ2 + r)X2

hρX1X4

1+a1X1+a2X4
+ rX2 − aX3

kX3 − uX4 − pX4X5

cX4X5 − bX5

 .

Hence, system (2.1) can be written as
Dη

t u = f(u).

where Dη
t is the fractional derivative in the Caputo sense of order η ∈ (0, 1]. For η = 1, we get the ODE

model (5.1).

Theorem 5.1 If Br ≤ 1, then Q0 is globally asymptotically stable (GAS).

Proof: We define Lyapunov functional as follows

L0(u) =
X10

1 + a1X10
ϕ

(
X1

X10

)
+

r

µ2h+ r
X2 +

(µ2 + r)

µ2h+ r
X3 +

a(µ2 + r)

k(µ2h+ r)
X4 +

ap(µ2 + r)

kc(µ2h+ r)
X5.

where ϕ(ξ) = ξ − 1 − ln(ξ) ≥ 0, ξ > 0. Based on the results of [10], we infer that L0 is a Lyapunov
functional at Q0 when Br ≤ 1. Moreover, we have

Dη
t L0(u) ≤ ∇L0(u).f(u).

By using Theorem 1 (i) in [20], we conclude that L0 is also a Lyapunov functional for FDE model (2.1)
at Q0 when Br ≤ 1. Therefore, Q0 is GAS when Br is less than unity or maximum one. 2

Theorem 5.2 If RH ≤ 1 < Br, then Q1 is GAS.
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Proof: We consider the following Lyapunov functional

L1(u) = X1−X11−
∫X1

X11

I(X11,X41)
I(θ,X41)

dθ+ r
µ2h+rX21ϕ

(
X2

X21

)
+ µ2+r

µ2h+rX31ϕ

(
X3

X31

)
+ a(µ2+r)

k(µ2h+r)X41ϕ

(
X4

X41

)
+

ap(µ2+r)
kc(µ2h+r)X5.

where I(X1, X4) =
ρX1

1+a1X1+a2X4
, ϕ(ξ) = ξ − 1− ln(ξ) ≥ 0, ξ > 0. By means of [10], we get that L1

is a Lyapunov functional at Q1 when RH ≤ 1 < Br . Furthermore, we have

Dη
t L1(u) ≤ ∇L1(u).f(u).

By applying Theorem 1 (i) of [20], we infer that L1 is also a Lyapunov functional for FDE model (2.1)
at Q1 when RH ≤ 1 < Br. Thus, Q1 is GAS when Br is greater than unity, and RH is less than unity
or maximum one. 2

Theorem 5.3 If RH > 1, then Q2 is GAS.

Proof: Assume the following Lyapunov functional

L2(u) = X1−X12−
∫X1

X12

I(X12,X42)
I(θ,X42)

dθ+ r
µ2h+rX22ϕ

(
X2

X22

)
+ µ2+r

µ2h+rX32ϕ

(
X3

X32

)
+ a(µ2+r)

k(µ2h+r)X42ϕ

(
X4

X42

)
+

ap(µ2+r)
kc(µ2h+r)X52ϕ

(
X5

X52

)
.

where I(X1, X4) =
ρX1

1+a1X1+a2X4
, ϕ(ξ) = ξ − 1− ln(ξ) ≥ 0, ξ > 0. By means of [10], we get that L2

is a Lyapunov functional at Q2 when RH > 1. Furthermore, we have

Dη
t L2(u) ≤ ∇L2(u).f(u).

By applying Theorem 1 (i) of [20], we infer that L2 is also a Lyapunov functional for FDE model (2.1)
at Q2 when RH > 1. Thus, Q2 is GAS when RH is greater than unity. 2

6. Embodied Numeric Comparisons

In this part, we give some numerical simulations to depict our scientific yields. We assume cases for
η = 0.5, 0.7, 0.8, 0.9, 1. We select the values of parameters observable in the Table below.

Table: Parameter Values used for simulations

Parameters Meaning Value References

ξ Continuous rate of output of CD4 target cells 10 cells mm−3day−1 [10]

µ1 Decay rate of susceptible cells 0.01 day−1 [10]

ρ Viral infectivity rate 0.001,0.005 mm3 virus−1 day−1 Varied

a1 Positive parameter that describes capture rate’s effects 0.1 cells−1 mm3 [10]

a2 Positive parameter that describes capture rate’s effects 0.1 virus−1 mm3 [10]

µ2 Death rate of latent infectious cells 0.1 day−1 [10]

r Transmission rate of latent infectious cell to active infec-
tious cell

0.2 day−1 [10]

a Death rate of active infectious cells 0.1 day−1 [10]

k Productive rate of virus from activated infected cells 10 virus cells−1 day−1 [10]

u Clearing rate of virus 3 day−1 [10]

h The probability of a healthy cell turns to latently infec-
tious or actively infectious

0.5 day−1 [10]

p Clearing rate of virus killing by B cells 0.01 cells−1 mm3 day−1 [10]

c Activation rate of B cells 0.001, 0.005 virus−1 mm3 day−1 Varied

b Dying rate of B cells 0.2 day−1 [10]
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Figure 1: Stable inclination of plots towards the IFE Q0 for distinct values of α = η, and x = X1, w =
X2, y = X3, v = X4, and z = X5 related to system (2.1).
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Figure 2: Global asymptotic stability of the IE without humoral immunity Q1 for distinct values of α = η,
and x = X1, w = X2, y = X3, v = X4, and z = X5 related to system (2.1).
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Figure 3: Global asymptotic stability of the IE with activated humoral immunity Q2 for distinct values
of α = η, and x = X1, w = X2, y = X3, v = X4, and z = X5 related to system (2.1).

If we select the values of parameters shown in Table 1, choose ρ = 0.001 and c = 0.001, we calculate
Br = 0.2750 ≤ 1. Then system (2.1) has a IFE Q0(1000, 0, 0, 0, 0). By Theorem 5.1, the response of
system (2.1) converges to Q0 (see Fig.1). Based on Fig.1, the density of uninfected cells is increasing
and tends to its normal value ξ/µ1 = 1000 cells mm−3, while the density of latent infectious cells, active
infectious cells and free viruses are declining greatly and tend to zero. As a consequence, the virus is
removed and the infection ends.

If we take ρ = 0.005, c = 0.001 and fix the other parameter values, we obtain Br = 1.3751 > 1 and
RH = 0.2220 < 1. Therefore, the stationary point Q1(431.6667, 9.4722, 47.3611, 157.8704, 0) is GAS that
means that the virus insists in the body generously and infection turns to chronic. By Theorem 5.2, the
response of system (2.1) meets Q1. Fig.2 depicts this resultant.

If we take ρ = 0.005, c = 0.005 and fix the other parameter values, we obtain Br = 1.3751 > 1
and RH = 1.3082 > 1. Therefore, the stationary point Q2(811.6062, 3.1399, 15.6995, 40.0000, 92.4870) is
GAS that means that the virus insists in the body and infection turns to chronic. By Theorem 5.3, the
response of system (2.1) joins to Q2. Fig.3 shows this fact.

7. Drawn Deductions

In this paper, we have proposed a fractional HIV infected model with five main compartments that
are target host cells, latent mood of infectious cells which is the state that the infected cells are unable
to produce new infectious viruses, activated infected cells, matured viruses, and antibodies. We used
specific incidence rate of type Beddington-DeAngelis as functional response. We derived two threshold
parameters, the primary infection reproductive number Br and the reproductive number for humoral
immune response RH . Under defined presumptions, it is shown that the proposed model has a bounded
and nonnegative response as desired in any population dynamics. By using stability analysis of Caputo
fractional derivative order system, we have proved that if the primary reproductive number Br ≤ 1, then
the uninfected steady state is GAS for all η ∈ (0, 1]. consequently the viruses are unable to invade the
target cells and be cleared hence, using antiviral drug treatment can control and prevent the infection.
If RH ≤ 1 < Br, then the IE without humoral immune response is GAS. This advanced stage includes a
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time period so-called open-window period due to low levels of antibodies and viruses have strong ability
to invade the host and weaken the immune system. To stop replicating the viruses in the body, HIV
medicines and medical devices are essential approaches to fight HIV. If RH is greater than one, then
IE with humoral immune response is GAS. In this case, HIV can become AIDS and using antiretroviral
therapy can affect on life expectancy. Based on the above theoretical analysis, we realize that the global
dynamics of the model are completely determined by computations of the reproductive numbers Br

and RH . Furthermore, we observe that the fractional η does not affect on our model related to global
dynamics, but it can affect the time for reaching the steady states (see Fig.1, Fig.2, and Fig.3).
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