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Properties on Cyclotomic Polynomials and The Mo6bius Function

Enagandula Prasad

ABSTRACT: If n is a natural number, then the n** cyclotomic polynomial denoted by ®,(z) and defined as
the unique monic polynomial having exactly the primitive n'® roots of unity as its zeros. In this article we
are going to derive properties related to cyclotomic polynomials using Mobious Inversion Formula.
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1. Introduction

Polynomials appearing in such factorizations are called cyclotomic polynomials. The first few cyclo-
tomic polynomials are

bi(z)=2—-1 Py(z)=a+1 Oy(x)=a?+2+1
Py(z) =2 +1 O5(x) =2 +2°+2°+2+1
Definition 1.1 The n-th cyclotomic polynomial is defined as

D, (z) = H (:17 - ezmk/”)

1<k<n
ged(k,n)=1

(1.1)

Definition 1.2 The cyclotomic polynomial, n-th root of unity is a primitive d-th root of unity for a
unique d dividing n

2" —1= g[q)n(x) (1.2)

Definition 1.3 Suppose n is a positive integer. Then the function is Mobius function defined as
w:N —{—-1,1,0} then

1 if n=1 for all values of k
pn) =< (=" if n=pi.p2ps..pr for distrinct primes (1.3)
0 Otherwise

1s called the M “obius function

Definition 1.4 The Mobius inversion formula allows ®,(x) to be expressed as an explicit rational frac-

tion
— d _ 1\u(n/d)
P (z) = g[ ((35 1) (1.4)
n
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Theorem 2.1 Let p1,po, ..

Proof: To prove the current theorem, it suffices to prove that @ a1 02 (z) = @5, p, (x*?)

we know that by (4)

LHS = <I>p«111p;2 (37) =

., Pn are distinct primes, and ay,as, .
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2. Results

¢pilpgz~--p2" (x) = (I)Plpzmpn (xal.a2 ''''' an)

H (z — 1)H(@i'p3*)/d)
d|(py'p3?)
_ H (xd _ 1)#((1)?117?2)/11)
d|(py1pa?)
_ ((py*-p32)/d) _ 1\u(d)
(z 1)
dl(p* p3?)
_ H (x(PT1»P;2a1-azd/a1az~d2) _ 1)H(d)
d|(py'p3?)
— H (x(alaz-d) _ 1)#((P;'1P32)/@1-a2~d2)
d|(py'p3?)

(a1a2.d)|(py ' p3?)

(x(alazd) _ 1)#((17(11117;2)/@1@2@)

.., a, are natural numbers then,

H (z(al.ag))d _ 1)#(p‘flp;2/a1,a2.d)

(a1.a2.d)pi' p3?)

= I

(araz.d)|(py*p3?

= pip, (") = RHS

In general Dpo1pa2 pan (T) = Ppyp, (x01920)

Example 2.1 ®y231(z) = $g3(2?
Example 2.2 ®y23:(2) = g 3(222)

Proof: 2.1. We need to prove that ®15(x) = ®g(2?)
L.H.S :(1)12(.%‘)

(x(alazd) _ 1)lt((pflpgz)/a1~a2~d)

_ (x1 _ 1)“(22'3/1).(362 _ 1)“(22'3/2).(333 _ 1)“(22'3/3).(1'4 B 1)#(2243/4)

(zG - 1),u(22.3/6)'(x12 - 1)#(22-3/12)

_ (xl . 1)“(22'3/1).(902 . 1),1(22.3/2).(%3 . 1)“(22'3/3).(334

(2° — 1)#(22.3/6)_(x12 _ 1)#(223/12)

= (2! — )M/ (42

(xﬁ - 1)M(22.3/6)_(x12 o 1)#(2243/12)

1),1(22.3/2).@3 . 1)“(22'3/3).(14

_q)p3/4)

)34

_ (xl o 1)#(22.3).@2 . 1)#(2.3).(173 . 1)#(2.2).(1,4 o 1),u(1.3)
(m6 . 1)“(1'2).(x12 . 1)u(1-1)
— (xl _ 1)#(12).(112 _ 1)#(6)_(:03 _ 1)#(4).(354 _ 1)#(3)

(& — 1)) (212 = 1))
=2+ -2 +1=0=®g(2*) = R.H.S

(2.1)
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Lemma 2.1 Let m € N with m > 1, and let ®Pom(x) be the 2™-th cyclotomic polynomial. Then for any
prime p,then ®om (p) is even.

Proof: Let us assume that for all integers m > 1, the cyclotomic polynomial of the form ®om(p) is
odd,then 3 an integer k such that

@ m - 1
o — 22 ()
2
Then as we have taken ®om (p) odd then k must be a rational number. Contradiction to ®,,(x) is never
be a rational number for any n natural number O

Example 2.3 $,3(3) = 82
Lemma 2.2 Let n € N with n > 1, and let ®on () be the 2™-th cyclotomic polynomial,then
q)Qn (CC) = @2n<—l’) (22)

for allm € N;n > 2.

Proof: We know that by (1.4) LHS=®2n ()

- H n(2"/d)

dj2n

— H (2"/d) _ (d)

dj2n

— H (2"/!1) )u(d)

d‘2"

- H M(Q"/d)

dl2n
= &y (—x) = R.H.S

Example 2.4
(1)22 (3) — @22(—3) =10

Lemma 2.3 Let p and q are primes and p,q € N with p,q > 1 ,let ®,(x) be the n-th cyclotomic
polynomial,then

P —1)(x?7-1)

()2, () = T (23)

Proof: We know that by (1.1)
LHS =0, (x)®,(z)

H /L(p/d) H p(g/d)

dlp dlq
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Since p and q are prime only values of d =1,p and q and ged(p,q)=1
= (2! — 1)@ (g — 1)) (1 — 1)@ (g7 — 1)#()

Since p and q are prime only values of d =1,p and q and u(p) = —1,u(q) = fl,u(p) =1

= (z' — 1)u(p)(zp _ 1)#(1 (! 1)#((1)( )
= (2! - 1);t(p)(mp 1)#(1)( 1)H(Q)( )u(l
=@ -D7E - - )T - !
(P =127 —1)
@172 =RHS
Therefore (27— 1)@ — 1)
5Py (2)Py(x) = B
e (@ D 1) @)
Pt —1)(xP? —1)..., (2P =1
Dy, (2)Pp, (2) . By, () = (x—1)"
O
Example 2.5

(a2 — 1)(2* — 1)

ez

(I)Q (x)<I>3(2) =

Theorem 2.2 Proved: For any prime p and m € N

p—1
k=1
Lemma 2.4 Let p is prime and m € N with p,m > 1 ,let ®,,(x) be the n-th cyclotomic polynomial,then
®,m(x) = 1(mod p) (2.4)
Proof: We know that by (1.1)
a=b (modn) iff n|(b—a)

It is understood that p divides ®pm (x) — 1. Assume that p does not divides ®,m (z) — 1
Then there exists a k¥ € N such that
= Opm(z) =pk+2

a

Therefore k is even or fraction always which is contradiction the above theorem and definition of cyclo-
tomic polynomial. and therefore
=p | (@ ()~ 1)
Hence
P ,m (z) = 1(mod  p)

Example 2.6 $32(2) = 1(mod 3)
< Dy(2) = 1(mod 3)

<= 73 =1(mod 3)

= 3|72
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Lemma 2.5 Let p and q are prime and p,q € N ,let @, (x) be the n-th cyclotomic polynomial,then
Dy (2)Py(27) = Pg()Pp(2) (2.5)

Proof: We know that by (1.4)
LHS=®,(z)®,(2?)

= H (z? — 1)u(p/d)H ((aP)? — 1)#a/d)
d|p dlg
Since p and q are prime ged(p,q)=1 and using the definition of u(n)

= [T (@ = o T @ = 1o

d|p dlg
= & (29) Dy ()
=RHS

Example 2.7 ®3(z)Ps(2%) = Oo(2)P3(2?) LHS:<I>3(x)<I>2(a:3)

H (z% — 1)* 3/d)H w(2/d)

d|3 d|2

Since p and q are prime gcd(p,q)=1 and using the definition of u(n) for the part 1 we have d=1,3 and
second part d=1,2

= (@' = 1O = 1O (@)} = 1 ((@%)? - 10
= (@ =)@ - )N - )T (@) - )
— (.1‘1 _ 1)71(x3 _ 1)1((563)1 _ 1)71 .1‘6 _ 1)1
G VR G VR (AR VR CAE Vi
=@ =) - )N - )T 1)
o V(G R M Ca VR (CAE Vi
= (@ = 1) (@) - 1)
= (@' = )7(E@)? - D) @ - ) (@ - )7
= (@ =)@ - ) - ) (@ - )
- H(( ) 1 u(3/d)H(xd u(2/d

d|3 d|2
= ®3(2”)Dy(x)
=RHS

Lemma 2.6 For a natural number n € N |let ®,(x) be the n-th cyclotomic polynomial,then

Odd if = for even
Dy (z) = red (2.6)
Even if x for odd
Proof: We know that,Power of an even number is even, Power of an odd number is odd
and we have a property

(m—1)
1'2

@2771 (x) = + ].
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Case:1For x even,
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If x is even then there exists k natural number such that x=2k

Case:2For x odd,

If x is odd then there exists k natural number such that x=2k-+1

Hence, the lemma

Example 2.8

Dys(3) = Ds(3) =82 and Dya(2) = Ds(2) = 17

®on (2K)

(2]6)(2)(an1)
(

+1

2k)" Y 41
(k)@ (@)™ 1

Odd

Do (2k+1) = (2k+ 1)@ 41
= 2k+1)@77" 11

12

22

3z

42

Figure 1: The values of u(n) upto 50

3. Useful Table Values
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N 1 2 3 4 5 6 7 8 9 10

Ppix
O 0 1 2 3 4 5 6 7 8 9
O, |2 3 4 5 6 7 8 9 10 1
‘;03(‘) 3 7 13 21 31 43 57 73 91 111
@, 2 5 10 17 26 37 50 65 82 101
(psm 5 31 121 341 781 1555 2801 4681 7381 11111
‘.06(70 1 3 7 13 21 31 43 57 73 91
407(,0 7 127 1093 5461 19531 55987 137257 299593 597871 1111111
(ps(x) 2 17 82 257 626 1297 2402 4097 6562 10001
(09(,) 3 73 Fa7 4161 15751 46873 117993 262657 532171 1001001
(pm(,) 1 11 61 205 521 1111 2101 3641 5905 9091
@40 11 2047 | 88573 1398101 12207031 72559411 329554457 1227133513 3922632451 111113111111
() 1 13 73 241 601 1261 2353 4033 6481 9091
('013[") 13 8191 | 797161 | 22369621 | 305175781 | 2612138803 16148168401 | 78536544841 317733228541 1111111113111
[ 1 43 547 3277 13021 399991 102943 233017 478297 909091
‘915[“3 3k 151 | 4561 49981 315121 1406371 4956001 14709241 38316961 90090991
P 2 257 6562 65537 390626 1679617 5764802 16777217 43046722 100000001

Figure 2: The values of ®,(z) upto 16
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