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Numerical Approaches to HIV/AIDS Dynamics: A SIAT Model Study

Kshama Jain, Anuradha Bhattacharjee, Srikumar K.

ABSTRACT: In this study, we develop and analyze a nonlinear STAT model to investigate the transmission
dynamics of HIV/AIDS with an emphasis on the role of treatment. The total population is stratified into
four compartments: Susceptible (S), Infected (I), individuals with AIDS (A) and Treated (T'). The model’s
equilibriums are derived, and the basic reproduction number Ry is calculated as the threshold parameter
governing disease persistence or eradication. Both local and global stability conditions of the equilibriums
are rigorously established. A sensitivity analysis of Rp identifies the parameters most influential in driving
HIV/AIDS progression, providing valuable insights for potential intervention strategies. To complement the
theoretical analysis, three numerical schemes—FEuler’s method, the fourth-order Runge-Kutta method, and the
forward difference method—are employed to simulate system dynamics. A comparative evaluation highlights
their relative accuracy and efficiency in capturing the model’s behavior. Numerical experiments, conducted
using MATLAB, illustrate the impact of treatment and validate the analytical results.

Key Words: HIV/AIDS dynamics, STAT model, basic reproduction number, sensitivity analysis,
numerical methods, treatment effect.
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1. Introduction

HIV/AIDS remains a significant global public health issue, affecting millions of people worldwide despite
decades of medical progress and preventive initiatives. Over the last fifty years, the epidemic has continued
to expand, with new infections and AIDS related deaths still occurring each year. According to the World
Health Organization (WHO), approximately 39 million people were living with HIV in 2023, and about
630,000 individuals died due to AIDS-related illnesses [1]. Although substantial advancements have been
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made in Antiretroviral Therapy (ART)and other public health measures, the disease continues to spread,
largely due to diverse transmission modes and underlying socioeconomic challenges.

HIV is primarily transmitted through unprotected sexual contact, reuse of infected needles and practices
like tattooing and body piercing with contaminated instruments. Once inside the body, the virus targets
CD4™ T-cells (the critical components of the immune system that help fight infections), HIV integrates its
genetic material into the host DNA, allowing it to replicate and progressively deplete these immune cells,
which over time compromises the immune system [2]. In the early phase, individuals may experience mild
flu-like symptoms, which typically subside as the infection enters a latent stage. Without timely detection
and treatment, the immune system deteriorates further, potentially leading to Acquired Immunodeficiency
Syndrome (AIDS) within approximately 4-5 years [3]. The primary method for managing HIV infection
is Antiretroviral Therapy (ART), which suppresses viral replication, reduces viral load and slows disease
progression. When consistently adhered to, ART significantly enhances the quality of life for people living
with HIV and delays the progression to AIDS. However, ART is not a cure; it controls the infection
rather than eliminating it. Interruptions in treatment or poor adherence can lead to drug resistance,
reducing treatment efficacy and increasing the risk of disease progression [4]. The success of ART also
depends on factors such as medication availability, patient adherence and access to healthcare services.
Socioeconomic barriers, stigma and inequalities in healthcare access continue to hinder effective treatment,
thereby perpetuating the epidemic [5].

Mathematical modeling has been instrumental in understanding the transmission dynamics of HIV/AIDS
and evaluating the impact of interventions. Early models, such as those proposed by Anderson and May
(1987), employed SIS and SIR frameworks to study disease spread [6]. Since then, numerous researchers
have refined these models to incorporate additional epidemiological factors, including awareness levels,
co-infections and treatment dynamics. For instance, some models differentiate between aware and unaware
infected individuals [7], while others explore the effects of ART and the emergence of drug resistance [8].
Advanced numerical methods have been employed to analyze these models, offering insights into effective
disease control strategies.

Waziri et al. [9] examined HIV/AIDS dynamics incorporating vertical transmission and treatment using the
SIPTA model (Susceptible, Infected, Pre-AIDS, Treated, AIDS). Ming Wan Shen et al. [10] developed an
age-structured model to track infection transmission and estimate patient longevity based on ART initiation
timing. David Fajardo-Ortiz et al.’s [11] research is shaped not only by the division of the problem into
specific components and interactions, resulting in increasingly specialized research communities, but also
by shifts in the technological landscape and the significant epidemiological changes that took place between
1993 and 1995. Attaullah et al.’s [12] study discuss and analyze the effect of constant and different variable
source terms (depending on the viral load) used for the supply of new CD4% T-cells from thymus on the
dynamics of CD4" T-cells, infected CD4™" T-cells and free HIV virus. Haoran Sun et al. [13] proposed
a computational method to accurately estimate the number of infectious individuals during Taiwan’s
early surveillance phase (January 2005 to December 2006), using a compartmental model named STAJB
(Susceptible, Infectious HIV, Non-Infectious HIV, Infectious AIDS, Non-Infectious AIDS). Morani et al.
[14] introduced the SWIUA model (Susceptible, Untested, Transmittable Virus Infected, Untransmittable
Virus Infected, AIDS), which accounted for both symptomatic and asymptomatic individuals.

To effectively analyze the complex disease dynamics captured by the mathematical model, numerical
methods serve as important techniques for obtaining approximate solutions and exploring the system’s
behavior under various conditions. Numerous researchers have compared different numerical approaches
to determine their accuracy and suitability in solving such infectious disease models. Rizki Ashgi et al.
[15] studied the infectious diseases Covid-19 by using the SIR model to solve the system. They used
two numerical methods, namely Euler Method and 4th order Runge-Kutta. In the paper, they study
the performance and comparison of both methods in solving the model. Aakash M et al. [16] studied
infectious diseases to solve the mathematical model using some numerical methods, by transforming the
equations into the Euler and Runge-Kutta methods. They did not only study the comparison of these two
methods, also found out the differences in solutions between the two methods. However, there remains
limited work that systematically examines the relative performance of multiple numerical approaches in
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the context of HIV/AIDS dynamics, particularly when treatment effects are explicitly included.

To address this gap, we develop a nonlinear compartmental model—SIAT (Susceptible-HIV Infected—
AIDS-Treated) to examine the progression of HIV/AIDS and perform an analytical analysis of the
study. The study also assesses the performance of three numerical techniques: Euler’s method, the
4th-order Runge-Kutta method and the Forward Difference method. The aim is to evaluate the accuracy,
stability and computational efficiency of these methods in simulating disease progression. Through this
combined analytical-numerical approach, we seek to establish a reliable computational framework to
better understand disease dynamics and enhance intervention strategies.

This study is organized as follows: Section 2 outlines the formulas for the three numerical methods
used in analyzing the model. Section 3 presents the formulation of the HIV/AIDS model, including the
determination of equilibrium points and an analysis of their global stability. Section 4 is dedicated to
sensitivity analysis. Section 5 defines and studies optimal control. Section 6 focuses on the numerical
results, presenting simulation outcomes and comparing the absolute differences across the three numerical
methods. Section 7 summarizes the study’s findings.

2. Methods: Euler, 4th order Runge—Kutta and Forward Difference

To numerically solve the proposed model, we employ three widely used methods: Euler’s method, the
4th order Runge-Kutta (RK4) method, and the Forward Difference (Explicit Euler) method. While the
Euler method is simple and computationally efficient, it tends to accumulate errors over time, leading to
significant deviations in long-term simulations. The RK4 method, known for its fourth-order accuracy
and ability to handle stiff systems, is considered a benchmark in epidemiological modeling due to its high
precision [16]. The Forward Difference method is also straightforward to implement but can suffer from
numerical instability unless very small step sizes are used.

In all three methods, the dependent variable y is computed iteratively as the independent variable x
increases in uniform small steps [17].

The Euler method can generally be expressed as follows:

yn+1:y7L+hf(xn7yn)7 n20,1,2,....
For the fourth order Runge-Kutta method, we have

1
Yntl = Yn + 5 (k1 + 2k 4 2ks + ky) ,

where
1 1
kl :hf(tnayn)a k2hf<tn+2hayn+2kl> )

1 1
k3:h.f<tn_|_2h7yn+2k2)a k4:hf(tn+hayn+k3)'

In the Forward Difference method, we have

p(p — 1)A2y n ple—Dp-2)

yn () = yo + pAyo + 51 0 5

where Ayg = y1 — Yo.

These numerical schemes are applied to the SIAT model, and the resulting systems are solved using
MATLAB to generate simulations and compare the accuracy, stability, and efficiency of the methods.
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Table 1: Description of classes and parameters.

Classes and Parameters

Description

R FTRZNLSW®
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N

Susceptible class

HIV infected class

AIDS class

Treated class

Total population

Rate of susceptible entering into HIV infected class
Rate of HIV infected entering into AIDS class
Rate of AIDS infected entering into treated class
Rate of HIV infected entering into treated class
Natural death rate

Death rate due to HIV infection

Death rate due to AIDS disease

3. Mathematical Formulation

We consider an SIAT model with four classes: Susceptible, HIV infected, AIDS, Treated. The description
of the classes and the parameters is given in Table 1.

The compartment diagram for the STAT model is presented in Fig. 1.
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Figure 1: STAT model.

By considering all the classes and the parameters, the HIV/AIDS model shown in Fig. 1 can be defined as

dsS
— =N — I — 1
o aST — psS, (3.1)
dI
E:asl—(k1+k2+/l+d1)l7 (3.2)
dA
—r =kl = (et d2)A, (3.3)
T
The initial conditions are
S(0)>0, I(0)>0, A(0)>0, T(0)>0

3.1. Invariant region

Given the structure of the population model, it is essential to impose non-negativity constraints on all
compartmental variables S(t), I(t), A(t), T(t) to reflect realistic population dynamics for all ¢ > 0. The
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solution with the initial positive data stays positive for all positive ¢ and it is bounded. It is practical to
observe from the system that

As such we can study the system in the feasible region

Q—{@ﬁ%ﬂ&A@JﬁDeRiﬂgAm)gf}.

Q is now a positive invariant set for the model. The STAT model is epidemiologically well posed and all
the solutions to the system with (S(t), I(t), A(t),T(t)) € R} remain in Q.

3.2. Basic reproduction number

One important epidemiological indicator that measures the standard amount of secondary infections
caused by one infectious individual in a fully susceptible population is the basic reproduction number.
The next generation approach is employed for calculating the basic reproduction number [18].

Let

F— aS 0 V= —(k1+k2+u+d1) 0
1o ol - k1 —(vH+ptda)|”

Here F is the non-negative matrix of new infections and V' is the non-singular matrix of compartmental
change. We need the largest eigenvalue of FV ! for the basic reproduction number. Mathematically we
calculate the inverse of V:

vl = 1 {_(7+N+d2) 0 } '
(k1 +ko+p+dy) (v + p+ds) —ky —(k1+ ke +p+dy)

Multiplying F by V! we obtain

(ky+ ke +p+di) (v +p+d) 0 0]

The largest eigenvalue is the basic reproduction number

B alN
pu(ky + ko + p+dp)”

Ry

3.3. Equilibrium points

Analytical solutions to ODEs are particularly valuable, as they offer precise mathematical expressions
that describe the behavior of physical systems [19]. There are two types of equilibrium: (i) disease free
equilibrium, (ii) endemic equilibrium. The disease free equilibrium represents a state where no individuals
in the population are infected with HIV/AIDS, while the endemic equilibrium corresponds to a persistent
presence of HIV/AIDS in the population at a constant level.

3.8.1. Disease free equilibrium. For the disease free equilibrium we put Iy = 0, Ay = 0, Ty = 0 and obtain

N
Eo = (So, Io, Ao, To) = (M,o,o,o) .

3.3.2. Local stability of the DFE. Theorem 1. The HIV/AIDS model’s disease free equilibrium is locally
asymptotically stable if Ry < 1.
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Proof. For examining local stability we construct the Jacobian matrix at Ejy:

N
—u —0‘7 0 0
N
Jo=10 %—(k1+k2+ﬂ+d1) 0 0
0 k1 —(y+p+d) O
0 ko g —H

Its characteristic equation is |Jy — AI| = 0, that is
9 (N
(n+A) e — (ki +ke+p+di) =N (=(v+u+d2) — ) =0.
We get the eigenvalues
alN
A=—p, —p, —(v+p+ da), o (k1 + ko +p+dr).

By the Routh-Hurwitz criterion [20], for the stability of the equilibrium, all the eigenvalues must have
negative real part. This is equivalent to

N
%—(k1+k2+u+d1)<0,

namely
aN
<1,
p (ks + ke + p+dy)
that is Ry < 1. Hence the disease free equilibrium is locally stable if Ry < 1. a

3.8.3. Global stability of the DFE. Theorem 2. The HIV/AIDS model’s state of the system where no
disease is present is globally asymptotically stable if Ry < 1.

Proof. We construct a Lyapunov function for the STAT model as
V(S,I,A,T)=CiI + CrA.
Then

av
— =CI A
I CiI'+ Cy
Using (3.2)—(3.3), we obtain
dv
T =C1[aS — (k1 +ko+p+d)| I+ Colkil — (v + p+d2)A].
Using S < N/u we get
av N
= < C1 [O‘M —(k1+k2+u+d1)} I+ Cokil — (v+ p+da)A].
Rearranging,
av N
s < {Cl {Oé,u — (k1 + k2 +u+d1)} +Czk1} I —Co(y+p+da)A.
Choose C7 =1 and
1 N
Cy=— {—a—i—(/ﬁ +/€2+M+d1)] -
k1 14
Then
av (k14 ko + pu+ dy)

— < (Ro—1)(y+ p+do) A

dt

k1

av
Thus, if Ry < 1 we have — < 0 with equality only when A = 0. Hence the disease free equilibrium is
globally stable if Ry < 1. O



NUMERICAL APPROACHES TO HIV/AIDS DyNamics: A SIAT MODEL STUDY 7

3.4. Endemic equilibrium

Let
E* = (S*’I*7A*7T*) # (0707 O’ 0)

be an endemic equilibrium of system (3.1)—(3.4). We solve the steady state equations.

From (3.2) we get

_kitktpu+d N

S* = .
o uRo
Using (3.1) we obtain
. N B« 7
= = FE_Zp £
ki+ke+p+di o p o
From (3.3),
R
Ty tptdy kit ke tptdi o) Atptd g al
From (3.4),

e Bl yAT 1 {k L } {a M}

iR =
% % vtptda] ln? @

Therefore we can write the endemic equilibrium as

T i n 8] ) [ a)
EF*=(—,-Ry—- %5, ———— |-Ro— 5|, = |ko+ ——— | |—-Ry— & ).
<uRo Qv ptdy [ [ vt ptde] Y

8.4.1. Local stability of the endemic equilibrium. Theorem 3. The endemic equilibrium for the system is
locally asymptotically stable if Ry > 1.

Proof. The Jacobian matrix at £E* is

—al* —p —aS* 0 0

T al* aS* — (k1 + ke + p+di) 0 0
- 0 k1 —(y+tpt+d) O

0 ko g —H

In order to determine the local stability of the endemic equilibrium, it is sufficient to show that Tr J* < 0
and det J* > 0 [21]. Since

aS* — (k1 +ko+p+di) =0
(because S* = (k1 + ko2 + pp+ d1) /), we get Tr J* = —al* — u < 0 and

Nao

detJ*=28*" = ———M
“ <k’1+k2+u+d1

u) (k1 +ke+p+di)>0
provided
Na
(ks + ko +p+dy

> 1,
)

that is Ry > 1. Hence the endemic equilibrium is locally stable if Ry > 1. O



8 K. JAIN, A. BHATTACHARJEE AND S. K.

3.4.2. Global stability of the endemic equilibrium. Theorem 4. The system (3.1)—~(3.4) has no periodic
orbits in €.

1
Proof. We use Dulac’s criterion. Let X = (5,1, A,T) and consider the Dulac function B = TA Then

B dsS N aS uS

dt IA A IA’
dl _ oS  (kit+ke+p+di)

A A ’
Bﬁ:ﬁ_ (v +p+do)
ad A I ’
dl' ko ~ uT
AT TIA

Hence

0 ds 0 dI 0 dA 0 dT «a L k1 o

— | B— — | B— — | B— — |B— | =—— - — - — — — :

as( dt>+81( dt)+8A< dt>+8T( dt) A T4 a2 1A~
Therefore, by Dulac’s criterion there exists no periodic solution in €. By the Poincaré—Bendixson theorem,

all solutions of (3.1)—(3.4) that remain in Q approach an equilibrium. As a consequence, the endemic
equilibrium E* is stable if Ry > 1, otherwise it is unstable. O

4. Sensitivity analysis

This section explores the results of a sensitivity analysis conducted on the threshold parameter Ry. The
primary goal of the analysis is to identify key parameters that strongly influence Ry, making them essential
targets for intervention strategies. Sensitivity indices are utilized to measure how Ry responds to changes
in specific parameters. In this study, the forward sensitivity index is calculated in the form of the ratio
of the variable’s relative change in Ry to the relative change in the corresponding parameter, providing
insights into the most influential factors affecting the system [22].

Mathematically, it is expressed as

oo — ORy P
b 8Pl Ro,
where N
«@
Ry = .
O pulky + ko + p+dy)
The Ry elasticity indices are given by:
_ N ,U(k1+k2+u+d1)_
Pa = X =1,
wlki + ko + p+dq) N
en =1,
op=—-1- o
g (k1 + ke +p+di)
o (k1 + ko +p+di)’
T e ha + o+ )
—dy

P = (k1+k2+u+d1).
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A positive sensitivity index of Ry with respect to a model parameter indicates that any change in the
parameter value directly influences the magnitude of Ry. Specifically, an increase in the parameter will
result in a corresponding rise in Ry, while a decrease in the parameter will lead to a reduction in Ry.
With the help of the graphs in Figs. 2—-3 we can understand the sensitivity of parameters on the basic
reproduction number.

Variation of Ru with respect to parameter o

0 0.5 1 1.5 2
Alpha

Figure 2: Ry as a function of the parameter «.

Variation of R0 with respect to parameter kz

1

\
6F |\

\
sp
o 4
3r
\\.\‘
2 ~
1r T
i :
0 0.5 1 1.5 2

Figure 3: Ry as a function of the parameter ks.

From Fig. 2 we observe that in the STAT model, the parameter « (the interaction parameter between
susceptible and the HIV infected) has a positive sensitivity index, indicating that an increase in « leads
to a rise in the basic reproduction number Ry, while a decrease in « results in a lower Ry. This suggests
that « plays a significant role in driving the transmission dynamics of the infection. On the other hand,
in Fig. 3 we find that the parameter ko (the parameter leaving HIV infected and entering the treated
class) exhibits a negative sensitivity index, meaning that an increase in ks contributes to a reduction in
Ry, whereas a decrease in k5 leads to an increase in disease spread.
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5. Optimal control

This section focuses on applying optimal control methods to effectively curb the transmission of HIV /AIDS.
Our objective is to formulate and derive the necessary conditions that govern optimal intervention strategies
within the framework of the HIV/AIDS STAT model. Through this approach, we aim to enhance the
understanding and implementation of targeted public health measures. To facilitate this, we introduce a
time-dependent control variable w(t), which represents various intervention strategies—such as treatment,
vaccination, promotion of safe sexual practices and the use of uncontaminated syringes—applied at specific
time points t. Thus, we have the following optimal control model:

%f =N —[1 —u)]aSI — usS, (5.1)

dI
= == )] aST = (ky + ke + i+ di) 1, (5.2)
%ftl = kil — (v + p + d2) A, (5.3)
% = kol +~vA — uT. (5.4)

The objective functional is

u u

min J(u) = min/O ’ (crI(t) + Whu?(t)) dt,

where 0 < u(t) < 1,0 <t <ty, c1 represents the positive constant weight that balances the individuals
infected with HIV, and W7 is a constant weight reflecting the significance of prevention control for HIV.
The term Wju?(t) signifies the cost associated with the prevention control measures for HIV.

The Hamiltonian function is useful in epidemiological models for determining optimal intervention strategies
(such as treatment, vaccination or awareness campaigns) that minimize the cost of infection or maximize
health outcomes over time. It transforms the original control problem into a system of ODEs, allowing
the use of Pontryagin’s maximum principle [23].

The Hamiltonian function for the model is given by

H = ciI(t) + Wiu?(t) + M\ [N — (1 — u(t)) ST — puS]
+ A2 [(1 —u(t) ST — (ky + ko + p+d1) 1]

where \; for i = 1,2, 3,4 are the adjoint variables corresponding to S(t), I(t), A(t), T'(t), respectively. Let
1 =8, 20=1,23=A, 24 =T. Then

d  9H
T i=1,2,3,4.
We obtain D SH
1_od _ _ _
Ty {=M A —=u®)al —pr +r2 (1 —u(t))al},
dAg O0H
e —{cl A (1 —u(t))as + X (1 — u(t) oS

— Xo (kg + ko + o+ dy) + Asky +)\4k2},

s __oH

i = a4 = Uy tpdd)+ v,
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d\  OH

o = ar =~ (Cpd) = s

The optimality condition for 0 < ¢ < t; is 2£ =0, that is

H
837 = 2W1u(t) 4+ AaST — XaST =0,
whence ST (A Aa)
_awiiM —A2)
= ""5m

Since 0 < u(t) < 1, we obtain the optimal control

* o . aST ()\1 - )\2)
u*(t) = min {1, max (O, B > } .

Results of optimal control
If we simulate the optimal control in MATLAB, we obtain the following results.

111V Infected Population vs Time

016

= wilhout optima conlro!
014 — wiln optmal conlro! ]
012

| class Popu'ation(x10°)
o
o
@

006 -

0 10 20 30 40 50 60
Time (weeks)

Figure 4: HIV infected class with and without optimal control.

Figs. 4-6 illustrate the outcome of implementing the optimal control strategy in the HIV/AIDS model.
These figures provide a comparative analysis of the system’s behavior with and without control interventions.
In Fig. 4, the dynamics of the HIV-infected population is shown over time. Without optimal control, the
number of HIV-infected individuals rises sharply and remains high, reflecting the uncontrolled spread of
the disease. However, when optimal control measures are applied, a noticeable reduction in the infected
population is observed.

Fig. 5 further supports this finding by presenting a consistent pattern of reduced AIDS infection levels
under optimal control. The curve under the controlled scenario remains significantly lower compared to
the uncontrolled case.

Fig. 6 depicts the behavior of the treated class over time. The graph shows that the number of treated
individuals is lower under optimal control compared to the uncontrolled scenario. This is a positive
outcome: because the infection rate is significantly reduced under control strategies, fewer individuals
require treatment. Hence, the decline in the treated class corresponds to a reduced burden of disease in
the population.
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0.2 AIDS Infected Population vs Time
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Figure 5: AIDS class with and without optimal control.

Treated Class Population vs Time
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Figure 6: Treated class with and without optimal control.

Overall these graphs clearly demonstrate the effectiveness of the control strategy, leading to a substantial
decline in the HIV-infected class over the simulation period.

6. Numerical simulation
We simulate the model by taking the parameter values from [24,25,26], given in Table 2.
We obtain the following graphical results.

Fig. 7 illustrates that, initially, the entire population belongs to the susceptible class. However, over
time, this number declines as individuals transit into the HIV-infected class. The infected population
rises, reaching a peak before gradually decreasing as individuals either progress to the AIDS stage or
begin treatment. Similarly, the number of AIDS cases declines as more patients receive treatment. The
treatment graph shows a steady increase, reflecting the growing number of individuals from both the
HIV-infected and AIDS classes who have started undergoing treatment.

Fig. 8 depicts the influence of k; (the parameter leaving infected and entering into AIDS) on the AIDS
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Table 2: Parameters and their values.

Parameters Values Source
« 0.7531 [24]
y 0.0326 [26]
k1 0.05945 [26]
ko 0.0223 [25]
1 0.0024 [25]
dy 0.0015 [25]
dsy 0.00089 [25]

S,LA, T Population Vs Time

e e
=) [

S,,A,T Population class(x10%)
o
s

021

0 20 40 60 80 100
Time (weeks)

Figure 7: Time evolution of the STAT model.

class. The graph indicates that a higher value of k; leads to a corresponding increase in the AIDS
population, highlighting the direct relationship between the two.

Fig. 9 shows the effect of k1 on the HIV-infected population. As k; increases, the infected population
declines, suggesting that a higher transition rate from the infected stage to the AIDS stage reduces the
number of individuals remaining in the infected class.

Fig. 10 shows the impact of ko (the rate of AIDS infected entering into the treated class) on the treated
class. As ko increases it results in an increase in treated individuals.

Simulations for contour plots of the model

We obtain some contour plots for the basic reproduction number Ry as a function of two different
parameters chosen from Table 2.

From Fig. 11 we observe that Ry increases with higher « (interaction/transmission rate) and decreases as
k1 (progression from HIV infection to AIDS) increases. This means that greater interaction rates lead
to more secondary infections and thus amplify the epidemic potential. In contrast, faster progression
from the infectious stage to AIDS shortens the average infectious period, thereby reducing the number of
new infections. The highest Ry values occur at high o combined with low kj, representing the worst-case
epidemic scenario.

From Fig. 12 we see that Ry decreases as either k; (progression to AIDS) or ko (treatment initiation
rate) increases. Both pathways remove individuals from the infectious pool— either by advancing them
to AIDS (with lower assumed infectiousness) or by moving them into treatment (which suppresses viral
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Impact of k, on AIDS infected Population

06
05
1.2
0.4+ e
0.8

Sy

04 \\
B P Ny

SN
/ N

o
w

ot
LN}

HIV Infected Population class(x10%)

o

0 20 40 60 80 100
Time (weeks)

Figure 8: Impact of k1 on the AIDS class.

load and reduces transmission). Thus, higher values of k1 and kg act synergistically to lower transmission
potential. The contour shows that even modest increases in ko can substantially reduce Ry, highlighting
the critical role of timely treatment in epidemic control.

Finally, the relationship between o and d;, demonstrated in Fig. 13, shows that although higher disease-
induced mortality decreases Ry by reducing the lifespan of infectious individuals, this reduction is achieved
at the expense of higher mortality, underscoring that prevention measures aimed at reducing « are more
effective and ethically appropriate.

Comparison of numerical methods

In the continuation we check the difference among three methods: Euler, Runge-Kutta 4th order and the
Forward Difference method. The graphs obtained are given below.

Fig. 14 provides a detailed analysis of the influence of the parameter « (the rate of interaction between
the susceptible and infected individuals) on the HIV-infected class, evaluated through three numerical
methods: Euler, Runge—Kutta 4th order, and Forward Difference methods. The results demonstrate that
an increase in « leads to a corresponding rise in the size of the infected class. Among the numerical
methods applied, the Runge-Kutta 4th order method demonstrates superior performance due to its
higher-order accuracy and greater numerical stability, making it a preferred choice for effectively capturing
the system’s dynamics.

Fig. 15 depicts the behavior of the AIDS class using the Runge-Kutta 4th order method and the Forward
Difference method. Fig. 16 exhibits the HIV infected class dynamics using Runge-Kutta 4th order and
Forward Difference methods. In Figs. 15 and 16, we observe that initially the absolute value disparities
are minimal. However, as the number of iterations increases, so do the absolute value discrepancies, which
eventually peak and then decline.

Fig. 17 displays the errors obtained in the numerical values calculated by both methods. The error graph
shows that the Runge—Kutta 4th order method maintains significantly lower deviations in the infected
population over time, whereas the Forward Difference method accumulates noticeable error due to its
lower-order approximation. The numerical errors in the I(¢) class given by both methods are summarized
in Table 3.

This emphasizes the accuracy of the Runge-Kutta 4th order method in precisely capturing the dynamics
of infectious disease spread.
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Figure 9: Impact of k1 on the HIV infected class.

Table 3: Methods and errors.

Method Error
Forward Difference 0.0162
Runge-Kutta 4th order 0.0000

7. Conclusion

In this study, we developed a nonlinear STAT model to capture the transmission dynamics of HIV/AIDS,
categorizing the population into susceptible, infected, AIDS, and treated classes. A key novelty of our work
lies in combining rigorous analytical techniques with a systematic comparison of three numerical schemes—
Euler, Runge-Kutta (4th order), and Forward Difference methods—within the context of HIV/AIDS
modeling. Our results demonstrate that while all methods are capable of reproducing the theoretical
behavior, the Runge—Kutta method consistently yields superior accuracy and stability, establishing it as a
benchmark for future computational epidemiology studies.

Another significant finding is the identification of the interaction rate () and transmission parameters
(k1,k2) as dominant drivers of epidemic progression. Sensitivity analysis not only highlights these
parameters but also provides actionable insights for prioritizing public health interventions. Furthermore,
by integrating optimal control theory, we show how preventive and treatment-based strategies—such as
safe practices and consistent ART adherence—can be systematically optimized to reduce infections and
delay progression to AIDS.

Collectively, this research contributes to mathematical epidemiology in two novel ways: (i) by establishing
a comparative framework for evaluating numerical methods in HIV/AIDS dynamics, and (ii) by linking
sensitivity-guided parameter prioritization with optimal control to inform effective intervention strategies.
These findings open pathways for extending the model to include co-infections, treatment resistance, and
heterogeneous populations, thereby enhancing its real-world applicability.
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Impact of k, on Treated Population
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Comparison of AIDS Population Using RK4, and Forward Difference
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