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Global Stability of a Fractional Virus Infection Model in the Presence of Humoral
Immunity and Two Classes of Infected Cell

Fereshteh Keshavarz and Vahid Roomi

ABSTRACT: It is well known that the benefit of fractional differentiation makes strong utility to model
natural realities with vast range memory, hereditary properties, and viral infections such as SARS, COVID,
HIV, and Dengue fever. According to biological evidence, complicated systems are more inclined to stability in
comparison to simple systems, so in this article, we focused on a fractional derivative order system. Adequate
qualifications for the global steady state of stationary points of a Caputo fractional derivative order system
with Beddington-DeAngelis functional response will be obtained by using Lyapunov’s method and LaSalle’s
invariance principle. We prove the global stability of the equilibria of the system by the values of the primary
reproductive number (B;) and the reproductive number for humoral immune response (Rg) as a natural
reaction of antibodies. We support the analytical results through numerical simulations.
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1. Introduction

Viral infections occur due to infection with a virus like the human immunodeficiency virus (HIV) that
attacks C' D4 cells and causes of the drastic illness known as acquired immunodeficiency syndrome (AIDS),
the hepatitis B virus (HBV) and hepatitis C virus (HCV) that are responsible for most cases of chronic
liver disease which can make progress to cirrhosis or liver cancer, as well as the severe acute respiratory
syndrome coronavirus 2 (SARS-COV-2) that causes coronavirus disease 2019 (COVID-19). These viral
infections represent a major health problem by causing many deaths. According to estimates from the
World Health Organization (WHO) in 2023, approximately 630 000 people died from HIV-related causes
and 1.3 million people acquired HIV [1]. Also, WHO estimated that 254 million people worldwide are
living with chronic HBV in 2022 and 50 million people are living with HCV, and 1.3 million people died
from HCV and HBV [2]. Furthermore, COVID-19 continue to emerge in the world attaining over 704
million people, and over 7 million deaths [3].

In the literature, numerous mathematical organic models have been proposed in order to understand
and describe the dynamics viral infection. One of the basic of these models was introduced in 1996
by Nowak and Bangham [4] to study HIV infection, and later adapted to HBV [5,6] and HCV [7]
infections. A general version of such viral infective model was offered by Hattaf et al. [8]. A category of
HIV infection models with cure of infected cells in eclipse stage was investigated in [9]. In 2015, Elaiw
[10] considered an ordinary differential equation (ODE) system including latently and actively infected
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cells with Beddington-DeAngelis functional response and in [11], Hattaf et al. considered a completely
different ODE system including latently and actively infected cells with general incidence function.

On the other hand, the above-mentioned models used the classical integer derivative which is a
local operator unlike the fractional derivative operators. Furthermore, fractional order models are more
consistent with real phenomena than integer order models because fractional derivatives allow to describe
the memory and hereditary traits inherent in various materials and processes [12,13,14,15,16]. Nowadays,
fractional approximations are used in many applied and medical sciences widely.

The focal aim of the present study is to investigate the effect of memory on the dynamics of viral
infection model presented in [10] by using the Caputo fractional derivative [17]. To do this, the next
section presents some preliminaries and our model formulation with Caputo fractional derivative. Section
3 determines the threshold parameters and equilibria of our fractional model with humoral immunity.
Section 4 discusses the uniqueness, positivity and boundedness of solutions. Section 5 establishes the
global stability of the three equilibria. Section 6 presents numerical simulations to demonstrate the
analytical outcomes. Finally, Section 7 draws some deductions.

2. Preliminaries and Model Formulation

In this part, we bring forward the fractional model below:

pX1Xy
DXy (t) =& — Xy — 1T aX, 1 an Xy’
(1 —h)pX1 Xy
D"X,(t) = — X 2.1
2() 1+a1X1+a2X4 (‘LL2+T) 25 ( )
hp X1 X
D" X5(1) P L X, — aXs,

- 14+ a1 X1+ ax Xy
DWX4(t) = kX3 —uXy —pX4X57
DnX5(t) = CX4X5 — bX5,

where X1 (), Xa(t), X5(¢), X4(t) and X5(t) are the condensations of the uninfected C'D4 cells, latently
infected cells which are part time unable to produce new infectious virus, actively infected cells which
have that potential to produce new infectious virus, free virus particles and antibodies produced by B
cells at time ¢, arranged orderly.

We considered nonlinear incidence function Beddington-DeAngelis which describes HIV infection with
infectious rate p. Fractions h and (1 — h) with 0 < h < 1 are the probabilities of uninfected cells that
will become either latently infected or actively infected.

System (2.1) has to be studied with this initial conditions:

X1(0) >0, XQ(O) > 0, X3(0) > 0, X4(O) >0, X5(0) > 0.

Definition 2.1 The Caputo fractional derivative of order v > 0 for an arbitrary function g is given
as follows:

1 t
D%(t) = ——— t—xz) % (2)d
o) = = |, (=0 @y
where I'(.) is the Gamma function and 0 < « < 1.

Definition 2.2 The Mittag-Leffler function of parameter n > 0 specified by

oo xi
FE, = -
n(@) ; T(ni+1)
3. Threshold Parameters and Equilibria

Clearly, system (2.1) has every time an infection-free equilibeium (IFE) Qq (Xm =& 0,0,0,0).

ljja
Then the primary reproductive number of (2.1) is given by

kpXio(p2h + 1)

B, = .
au(pe 4+ r)(1 + a1 X19)

(3.1)
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This first threshold parameter measures the mean number of the infections which right come after one
productive infected cell starts producing the viruses throughout the duration of infection when all cells
are still healthy. For B, > 1, we discuss two cases:

e In absence of humoral immunity, system (2.1) has a only IE without humoral immunity
Q1(X11, Xo1, X31, X41,0), where

X10 au(uz-&-r)-‘r&kag(ugh-l-r))

)
au(p2+r) <a1 Xi10(Br— 1)+Br) +urkaz Xio(p2hr)

X21 — a(lfh)Xgl

(n2h+r)
_ (=i Xu1)(uahtr)
Xo1 = "="alurn
Xy = B

u
e In presence of humoral immunity, system (2.1) has a only IE with humoral immunity
Q2(X12, Xo2, X32, X42, X52), where

X, — §a1*(pX42+H1a2X42+M1)+\/(PX42+/A1112X42+H1*§a1)2+4a1H15(1+a2X42)
12 —

2a1 1 ’

X — (17h)pX12X42

22 (p2+7r)(1+a1 X12+a2 X42)?
Xao — (p2h+1)pX12 X402

32 7 G(uatr)(1+ar X12+a2X42)’

b
X2 = ¢,
— u(kXzs

Xgp = 2(k2 1),

By a simple computation, we have X5o = %(RH — 1), where

kpXia(poh + 1)
Ry = . 3.2
H CLU(,LLQ +’I")(1 —|—a1X12 —|—a2X42) ( )

This second threshold parameter named the reproductive number for humoral immunity. Hence, Q-
exists only when Ry > 1.
We sum up the above discussions in the following results.

Theorem 3.1

(i) If B, <1, then system (2.1) has one IFE of the form Qo (i70,0,0,0), where X9 = %

(i) If B, > 1, then system (2.1) has an IE without humoral immunity of the form
Q1 = (X11, X21, X31, X41,0), where

Xio | au(pa+r)+ckaz(p2 h+’“)>

X =

)

au(pe+r) (a1 Xi10(Br—1)+B, | +p1kaz Xi0(p2h+r)

1-h)X —pu1 X h+r
Xo1 = 7a((ﬂ2h)+r)31 , Xy = Eopnfin)ushin) ma(ﬁiﬁff ) and Xg = 7’“9);31

(iii) If Ry > 1, then system (2.1) has an IE with humoral immunity of the form
QZ(X12b7 X2, X32, Xa2, Xs52), where

X42 - ¢’
X — €a1—(pXaz+praz Xao+p1)+y/(pXaz+p1 a2 Xao+p1 —€a1)2+4ar i £(1+a2 Xa2)
12 — 2 ’
a1py
_ (1-h)pX12X42 _ (p2h+r)pX12Xa2 _u _
Xoz = (p2+7)(1+a1 X12+a2X42)’ X2 = a(pe+r)(1+a1 X12+azX42)’ and X5y = p(RH 1)
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4. Features of Solutions

In this part, for any positive initial conditions, the uniqueness, non-negativity, and boundedness of
responses of system (2.1) will be set. Since model (2.1) represents the growth and evolution of the cell
particles, hence, biologically it is acceptable that the number of cells must remain positive and bounded.

Lemma 4.1 Consider the fractional order system
Dx(t) = g(x),

:L‘(to) = Xy,

with 0 <n < 1,tg € R, and x9 € R™. Now assume that g satisfies the conditions below:
a) g and Og are continuous for all x € R"™ and g is Lebesque measurable with respect to t.
b) lg@) ISv+p| x| for all z € R", where v and p are two positive constants.
Then, the above system has a unique solution on [tg, +00).

The proof follows sharply from [18].

Theorem 4.1 All solutions of system (2.1) with non-negative initial conditions exist uniquely for all
t > 0 and remain bounded and non-negative.

Proof: Since (2.1), we have

DXy (t) |x,=0=¢& >0,

DX (t) | xy—0= 15X > 0, for all X, X4 >0,

D X3(t) | x,=0= Tt + X2 > 0, for all X1, Xa, X4 > 0,
DnX4(t) |X4:O: ng Z 0, for all X3 Z O,

DnX5(t) |X5:O: 0 5 for all X5 > 0.
Hence, the nonnegativity of solutions is established.

Let
X1(t) §
Xo(t) 0
A(t) = | X3(t)| and x = |0]|. Clearly, system (2.1) satisfies the first conditions of Lemma (4.1). For
X4(t) 0
X5(t) 0

proving the second condition, consider cases as follows:
a) If a; # 0, then our system can be written as

n _ a1 Xy
D A(t) —X+H1A+ 1+a1X1 +a2X4H2A+X5H3A+X4H4A,
where
— 1 0 0O 0 0
0 —(u2+7r) 0 0 0
H1: 0 1) —a 0 0 y
0 0 E —u 0
| 0 0 0 0 —b
000 =2 0
0 0 0 Uhe o
Hx=10 0 0 @ of -
0 0 0 0 0
0 0 0 0 0
[0 0 0 0 0
0000 O
Hs;=10 0 0 0 0
000 0 —p
000 0 0
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00 0 0O
00 0 0O
Hy=|0 0 0 0 O
00 0 0O
00 0 0 ¢
So, we have
I DTA) 1< ooty seuwar=ll X I +< | Hyll + | He | + || X5 ([l Hs || + | Xa ||| Ha | > [

b) If ay # 0, then

az X1

D"A(t) =x+ HiA+
() X ! 1+G1X1+02X4

HsA + XsHsA + X HyA,

where
000 Z£ 0
0 0 0 Uhe g
as
Hs=10 0 0 2 0
000 0 0
000 0 0
Hence,

I DTA@) [I<[l x |l +< I Hy ||+ 1] Hs ||+ 1] X5 ([l Hs [| + || Xa [[[] Ha | > (RS

¢) If a; = as = 0, then

DnA(t) =X + HlA =+ X4H6A + X5H3A + X4H4A,

where
—p 0 0 00
(I-h)p 0 0 0 O
Hg = hp 0 0 0O
0 0 0 0O
0 0 0 00
Thus,

I DTA@) (1<l x |l +< I Xa | (Il He Il + | Ha [N+ | Ho ] + 1| X5 [/ Hs | > A

Therefore, our system has a unique solution on [0, c0).
Consider the function below:

Ni(t) = Xa1(t) + Xa(t) + X3(t).
We have

DNy(1)

§—mXy — paXs —aXs
§—p1N1(t),

IN

where p1 = min{pq, 2, a}
Hence,

Nilt) £ MO)By(-pit") + £ (1 By o)

Since 0 < E,(—p1t7) < 1, we get
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Therefore, X;(t), Xo(t), X3(t) are bounded.
Now assume the following function:

No(t) = Xu(t) + §X5(t).

We have ;
D'Na(t) = kX3 — uXy — 2 X5 < kL — po <X4 + pX5> = kLy — palNo,
C C

D"Ny(t) < kLy — paNa(t),

where py = min{u, b}. Hence,
n kL, n
Na(t) < Na(0)Ey(—p2t”) + pj(l — Ey(=p2t")).

Since 0 < E,(—p2t") < 1, we get

kL
No(t) < Na(0) + —.
b2
So X4(t), X5(¢t) are bounded and this ends the proof.
O
5. Globally Stable Concepts
Clearly, the portraying ordinary differential equations (ODESs) of system (2.1) is given by
= f(u), (5.1)
X, X
X € - e
X, M — 1)y
where u = | X3| and f(u) = e o 4 Xy — aXs
X4 kX3 - uX4 — pX4X5
X5 CX4X5 - bX5

Hence, system (2.1) can be written as
Diu = f(u).

where D} is the fractional derivative in the Caputo sense of order 1 € (0, 1]. For n = 1, we get the ODE
model (5.1).

Theorem 5.1 If B, <1, then Qg is globally asymptotically stable (GAS).

Proof: We define Lyapunov functional as follows

L () Uetn e e
14+ a1 X190 \ X1o poh + 1 2 poh + 1 3 k(pah + 1) 4 ke(ugh + 1)

L()(’U,) X5.

where ¢(§) =& —1—1n(§) > 0, £ > 0. Based on the results of [10], we infer that Ly is a Lyapunov
functional at Qg when B, < 1. Moreover, we have

D] Lo(u) < VLg(u). f(u).

By using Theorem 1 (i) in [20], we conclude that Lg is also a Lyapunov functional for FDE model (2.1)
at Qo when B, < 1. Therefore, @y is GAS when B, is less than unity or maximum one. O

Theorem 5.2 If Ry <1< B,, then @, is GAS.
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Proof: We consider the following Lyapunov functional

Ll(u)

ap(p2+r) Xs.

ke(poh+r)

where (X1, Xy) =

=X1—Xu—

pX1
14+a1 X +a2 X

X1 I(X11,X41)
X1 1(6, X4141 d0+u h+7‘X21¢<X21>+

+r a(pa+r) X.
:22h+r X31¢ <X31 ) + k(:ZQthT) X41¢ <X441> +

-, P(&) =& —1—1n(€) >0, £ > 0. By means of [10], we get that L

is a Lyapunov functional at ); when Ry <1 < B, . Furthermore, we have

DJLy(u) < VLyi(u).f(u).

By applying Theorem 1 (i) of [20], we infer that L; is also a Lyapunov functional for FDE model (2.1)
at Q1 when Ry <1 < B,. Thus, Q1 is GAS when B, is greater than unity, and Ry is less than unity
or maximum one. O

Theorem 5.3 If Ry > 1, then Q2 is GAS.

Proof: Assume the following Lyapunov functional

Lo(u) = X1~ X12— [, I()((GH)),(T;Z)d9+u2h+rX22¢<Xzz)+:22h—‘er32¢< >+ka(§722h—':2)X42¢< >+
ap(p ) x
k:c(y,22h+7‘) 52 ¢<X52>

where I(X1, Xy) = % ,0(€)=¢6—1—1n(§) >0, £ > 0. By means of [10], we get that Lo

is a Lyapunov functional at )s when Ry > 1. Furthermore, we have

By applying Theorem 1 (i) of [20

D] La(u) < VLa(u). f(u).

at Q2 when Ry > 1. Thus, Q2 is GAS when Ry is greater than unity.

6. Embodied Numeric Comparisons

|, we infer that Lo is also a Lyapunov functional for FDE model (2.1)

In this part, we give some numerical simulations to depict our scientific yields. We assume cases for
7 =0.5,0.7,0.8,0.9,1. We select the values of parameters observable in the Table below.

Table: Parameter Values used for simulations
Parameters| Meaning Value References
£ Continuous rate of output of CD4 target cells 10 cells ”mm_‘sday_1 [10]
75 Decay rate of susceptible cells 0.01 day71 [10]
p Viral infectivity rate 0.001,0.005 mm> virus~ 1 day 1 Varied
aq Positive parameter that describes capture rate’s effects 0.1 cells™1 mm3 [10]
ag Positive parameter that describes capture rate’s effects 0.1 virus~ 1 mm?3 [10]
o Death rate of latent infectious cells 0.1 day™ [10]
s Transmission rate of latent infectious cell to active infec- 0.2 da,y_1 [10]
tious cell
a Death rate of active infectious cells 0.1 day~! [10]
k Productive rate of virus from activated infected cells 10 virus cells—1 da,y_1 [10]
u Clearing rate of virus 3 day™ [10]
h The probability of a healthy cell turns to latently infec- 0.5 day71 [10]
tious or actively infectious
P Clearing rate of virus killing by B cells 0.01 cells™ 1 mm3 day_l [10]
c Activation rate of B cells 0.001, 0.005 virus— 1 mm3 day71 Varied
b Dying rate of B cells 0.2 day71 [10]
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Figure 1: Stable inclination of plots towards the IFE Qg for distinct values of @« =7, and z = X1, w =
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Xo,y = X3,v = Xy, and z = X5 related to system (2.1).
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and © = X1, w = Xa,y = X3,v = Xy, and z = X5 related to system (2.1).
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Figure 3: Global asymptotic stability of the IE with activated humoral immunity Q)5 for distinct values
of a =mn,and z = X7, w = Xo,y = X3,v = X4, and z = Xj5 related to system (2.1).

If we select the values of parameters shown in Table 1, choose p = 0.001 and ¢ = 0.001, we calculate
B, = 0.2750 < 1. Then system (2.1) has a IFE @Q(1000,0,0,0,0). By Theorem 5.1, the response of
system (2.1) converges to Qo (see Fig.1). Based on Fig.1, the density of uninfected cells is increasing
and tends to its normal value &/ = 1000 cells mm ™3, while the density of latent infectious cells, active
infectious cells and free viruses are declining greatly and tend to zero. As a consequence, the virus is
removed and the infection ends.

If we take p = 0.005, ¢ = 0.001 and fix the other parameter values, we obtain B, = 1.3751 > 1 and
Ry = 0.2220 < 1. Therefore, the stationary point Q1(431.6667,9.4722,47.3611,157.8704,0) is GAS that
means that the virus insists in the body generously and infection turns to chronic. By Theorem 5.2, the
response of system (2.1) meets Q1. Fig.2 depicts this resultant.

If we take p = 0.005, ¢ = 0.005 and fix the other parameter values, we obtain B, = 1.3751 > 1
and Ry = 1.3082 > 1. Therefore, the stationary point Q5(811.6062,3.1399,15.6995,40.0000,92.4870) is
GAS that means that the virus insists in the body and infection turns to chronic. By Theorem 5.3, the
response of system (2.1) joins to Q2. Fig.3 shows this fact.

7. Drawn Deductions

In this paper, we have proposed a fractional HIV infected model with five main compartments that
are target host cells, latent mood of infectious cells which is the state that the infected cells are unable
to produce new infectious viruses, activated infected cells, matured viruses, and antibodies. We used
specific incidence rate of type Beddington-DeAngelis as functional response. We derived two threshold
parameters, the primary infection reproductive number B, and the reproductive number for humoral
immune response Ry. Under defined presumptions, it is shown that the proposed model has a bounded
and nonnegative response as desired in any population dynamics. By using stability analysis of Caputo
fractional derivative order system, we have proved that if the primary reproductive number B, < 1, then
the uninfected steady state is GAS for all n € (0,1]. consequently the viruses are unable to invade the
target cells and be cleared hence, using antiviral drug treatment can control and prevent the infection.
If Ry <1 < B,, then the IE without humoral immune response is GAS. This advanced stage includes a
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time period so-called open-window period due to low levels of antibodies and viruses have strong ability
to invade the host and weaken the immune system. To stop replicating the viruses in the body, HIV
medicines and medical devices are essential approaches to fight HIV. If Ry is greater than one, then
IE with humoral immune response is GAS. In this case, HIV can become AIDS and using antiretroviral
therapy can affect on life expectancy. Based on the above theoretical analysis, we realize that the global
dynamics of the model are completely determined by computations of the reproductive numbers B,
and Ry. Furthermore, we observe that the fractional 7 does not affect on our model related to global
dynamics, but it can affect the time for reaching the steady states (see Fig.1, Fig.2, and Fig.3).
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