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abstract: The aim of the present paper is to study conformal η-Ricci-Yamabe solitons (CERYS) on
Lorentzian-para Kenmotsu n-manifolds (in brief, (LPK)n) with certain curvature conditions. Moreover, the
existence of CERYS has been proved by constructing a non-trivial example of (LPK)3.
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1. Introduction

In 1982, the concept of Ricci flow was proposed by Hamilton [14] to find a canonical metric on a smooth
Riemannian manifold M and is defined by the relation for mertics g(t) of the form ∂

∂tg(t) = −2S(g(t))
whose solution is known as Ricci soliton defined by

£Kg + 2S + 2Λg = 0,

where S is the Ricci tensor, £K is the Lie derivative operator along the vector field K (called the soliton
vector field) on M and Λ is a real number.

Hamilton [11] also proposed the notion of Yamabe flow on M and is defined as the evolution of the
Riemannian (or semi-Riemannian) metric g0 in time t to g = g(t) by the relation ∂

∂tg(t) = −rg, g(0) = g0,
here r(t) is the scalar curvature of the metric g(t).

For n = 2, the Ricci and Yamabe flows are equivalent. However, for n > 2, there is no such an
equivalence (since the conformal class of the metric is preserved by Yamabe flow but not by Ricci flow,
in general).

On a Riemannian manifold M admitting a vector field K, the Yamabe soliton is defined by [12]

£Kg + 2(Λ− r)g = 0.

A scalar combination of Ricci and Yamabe flows was proposed by the authors Güler and Crasmareanu
[6]. This new class of geometric flows called Ricci-Yamabe (RY) flow of type (σ, ρ) and it is defined by

∂

∂t
g(t) + 2σS(g(t)) + ρr(t)g(t) = 0, g(0) = g0,
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for some scalars σ and ρ. A solution to the RY flow is called a Ricci-Yamabe soliton (RYS) if it depends
only on one parameter group of diffeomorphism and scaling.

A Riemannian (or semi-Riemannian) manifold M is said to admit a RYS if [4]

£Kg + 2σS + (2Λ− ρr)g = 0. (1.1)

The concept of conformal Ricci flow was introduced by Fischer [5], which is defined on M by the
relations

∂g

∂t
= −2(S +

g

n
)− pg, r(g) = −1, (1.2)

where p defines a time dependent non-dynamical scalar field (also called the conformal pressure). The
term −pg plays a role of constraint force to maintain r in (1.2).

Basu and Bhattacharyya [3] in 2015, proposed the concept of conformal Ricci soliton and is defined
by the relation

£Kg + 2S + (2Λ− (p+
2

n
))g = 0. (1.3)

An M is said to have a conformal Ricci-Yamabe soliton (CRYS) if [23]

£Kg + 2σS + (2Λ− ρr − (p+
2

n
))g = 0, (1.4)

here σ, ρ, Λ ∈ R where R is the set of real numbers..
As a generalization of conformal Ricci-Yamabe solitons, conformal η-Ricci-Yamabe soliton on a man-

ifold M is defined by

£Kg + 2σS + (2Λ− ρr − (p+
2

n
))g + 2µη ⊗ η = 0, (1.5)

where µ ∈ R.
Also, we recommend the papers [1,2,8,9,10,17,19,20,21,22] and the references therein for more details

about the related work.
In this article, we study CERYS on (LPK)n. The article is organized in the following ways: In

Section 2, we describe some basic definitions and results of (LPK)n. Section 3 deals with study of
CERYS in (LPK)n. The Ricci semi-symmetric (LPK)n admitting CERYS have been studied in Section
4. In Section 5, it is shown that (LPK)n endowed with CERYS satisfying the curvature conditions:
P(U , ξ) · S = 0, R(K, ξ) · P = 0, and S(K, ξ) · P = 0 are Einstein manifolds. In Section 6, we also study
CERYS on (LPK)n admitting Codazzi type Ricci tensor and cyclic parallel Ricci tensor. In Section 7,
the existence of CERYS has been proved by constructing a non-trivial example of (LPK)3.

2. Preliminaries

A differentiable manifold M (dimension of M = n) with the structure (φ, ξ, η) is named a Lorentzian
almost paracontact manifold, where φ, ξ and η represent a (1, 1) type tensor field, a contravariant vector
field, and a 1-form, respectively on M, satisfying

η(ξ) = −1 and φ2 = η ⊗ ξ + I, (2.1)

which infer that

φξ = 0, η ◦ φ = 0, rank(φ) = n− 1. (2.2)

Let g (the Lorentzian metric) of M satisfies

g(·, ξ) = η(·) and g(φ ·, φ ·) = g(· , ·) + η(·)η(·), (2.3)
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then (φ, ξ, η, g) is named an almost paracontact structure, and M is termed as an almost paracontact
metric manifold.
Define Φ (the second fundamental form) as:

Φ(U ,V) = Φ(V,U) = g(U , φV) (2.4)

for any vector fields U ,V ∈ X(M), the Lie algebra of vector fields on M. If dη(U ,V) = Φ(U ,V), here d is
an exterior derivative, then (M, φ, ξ, η, g) is termed as a paracontact metric manifold.

Definition 2.1 A Lorentzian almost paracontact manifold M is termed an LP -Kenmotsu manifold (LPK)
if [15,16]

(∇Uφ)V = −g(φU ,V)ξ − η(V)φU , (2.5)

for any U ,V on M.

In an (LPK)n, we have
∇Uξ + U + η(U)ξ = 0, (2.6)

(∇Uη)V + g(U ,V) + η(U)η(V) = 0, (2.7)

where ∇ stands for the Levi-Civita connection with respect to g.
Furthermore, in an (LPK)n, the following relations hold [15,16]:

g(R(U ,V)Z, ξ) = η(R(U ,V)Z) = g(V,Z)η(U)− g(U ,Z)η(V), (2.8)

R(ξ,U)V = −R(U , ξ)V = g(U ,V)ξ − η(V)U , (2.9)

R(U ,V)ξ = η(V)U − η(U)V, (2.10)

R(ξ,U)ξ = U + η(U)ξ, (2.11)

S(U , ξ) = (n− 1)η(U), S(ξ, ξ) = −(n− 1), (2.12)

Qξ = (n− 1)ξ, (2.13)

for any U ,V,Z on M. Here R indicates the curvature tensor and Q indicates the Ricci operator.

Definition 2.2 An (LPK)n is said to be η-Einstein if its Ricci tensor S(̸= 0) is of the form

S(U ,V) = Ag(U ,V) +Bη(U)η(V), (2.14)

where A and B are smooth functions on (LPK)n.

Remark 2.1 In an (LPKn), we have [13]

ξ(r) = 2(r − n(n− 1)). (2.15)

Remark 2.2 From the relation (2.15), it is noticed that if an (LPK)n possesses the constant scalar
curvature, then r = n(n− 1).

3. CERYS on (LPK)n

Let the metric of an (LPK)n be a CERYS (g,K = ξ, σ, ρ, Λ, µ), then we have

£ξg(U ,V) + 2σS(U ,V) + (2Λ− ρr − (p+
2

n
))g(U ,V) + 2µη(U)η(V) = 0. (3.1)

As we know that
(£ξg)(U ,V) = −2g(U ,V)− 2η(U)η(V), (3.2)

for any U , V on (LPK)n. By using (3.2) in (3.1) we have

S(U ,V) = 1

σ
[1− Λ+

ρr

2
+

1

2
(p+

2

n
)]g(U ,V) + (1− µ)

σ
η(U)η(V), (σ ̸= 0), (3.3)
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which is of the form S(U ,V) = Ag(U ,V)+Bη(U)η(V), where A = 1
σ [1−Λ+ ρr

2 + 1
2 (p+

2
n )] and B = (1−µ)

σ ,
σ ̸= 0.

Now, putting V = ξ in (3.3), we have
S(U , ξ) = A1η(U), (3.4)

where A1 = 1
σ [µ− Λ+ ρr

2 + 1
2 (p+

2
n )].

From (2.12) and (3.4), we obtain

Λ− µ =
ρr

2
+

1

2
(p+

2

n
)− σ(n− 1). (3.5)

Thus, we have

Theorem 3.1 If an (LPK)n admits a CERYS (g,K = ξ, σ, ρ, Λ, µ), then the manifold is an η-Einstein
manifold; and the scalars Λ are µ are related by Λ− µ = ρr

2 + 1
2 (p+

2
n )− σ(n− 1).

4. Ricci semi-symmetric (LPK)n admitting CERYS

In 1992, Mirzoyan [18] introduced the notion of Ricci semi-symmetry for the Riemann spaces. In
this section we consider a CERYS in an (LPK)n which satisfies Ricci semi-symmetric condition, i.e.,
R(ξ,U) · S = 0. This leads to

S(R(ξ,U)V,Z) + S(V,R(ξ,U)Z) = 0, (4.1)

for U ,V,Z on (LPK)n. By using (2.9) in (4.1), we have

S(ξ,Z)g(U ,V)− η(V)S(U ,Z) + S(V, ξ)g(U ,Z)− η(Z)S(V,U) = 0. (4.2)

By putting Z = ξ and using (3.4), the foregoing equation leads to

S(U ,V) = 1

σ
[µ− Λ+

ρr

2
+

1

2
(p+

2

n
)]g(U ,V), σ ̸= 0. (4.3)

Now, from (2.3), (3.3) and (4.3), it follows that

(1− µ)

σ
g(φU , φV) = 0, σ ̸= 0. (4.4)

This gives µ = 1, where g(φU , φV) ̸= 0.

Thus, (4.3) turns to

S(U ,V) = 1

σ
[1− Λ+

ρr

2
+

1

2
(p+

2

n
)]g(U ,V). (4.5)

Thus, we have the following result;

Theorem 4.1 Let an (LPK)n be Ricci semi-symmetric endowed with a CERYS (g,K = ξ, σ, ρ, Λ, µ).
Then (LPK)n is an Einstein manifold.

5. Projective curvature tensor in (LPK)n admitting CERYS

The projective curvature tensor P in an (LPK)n is defined by

P(U ,V)Z = R(U ,V)Z − 1

n− 1
{S(V,Z)U − S(U ,Z)V}, (5.1)

for all U ,V and Z on (LPK)n.
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In this section, we study (LPK)n admitting a CERYS (g,K = ξ, σ, ρ, Λ, µ) satisfying certain curvature
conditions on P.

First, we consider an (LPK)n admitting a CERYS (g,K = ξ, σ, ρ, Λ, µ) which satisfies the condition
P(U , ξ) · S = 0. Thus, we have

S(P(U , ξ)V,Z) + S(V,P(U , ξ)Z) = 0. (5.2)

From (2.9), (3.4) and (5.1), we find

P (U , ξ)V = −g(U ,V)ξ + (1− A1

n− 1
)η(V)U +

1

n− 1
S(U ,V)ξ. (5.3)

Plugging (5.3) into (5.2), we have

η(V)S(U ,Z) + η(Z)S(U ,V)−A1g(U ,V)η(Z)−A1g(U ,Z)η(V) = 0,

which by putting V = ξ and then using (2.1) and (3.4) reduces to S(U ,Z) = A1g(U ,Z). By using (3.5)
it takes the form

S(U ,Z) = (n− 1)g(U ,Z). (5.4)

On contracting (5.4), we obtain r = n(n−1). Thus, (3.5) leads to Λ−µ = ρn(n−1)
2 + 1

2 (p+
2
n )−σ(n−1).

Now, we state the following result:

Theorem 5.1 Let an (LPK)n be Ricci semi-symmetric endowed with a CERYS (g,K = ξ, σ, ρ, Λ, µ),

then (LPK)n is an Einstein manifold. Moreover, Λ and µ are related by Λ− µ = ρn(n−1)
2 + 1

2 (p+
2
n )−

σ(n− 1).

Next, we consider an (LPK)n admitting a CERYS (g,K = ξ, σ, ρ, Λ, µ) which satisfies the condition
R(U , ξ) · P = 0. Thus, we have

R(U , ξ)P(X ,V)W −P(R(U , ξ)X ,V)W (5.5)

−P(X ,R(U , ξ)V)W −P(X ,V)R(U , ξ)W = 0,

for any U ,V,W,X ∈ χ(M).
By fixing X = W = ξ in (5.5), we have

R(U , ξ)P(ξ,V)ξ − P(R(U , ξ)ξ,V)ξ (5.6)

−P(ξ,R(U , ξ)V)ξ − P(ξ,V)R(U , ξ)ξ = 0.

From (2.10), (3.4) and (5.1), we find

P(U ,V)ξ = (1− A1

n− 1
)(η(V)U − η(U)V), (5.7)

P(ξ,V)U = −(1− A1

n− 1
)η(U)V + g(U ,V)ξ − 1

n− 1
S(U ,V)ξ. (5.8)

In view of (2.9), (5.7) and (5.8), after some steps calculation (5.6) gives S(U ,V)ξ = A1g(U ,V)ξ, which
by taking the inner product with ξ and using (3.5) leads to

S(U ,V) = (n− 1)g(U ,V). (5.9)

On contracting (5.9), we obtain r = n(n−1). Thus, (3.5) turns to Λ−µ = ρn(n−1)
2 + 1

2 (p+
2
n )−σ(n−1).

Now, we state the following result:
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Theorem 5.2 Let an (LPK)n admit a CERYS (g,K = ξ, σ, ρ, Λ, µ) and satisfies the condition R(U , ξ) ·
P = 0. Then (LPK)n is an Einstein manifold. Moreover, Λ and µ are related by Λ − µ = ρn(n−1)

2 +
1
2 (p+

2
n )− σ(n− 1).

Further, we consider an (LPK)n admitting a CERYS (g,K = ξ, σ, ρ, Λ, µ) and satisfies the condition
S(ξ,U) · P = 0. Then, we have

S(U ,P(X ,V)W)ξ − S(ξ,P(X ,V)W)U + S(U ,X )P(ξ,V)W (5.10)

−S(ξ,X )P(U ,V)W + S(U ,V)P(X , ξ)W −S(ξ,V)P(X ,U)W
+S(U ,W)P(X ,V)ξ − S(ξ,W)P(X ,V)U = 0,

for all U ,V,W,X ∈ χ(M). Putting X = W = ξ in (5.10), we have

S(U ,P(ξ,V)ξ)ξ − S(ξ,P(ξ,V)ξ)U + S(U , ξ)P(ξ,V)ξ − S(ξ, ξ)P(U ,V)ξ
+S(U ,V)P(ξ, ξ)ξ − S(ξ,V)P(ξ,U)ξ + S(U , ξ)P(ξ,V)ξ − S(ξ, ξ)P(ξ,V)U = 0,

which in view of (3.4), (5.7), (5.8) and η(P(ξ,V)ξ) = 0 reduces to

A1g(U ,V)ξ + 2A1(1−
A1

n− 1
)η(U)η(V)ξ + (1− 2

A1

n− 1
)S(U ,V)ξ = 0.

By taking the inner product of the foregoing equation with ξ, then using (2.1), (2.3) and (3.5) it follows
that

S(U ,V) = (n− 1)g(U ,V). (5.11)

On contracting (5.11), we obtain r = n(n− 1). Thus, (3.5) can be expressed as Λ− µ = ρn(n−1)
2 + 1

2 (p+
2
n )− σ(n− 1). Now, we state the following result:

Theorem 5.3 Let an (LPK)n admit a CERYS (g,K = ξ, σ, ρ, Λ, µ) and satisfies the condition S(ξ,U) ·
P = 0. Then (LPK)n is an Einstein manifold. Moreover, Λ and µ are related by Λ − µ = ρn(n−1)

2 +
1
2 (p+

2
n )− σ(n− 1).

6. CERYS (g,K = ξ, σ, ρ, Λ, µ) on (LPK)n admitting certain types of Ricci tensor

Definition 6.1 An (LPK)n is said to have Codazzi type Ricci tensor S(̸= 0) of type (0, 2) if it satisfies
the following relation [7]:

(∇ZS)(U ,V) = (∇US)(V,Z), (6.1)

for all U ,V,Z ∈ χ(M).

Taking the covariant derivative of (3.3) with respect to Z and using (2.6), we get

(∇ZS)(U ,V) =
(1− µ)

σ
{−g(Z,U)η(V)− g(Z,V)η(U)− 2η(U)η(V)η(Z)}. (6.2)

If the Ricci tensor S is of Codazzi type, then in view of (6.2), (6.1) leads to

(1− µ)

σ
{g(U ,V)η(Z)− g(Z,V)η(U)} = 0. (6.3)

Putting Z = ξ in (6.3), we obtain

(1− µ)

σ
g(φU , φV) = 0, σ ̸= 0, (6.4)

from which it gives µ = 1, as g(φU , φV) ̸= 0. Putting µ = 1 in (3.3), it follows that

S(U ,V) = 1

σ
[1− Λ+

ρr

2
+

1

2
(p+

2

n
)]g(U ,V). (6.5)

This relation shows that the manifold is an Einstein manifold. Thus, we have the following result:
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Theorem 6.1 An (LPK)n with the Codazzi type Ricci tensor admitting a CERYS (g,K = ξ, σ, ρ, Λ, µ)
is an Einstein manifold of the form (6.5).

Definition 6.2 An (LPK)n is said to have cyclic parallel Ricci tensor, if its Ricci tensor S (̸= 0) of
type (0, 2) satisfies the relation

(∇ZS)(U ,V) + (∇US)(V,Z) + (∇VS)(U ,Z) = 0, (6.6)

for all U ,V,Z ∈ χ(M).

Let an (LPK)n admiting a CERYS (g,K = ξ, σ, ρ, Λ, µ) has a cyclic parallel Ricci tensor, thus (6.6)
holds. By taking the covariant derivative of (3.3) along Z and using (2.7), we easily find

(∇ZS)(U ,V) =
(1− µ)

σ
{−g(Z,U)η(V)− g(Z,V)η(U)− 2η(U)η(V)η(Z)}. (6.7)

Similarly, we have

(∇US)(V,Z) =
(1− µ)

σ
{−g(U ,V)η(Z)− g(U ,Z)η(V)− 2η(U)η(V)η(Z)}, (6.8)

and

(∇VS)(Z,U) = (1− µ)

σ
{−g(V,Z)η(U)− g(V,U)η(Z)− 2η(U)η(V)η(Z)}. (6.9)

Now using (6.7), (6.8) and (6.9) in (6.6), we lead to

(1− µ)

σ
{g(U ,V)η(Z) + g(V,Z)η(U) + g(Z,U)η(V) + 3η(U)η(V)η(Z)} = 0. (6.10)

Putting Z = ξ in (6.10) and using (2.1) and (2.3), we obtain

(1− µ)

σ
g(φU , φY) = 0, (6.11)

from which it follows that µ = 1, as g(φU , φY) ̸= 0. By using µ = 1 in (3.3), we get

S(U ,V) = 1

σ
[1− Λ+

ρr

2
+

1

2
(p+

2

n
)]g(U ,V). (6.12)

Thus, we have the following theorem:

Theorem 6.2 If an (LPK)nadmits a CERYS (g,K = ξ, σ, ρ, Λ, µ), and the manifold has a cyclic parallel
Ricci tensor. Then, the manifold is an Einstein manifold of the form (6.12).

7. Example

We consider a 3-dimensional manifold M =
{
(t1, t2, t3) ∈ R3

}
, where (t1, t2, t3) are the standard

coordinates in R3. Let ϱ1, ϱ2 and ϱ3 be the vector fields on M given by

ϱ1 = cosht3
∂

∂t1
+ sinht3

∂

∂t2
, ϱ2 = sinht3

∂

∂t1
+ cosht3

∂

∂t2
, ϱ3 =

∂

∂t3
= ξ,

which are linearly independent at each point of M. Let g be the metric (semi-Riemannian) defined by

g(ϱ1, ϱ1) = g(ϱ2, ϱ2) = 1, g(ϱ3, ϱ3) = −1, g(ϱ1, ϱ2) = g(ϱ1, ϱ3) = g(ϱ2, ϱ3) = 0.

Let the 1-form η on M is defined by η(U) = g(U , ϱ3) for all U ∈ χ(M). Let the (1, 1) tensor field φ on M
is defined by

φϱ1 = −ϱ2, φϱ2 = −ϱ1, φϱ3 = 0.
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The linearity of φ and g yields

η(ϱ3) = −1, φ2U = U + η(U)ξ, g(φU , φV) = g(U ,V) + η(U)η(V),

for all U ,V ∈ χ(M).
Now, by direct computations, we obtain

[ϱ1, ϱ2] = 0, [ϱ2, ϱ3] = −ϱ1, [ϱ1, ϱ3] = −ϱ2.

By using Koszul’s formula, we can easily calculate

∇ϱ1ϱ1 = 0, ∇ϱ2ϱ1 = −ϱ3, ∇ϱ3ϱ1 = 0,

∇ϱ1ϱ2 = −ϱ3, ∇ϱ2ϱ2 = 0, ∇ϱ3ϱ2 = 0,

∇ϱ1ϱ3 = −ϱ2, ∇ϱ2ϱ3 = −ϱ1, ∇ϱ3ϱ3 = 0.

Also, one can easily verify that

∇Uξ = −U − η(U)ξ and (∇Uφ)V = −g(φU ,V)ξ − η(V)φU .

Thus, the manifold M is an LP -Kenmotsu manifold. It is known that

R(U ,V)Z = ∇U∇VZ −∇V∇UZ −∇[U,V]Z.

By using the above relations, we can easily obtain the components of R as follows:

R(ϱ1, ϱ2)ϱ1 = ϱ2, R(ϱ1, ϱ2)ϱ2 = −ϱ1, R(ϱ1, ϱ2)ϱ3 = 0,

R(ϱ2, ϱ3)ϱ1 = 0, R(ϱ2, ϱ3)ϱ2 = −ϱ3, R(ϱ2, ϱ3)ϱ3 = −ϱ2,

R(ϱ1, ϱ3)ϱ1 = −ϱ3, R(ϱ1, ϱ3)ϱ2 = 0, R(ϱ1, ϱ3)ϱ3 = −ϱ1.

From these values of R, we can easily calculate

S(ϱ1, ϱ1) = S(ϱ2, ϱ2) = 0, S(ϱ3, ϱ3) = −2 =⇒ r = 2. (7.1)

Putting U = V = ξ in (3.3) and using (7.1) and (2.12) it follows that

Λ− µ = ρ− 2σ +
1

2
(p+

2

3
).

Hence Λ and µ satisfies (3.5), and so g defines a CERYS on the given (LPK)3.
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