

Conformal η -Ricci-Yamabe Solitons on LPK -Kenmotsu Manifolds

Gazala, Abdul Haseeb*, Mobin Ahmad and Sunil Kumar Yadav

ABSTRACT: The aim of the present paper is to study conformal η -Ricci-Yamabe solitons (CERYS) on Lorentzian-para Kenmotsu n -manifolds (in brief, $(LPK)_n$) with certain curvature conditions. Moreover, the existence of CERYS has been proved by constructing a non-trivial example of $(LPK)_3$.

Keywords: Conformal Ricci-Yamabe solitons, projective curvature tensor, Einstein manifolds, η -Einstein manifolds, Lorentzian para-Kenmotsu manifolds.

Contents

1	Introduction	1
2	Preliminaries	2
3	CERYS on $(LPK)_n$	3
4	Ricci semi-symmetric $(LPK)_n$ admitting CERYS	4
5	Projective curvature tensor in $(LPK)_n$ admitting CERYS	4
6	CERYS $(g, K = \xi, \sigma, \rho, \Lambda, \mu)$ on $(LPK)_n$ admitting certain types of Ricci tensor	6
7	Example	7

1. Introduction

In 1982, the concept of Ricci flow was proposed by Hamilton [14] to find a canonical metric on a smooth Riemannian manifold \mathbb{M} and is defined by the relation for metrics $g(t)$ of the form $\frac{\partial}{\partial t}g(t) = -2\mathcal{S}(g(t))$ whose solution is known as Ricci soliton defined by

$$\mathcal{L}_K g + 2\mathcal{S} + 2\Lambda g = 0,$$

where \mathcal{S} is the Ricci tensor, \mathcal{L}_K is the Lie derivative operator along the vector field K (called the soliton vector field) on \mathbb{M} and Λ is a real number.

Hamilton [11] also proposed the notion of Yamabe flow on \mathbb{M} and is defined as the evolution of the Riemannian (or semi-Riemannian) metric g_0 in time t to $g = g(t)$ by the relation $\frac{\partial}{\partial t}g(t) = -rg$, $g(0) = g_0$, here $r(t)$ is the scalar curvature of the metric $g(t)$.

For $n = 2$, the Ricci and Yamabe flows are equivalent. However, for $n > 2$, there is no such an equivalence (since the conformal class of the metric is preserved by Yamabe flow but not by Ricci flow, in general).

On a Riemannian manifold \mathbb{M} admitting a vector field K , the Yamabe soliton is defined by [12]

$$\mathcal{L}_K g + 2(\Lambda - r)g = 0.$$

A scalar combination of Ricci and Yamabe flows was proposed by the authors Güler and Crasmareanu [6]. This new class of geometric flows called Ricci-Yamabe (RY) flow of type (σ, ρ) and it is defined by

$$\frac{\partial}{\partial t}g(t) + 2\sigma\mathcal{S}(g(t)) + \rho r(t)g(t) = 0, \quad g(0) = g_0,$$

* Corresponding author.

Submitted September 15, 2025. Published February 17, 2026
 2020 *Mathematics Subject Classification*: 53C20, 53C21, 53C25, 53E20.

for some scalars σ and ρ . A solution to the RY flow is called a Ricci-Yamabe soliton (RYS) if it depends only on one parameter group of diffeomorphism and scaling.

A Riemannian (or semi-Riemannian) manifold \mathbb{M} is said to admit a RYS if [4]

$$\mathcal{L}_K g + 2\sigma\mathcal{S} + (2\Lambda - \rho r)g = 0. \quad (1.1)$$

The concept of conformal Ricci flow was introduced by Fischer [5], which is defined on \mathbb{M} by the relations

$$\frac{\partial g}{\partial t} = -2(\mathcal{S} + \frac{g}{n}) - pg, \quad r(g) = -1, \quad (1.2)$$

where p defines a time dependent non-dynamical scalar field (also called the conformal pressure). The term $-pg$ plays a role of constraint force to maintain r in (1.2).

Basu and Bhattacharyya [3] in 2015, proposed the concept of conformal Ricci soliton and is defined by the relation

$$\mathcal{L}_K g + 2\mathcal{S} + (2\Lambda - (p + \frac{2}{n}))g = 0. \quad (1.3)$$

An \mathbb{M} is said to have a conformal Ricci-Yamabe soliton (CRYs) if [23]

$$\mathcal{L}_K g + 2\sigma\mathcal{S} + (2\Lambda - \rho r - (p + \frac{2}{n}))g = 0, \quad (1.4)$$

here $\sigma, \rho, \Lambda \in \mathbb{R}$ where \mathbb{R} is the set of real numbers..

As a generalization of conformal Ricci-Yamabe solitons, conformal η -Ricci-Yamabe soliton on a manifold \mathbb{M} is defined by

$$\mathcal{L}_K g + 2\sigma\mathcal{S} + (2\Lambda - \rho r - (p + \frac{2}{n}))g + 2\mu\eta \otimes \eta = 0, \quad (1.5)$$

where $\mu \in \mathbb{R}$.

Also, we recommend the papers [1, 2, 8, 9, 10, 17, 19, 20, 21, 22] and the references therein for more details about the related work.

In this article, we study CERYs on $(LPK)_n$. The article is organized in the following ways: In Section 2, we describe some basic definitions and results of $(LPK)_n$. Section 3 deals with study of CERYs in $(LPK)_n$. The Ricci semi-symmetric $(LPK)_n$ admitting CERYs have been studied in Section 4. In Section 5, it is shown that $(LPK)_n$ endowed with CERYs satisfying the curvature conditions: $\mathcal{P}(\mathcal{U}, \xi) \cdot \mathcal{S} = 0$, $\mathcal{R}(K, \xi) \cdot \mathcal{P} = 0$, and $\mathcal{S}(K, \xi) \cdot \mathcal{P} = 0$ are Einstein manifolds. In Section 6, we also study CERYs on $(LPK)_n$ admitting Codazzi type Ricci tensor and cyclic parallel Ricci tensor. In Section 7, the existence of CERYs has been proved by constructing a non-trivial example of $(LPK)_3$.

2. Preliminaries

A differentiable manifold \mathbb{M} (dimension of $\mathbb{M} = n$) with the structure (φ, ξ, η) is named a Lorentzian almost paracontact manifold, where φ , ξ and η represent a $(1, 1)$ type tensor field, a contravariant vector field, and a 1-form, respectively on \mathbb{M} , satisfying

$$\eta(\xi) = -1 \text{ and } \varphi^2 = \eta \otimes \xi + I, \quad (2.1)$$

which infer that

$$\varphi\xi = 0, \quad \eta \circ \varphi = 0, \quad \text{rank}(\varphi) = n - 1. \quad (2.2)$$

Let g (the Lorentzian metric) of \mathbb{M} satisfies

$$g(\cdot, \xi) = \eta(\cdot) \text{ and } g(\varphi \cdot, \varphi \cdot) = g(\cdot, \cdot) + \eta(\cdot)\eta(\cdot), \quad (2.3)$$

then (φ, ξ, η, g) is named an almost paracontact structure, and \mathbb{M} is termed as an almost paracontact metric manifold.

Define Φ (the second fundamental form) as:

$$\Phi(\mathcal{U}, \mathcal{V}) = \Phi(\mathcal{V}, \mathcal{U}) = g(\mathcal{U}, \varphi\mathcal{V}) \quad (2.4)$$

for any vector fields $\mathcal{U}, \mathcal{V} \in \mathfrak{X}(\mathbb{M})$, the Lie algebra of vector fields on \mathbb{M} . If $d\eta(\mathcal{U}, \mathcal{V}) = \Phi(\mathcal{U}, \mathcal{V})$, here d is an exterior derivative, then $(\mathbb{M}, \varphi, \xi, \eta, g)$ is termed as a paracontact metric manifold.

Definition 2.1 A Lorentzian almost paracontact manifold \mathbb{M} is termed an LP -Kenmotsu manifold (LPK) if [15, 16]

$$(\nabla_{\mathcal{U}}\varphi)\mathcal{V} = -g(\varphi\mathcal{U}, \mathcal{V})\xi - \eta(\mathcal{V})\varphi\mathcal{U}, \quad (2.5)$$

for any \mathcal{U}, \mathcal{V} on \mathbb{M} .

In an $(LPK)_n$, we have

$$\nabla_{\mathcal{U}}\xi + \mathcal{U} + \eta(\mathcal{U})\xi = 0, \quad (2.6)$$

$$(\nabla_{\mathcal{U}}\eta)\mathcal{V} + g(\mathcal{U}, \mathcal{V}) + \eta(\mathcal{U})\eta(\mathcal{V}) = 0, \quad (2.7)$$

where ∇ stands for the Levi-Civita connection with respect to g .

Furthermore, in an $(LPK)_n$, the following relations hold [15, 16]:

$$g(\mathcal{R}(\mathcal{U}, \mathcal{V})\mathcal{Z}, \xi) = \eta(\mathcal{R}(\mathcal{U}, \mathcal{V})\mathcal{Z}) = g(\mathcal{V}, \mathcal{Z})\eta(\mathcal{U}) - g(\mathcal{U}, \mathcal{Z})\eta(\mathcal{V}), \quad (2.8)$$

$$\mathcal{R}(\xi, \mathcal{U})\mathcal{V} = -\mathcal{R}(\mathcal{U}, \xi)\mathcal{V} = g(\mathcal{U}, \mathcal{V})\xi - \eta(\mathcal{V})\mathcal{U}, \quad (2.9)$$

$$\mathcal{R}(\mathcal{U}, \mathcal{V})\xi = \eta(\mathcal{V})\mathcal{U} - \eta(\mathcal{U})\mathcal{V}, \quad (2.10)$$

$$\mathcal{R}(\xi, \mathcal{U})\xi = \mathcal{U} + \eta(\mathcal{U})\xi, \quad (2.11)$$

$$S(\mathcal{U}, \xi) = (n-1)\eta(\mathcal{U}), \quad S(\xi, \xi) = -(n-1), \quad (2.12)$$

$$\mathcal{Q}\xi = (n-1)\xi, \quad (2.13)$$

for any $\mathcal{U}, \mathcal{V}, \mathcal{Z}$ on \mathbb{M} . Here \mathcal{R} indicates the curvature tensor and \mathcal{Q} indicates the Ricci operator.

Definition 2.2 An $(LPK)_n$ is said to be η -Einstein if its Ricci tensor $\mathcal{S}(\neq 0)$ is of the form

$$\mathcal{S}(\mathcal{U}, \mathcal{V}) = Ag(\mathcal{U}, \mathcal{V}) + B\eta(\mathcal{U})\eta(\mathcal{V}), \quad (2.14)$$

where A and B are smooth functions on $(LPK)_n$.

Remark 2.1 In an (LPK_n) , we have [13]

$$\xi(r) = 2(r - n(n-1)). \quad (2.15)$$

Remark 2.2 From the relation (2.15), it is noticed that if an $(LPK)_n$ possesses the constant scalar curvature, then $r = n(n-1)$.

3. CERYS on $(LPK)_n$

Let the metric of an $(LPK)_n$ be a CERYS $(g, K = \xi, \sigma, \rho, \Lambda, \mu)$, then we have

$$\mathcal{L}_{\xi}g(\mathcal{U}, \mathcal{V}) + 2\sigma\mathcal{S}(\mathcal{U}, \mathcal{V}) + (2\Lambda - \rho r - (p + \frac{2}{n}))g(\mathcal{U}, \mathcal{V}) + 2\mu\eta(\mathcal{U})\eta(\mathcal{V}) = 0. \quad (3.1)$$

As we know that

$$(\mathcal{L}_{\xi}g)(\mathcal{U}, \mathcal{V}) = -2g(\mathcal{U}, \mathcal{V}) - 2\eta(\mathcal{U})\eta(\mathcal{V}), \quad (3.2)$$

for any \mathcal{U}, \mathcal{V} on $(LPK)_n$. By using (3.2) in (3.1) we have

$$\mathcal{S}(\mathcal{U}, \mathcal{V}) = \frac{1}{\sigma}[1 - \Lambda + \frac{\rho r}{2} + \frac{1}{2}(p + \frac{2}{n})]g(\mathcal{U}, \mathcal{V}) + \frac{(1-\mu)}{\sigma}\eta(\mathcal{U})\eta(\mathcal{V}), \quad (\sigma \neq 0), \quad (3.3)$$

which is of the form $S(\mathcal{U}, \mathcal{V}) = Ag(\mathcal{U}, \mathcal{V}) + B\eta(\mathcal{U})\eta(\mathcal{V})$, where $A = \frac{1}{\sigma}[1 - \Lambda + \frac{\rho r}{2} + \frac{1}{2}(p + \frac{2}{n})]$ and $B = \frac{(1-\mu)}{\sigma}$, $\sigma \neq 0$.

Now, putting $\mathcal{V} = \xi$ in (3.3), we have

$$\mathcal{S}(\mathcal{U}, \xi) = A_1\eta(\mathcal{U}), \quad (3.4)$$

where $A_1 = \frac{1}{\sigma}[\mu - \Lambda + \frac{\rho r}{2} + \frac{1}{2}(p + \frac{2}{n})]$.

From (2.12) and (3.4), we obtain

$$\Lambda - \mu = \frac{\rho r}{2} + \frac{1}{2}(p + \frac{2}{n}) - \sigma(n - 1). \quad (3.5)$$

Thus, we have

Theorem 3.1 *If an $(LPK)_n$ admits a CERYS $(g, K = \xi, \sigma, \rho, \Lambda, \mu)$, then the manifold is an η -Einstein manifold; and the scalars Λ are related by $\Lambda - \mu = \frac{\rho r}{2} + \frac{1}{2}(p + \frac{2}{n}) - \sigma(n - 1)$.*

4. Ricci semi-symmetric $(LPK)_n$ admitting CERYS

In 1992, Mirzoyan [18] introduced the notion of Ricci semi-symmetry for the Riemann spaces. In this section we consider a CERYS in an $(LPK)_n$ which satisfies Ricci semi-symmetric condition, i.e., $\mathcal{R}(\xi, \mathcal{U}) \cdot \mathcal{S} = 0$. This leads to

$$\mathcal{S}(\mathcal{R}(\xi, \mathcal{U})\mathcal{V}, \mathcal{Z}) + S(\mathcal{V}, \mathcal{R}(\xi, \mathcal{U})\mathcal{Z}) = 0, \quad (4.1)$$

for $\mathcal{U}, \mathcal{V}, \mathcal{Z}$ on $(LPK)_n$. By using (2.9) in (4.1), we have

$$S(\xi, \mathcal{Z})g(\mathcal{U}, \mathcal{V}) - \eta(\mathcal{V})\mathcal{S}(\mathcal{U}, \mathcal{Z}) + \mathcal{S}(\mathcal{V}, \xi)g(\mathcal{U}, \mathcal{Z}) - \eta(\mathcal{Z})\mathcal{S}(\mathcal{V}, \mathcal{U}) = 0. \quad (4.2)$$

By putting $\mathcal{Z} = \xi$ and using (3.4), the foregoing equation leads to

$$\mathcal{S}(\mathcal{U}, \mathcal{V}) = \frac{1}{\sigma}[\mu - \Lambda + \frac{\rho r}{2} + \frac{1}{2}(p + \frac{2}{n})]g(\mathcal{U}, \mathcal{V}), \quad \sigma \neq 0. \quad (4.3)$$

Now, from (2.3), (3.3) and (4.3), it follows that

$$\frac{(1-\mu)}{\sigma}g(\varphi\mathcal{U}, \varphi\mathcal{V}) = 0, \quad \sigma \neq 0. \quad (4.4)$$

This gives $\mu = 1$, where $g(\varphi\mathcal{U}, \varphi\mathcal{V}) \neq 0$.

Thus, (4.3) turns to

$$\mathcal{S}(\mathcal{U}, \mathcal{V}) = \frac{1}{\sigma}[1 - \Lambda + \frac{\rho r}{2} + \frac{1}{2}(p + \frac{2}{n})]g(\mathcal{U}, \mathcal{V}). \quad (4.5)$$

Thus, we have the following result;

Theorem 4.1 *Let an $(LPK)_n$ be Ricci semi-symmetric endowed with a CERYS $(g, K = \xi, \sigma, \rho, \Lambda, \mu)$. Then $(LPK)_n$ is an Einstein manifold.*

5. Projective curvature tensor in $(LPK)_n$ admitting CERYS

The projective curvature tensor \mathcal{P} in an $(LPK)_n$ is defined by

$$\mathcal{P}(\mathcal{U}, \mathcal{V})\mathcal{Z} = \mathcal{R}(\mathcal{U}, \mathcal{V})\mathcal{Z} - \frac{1}{n-1}\{\mathcal{S}(\mathcal{V}, \mathcal{Z})\mathcal{U} - \mathcal{S}(\mathcal{U}, \mathcal{Z})\mathcal{V}\}, \quad (5.1)$$

for all \mathcal{U}, \mathcal{V} and \mathcal{Z} on $(LPK)_n$.

In this section, we study $(LPK)_n$ admitting a CERYS $(g, K = \xi, \sigma, \rho, \Lambda, \mu)$ satisfying certain curvature conditions on \mathcal{P} .

First, we consider an $(LPK)_n$ admitting a CERYS $(g, K = \xi, \sigma, \rho, \Lambda, \mu)$ which satisfies the condition $\mathcal{P}(\mathcal{U}, \xi) \cdot \mathcal{S} = 0$. Thus, we have

$$\mathcal{S}(\mathcal{P}(\mathcal{U}, \xi)\mathcal{V}, \mathcal{Z}) + \mathcal{S}(\mathcal{V}, \mathcal{P}(\mathcal{U}, \xi)\mathcal{Z}) = 0. \quad (5.2)$$

From (2.9), (3.4) and (5.1), we find

$$P(\mathcal{U}, \xi)\mathcal{V} = -g(\mathcal{U}, \mathcal{V})\xi + (1 - \frac{A_1}{n-1})\eta(\mathcal{V})\mathcal{U} + \frac{1}{n-1}S(\mathcal{U}, \mathcal{V})\xi. \quad (5.3)$$

Plugging (5.3) into (5.2), we have

$$\eta(\mathcal{V})\mathcal{S}(\mathcal{U}, \mathcal{Z}) + \eta(\mathcal{Z})S(\mathcal{U}, \mathcal{V}) - A_1g(\mathcal{U}, \mathcal{V})\eta(\mathcal{Z}) - A_1g(\mathcal{U}, \mathcal{Z})\eta(\mathcal{V}) = 0,$$

which by putting $\mathcal{V} = \xi$ and then using (2.1) and (3.4) reduces to $S(\mathcal{U}, \mathcal{Z}) = A_1g(\mathcal{U}, \mathcal{Z})$. By using (3.5) it takes the form

$$S(\mathcal{U}, \mathcal{Z}) = (n-1)g(\mathcal{U}, \mathcal{Z}). \quad (5.4)$$

On contracting (5.4), we obtain $r = n(n-1)$. Thus, (3.5) leads to $\Lambda - \mu = \frac{\rho n(n-1)}{2} + \frac{1}{2}(p + \frac{2}{n}) - \sigma(n-1)$. Now, we state the following result:

Theorem 5.1 *Let an $(LPK)_n$ be Ricci semi-symmetric endowed with a CERYS $(g, K = \xi, \sigma, \rho, \Lambda, \mu)$, then $(LPK)_n$ is an Einstein manifold. Moreover, Λ and μ are related by $\Lambda - \mu = \frac{\rho n(n-1)}{2} + \frac{1}{2}(p + \frac{2}{n}) - \sigma(n-1)$.*

Next, we consider an $(LPK)_n$ admitting a CERYS $(g, K = \xi, \sigma, \rho, \Lambda, \mu)$ which satisfies the condition $\mathcal{R}(\mathcal{U}, \xi) \cdot \mathcal{P} = 0$. Thus, we have

$$\begin{aligned} & \mathcal{R}(\mathcal{U}, \xi)\mathcal{P}(\mathcal{X}, \mathcal{V})\mathcal{W} - \mathcal{P}(\mathcal{R}(\mathcal{U}, \xi)\mathcal{X}, \mathcal{V})\mathcal{W} \\ & - \mathcal{P}(\mathcal{X}, \mathcal{R}(\mathcal{U}, \xi)\mathcal{V})\mathcal{W} - \mathcal{P}(\mathcal{X}, \mathcal{V})\mathcal{R}(\mathcal{U}, \xi)\mathcal{W} = 0, \end{aligned} \quad (5.5)$$

for any $\mathcal{U}, \mathcal{V}, \mathcal{W}, \mathcal{X} \in \chi(\mathbb{M})$.

By fixing $\mathcal{X} = \mathcal{W} = \xi$ in (5.5), we have

$$\begin{aligned} & \mathcal{R}(\mathcal{U}, \xi)\mathcal{P}(\xi, \mathcal{V})\xi - \mathcal{P}(\mathcal{R}(\mathcal{U}, \xi)\xi, \mathcal{V})\xi \\ & - \mathcal{P}(\xi, \mathcal{R}(\mathcal{U}, \xi)\mathcal{V})\xi - \mathcal{P}(\xi, \mathcal{V})\mathcal{R}(\mathcal{U}, \xi)\xi = 0. \end{aligned} \quad (5.6)$$

From (2.10), (3.4) and (5.1), we find

$$\mathcal{P}(\mathcal{U}, \mathcal{V})\xi = (1 - \frac{A_1}{n-1})(\eta(\mathcal{V})\mathcal{U} - \eta(\mathcal{U})\mathcal{V}), \quad (5.7)$$

$$\mathcal{P}(\xi, \mathcal{V})\mathcal{U} = -(1 - \frac{A_1}{n-1})\eta(\mathcal{U})\mathcal{V} + g(\mathcal{U}, \mathcal{V})\xi - \frac{1}{n-1}S(\mathcal{U}, \mathcal{V})\xi. \quad (5.8)$$

In view of (2.9), (5.7) and (5.8), after some steps calculation (5.6) gives $\mathcal{S}(\mathcal{U}, \mathcal{V})\xi = A_1g(\mathcal{U}, \mathcal{V})\xi$, which by taking the inner product with ξ and using (3.5) leads to

$$\mathcal{S}(\mathcal{U}, \mathcal{V}) = (n-1)g(\mathcal{U}, \mathcal{V}). \quad (5.9)$$

On contracting (5.9), we obtain $r = n(n-1)$. Thus, (3.5) turns to $\Lambda - \mu = \frac{\rho n(n-1)}{2} + \frac{1}{2}(p + \frac{2}{n}) - \sigma(n-1)$. Now, we state the following result:

Theorem 5.2 Let an $(LPK)_n$ admit a CERYS $(g, K = \xi, \sigma, \rho, \Lambda, \mu)$ and satisfies the condition $\mathcal{R}(\mathcal{U}, \xi) \cdot \mathcal{P} = 0$. Then $(LPK)_n$ is an Einstein manifold. Moreover, Λ and μ are related by $\Lambda - \mu = \frac{\rho n(n-1)}{2} + \frac{1}{2}(p + \frac{2}{n}) - \sigma(n-1)$.

Further, we consider an $(LPK)_n$ admitting a CERYS $(g, K = \xi, \sigma, \rho, \Lambda, \mu)$ and satisfies the condition $\mathcal{S}(\xi, \mathcal{U}) \cdot \mathcal{P} = 0$. Then, we have

$$\begin{aligned} & \mathcal{S}(\mathcal{U}, \mathcal{P}(\mathcal{X}, \mathcal{V})\mathcal{W})\xi - \mathcal{S}(\xi, \mathcal{P}(\mathcal{X}, \mathcal{V})\mathcal{W})\mathcal{U} + \mathcal{S}(\mathcal{U}, \mathcal{X})\mathcal{P}(\xi, \mathcal{V})\mathcal{W} \\ & - \mathcal{S}(\xi, \mathcal{X})\mathcal{P}(\mathcal{U}, \mathcal{V})\mathcal{W} + \mathcal{S}(\mathcal{U}, \mathcal{V})\mathcal{P}(\mathcal{X}, \xi)\mathcal{W} - \mathcal{S}(\xi, \mathcal{V})\mathcal{P}(\mathcal{X}, \mathcal{U})\mathcal{W} \\ & + \mathcal{S}(\mathcal{U}, \mathcal{W})\mathcal{P}(\mathcal{X}, \mathcal{V})\xi - \mathcal{S}(\xi, \mathcal{W})\mathcal{P}(\mathcal{X}, \mathcal{V})\mathcal{U} = 0, \end{aligned} \quad (5.10)$$

for all $\mathcal{U}, \mathcal{V}, \mathcal{W}, \mathcal{X} \in \chi(M)$. Putting $\mathcal{X} = \mathcal{W} = \xi$ in (5.10), we have

$$\begin{aligned} & \mathcal{S}(\mathcal{U}, \mathcal{P}(\xi, \mathcal{V})\xi)\xi - \mathcal{S}(\xi, \mathcal{P}(\xi, \mathcal{V})\xi)\mathcal{U} + \mathcal{S}(\mathcal{U}, \xi)\mathcal{P}(\xi, \mathcal{V})\xi - \mathcal{S}(\xi, \xi)\mathcal{P}(\mathcal{U}, \mathcal{V})\xi \\ & + \mathcal{S}(\mathcal{U}, \mathcal{V})\mathcal{P}(\xi, \xi)\xi - \mathcal{S}(\xi, \mathcal{V})\mathcal{P}(\xi, \mathcal{U})\xi + \mathcal{S}(\mathcal{U}, \xi)\mathcal{P}(\xi, \mathcal{V})\xi - \mathcal{S}(\xi, \xi)\mathcal{P}(\xi, \mathcal{V})\mathcal{U} = 0, \end{aligned}$$

which in view of (3.4), (5.7), (5.8) and $\eta(\mathcal{P}(\xi, \mathcal{V})\xi) = 0$ reduces to

$$A_1 g(\mathcal{U}, \mathcal{V})\xi + 2A_1(1 - \frac{A_1}{n-1})\eta(\mathcal{U})\eta(\mathcal{V})\xi + (1 - 2\frac{A_1}{n-1})S(\mathcal{U}, \mathcal{V})\xi = 0.$$

By taking the inner product of the foregoing equation with ξ , then using (2.1), (2.3) and (3.5) it follows that

$$\mathcal{S}(\mathcal{U}, \mathcal{V}) = (n-1)g(\mathcal{U}, \mathcal{V}). \quad (5.11)$$

On contracting (5.11), we obtain $r = n(n-1)$. Thus, (3.5) can be expressed as $\Lambda - \mu = \frac{\rho n(n-1)}{2} + \frac{1}{2}(p + \frac{2}{n}) - \sigma(n-1)$. Now, we state the following result:

Theorem 5.3 Let an $(LPK)_n$ admit a CERYS $(g, K = \xi, \sigma, \rho, \Lambda, \mu)$ and satisfies the condition $\mathcal{S}(\xi, \mathcal{U}) \cdot \mathcal{P} = 0$. Then $(LPK)_n$ is an Einstein manifold. Moreover, Λ and μ are related by $\Lambda - \mu = \frac{\rho n(n-1)}{2} + \frac{1}{2}(p + \frac{2}{n}) - \sigma(n-1)$.

6. CERYS $(g, K = \xi, \sigma, \rho, \Lambda, \mu)$ on $(LPK)_n$ admitting certain types of Ricci tensor

Definition 6.1 An $(LPK)_n$ is said to have Codazzi type Ricci tensor $\mathcal{S}(\neq 0)$ of type $(0, 2)$ if it satisfies the following relation [7]:

$$(\nabla_{\mathcal{Z}}\mathcal{S})(\mathcal{U}, \mathcal{V}) = (\nabla_{\mathcal{U}}\mathcal{S})(\mathcal{V}, \mathcal{Z}), \quad (6.1)$$

for all $\mathcal{U}, \mathcal{V}, \mathcal{Z} \in \chi(M)$.

Taking the covariant derivative of (3.3) with respect to \mathcal{Z} and using (2.6), we get

$$(\nabla_{\mathcal{Z}}\mathcal{S})(\mathcal{U}, \mathcal{V}) = \frac{(1-\mu)}{\sigma} \{ -g(\mathcal{Z}, \mathcal{U})\eta(\mathcal{V}) - g(\mathcal{Z}, \mathcal{V})\eta(\mathcal{U}) - 2\eta(\mathcal{U})\eta(\mathcal{V})\eta(\mathcal{Z}) \}. \quad (6.2)$$

If the Ricci tensor \mathcal{S} is of Codazzi type, then in view of (6.2), (6.1) leads to

$$\frac{(1-\mu)}{\sigma} \{ g(\mathcal{U}, \mathcal{V})\eta(\mathcal{Z}) - g(\mathcal{Z}, \mathcal{V})\eta(\mathcal{U}) \} = 0. \quad (6.3)$$

Putting $\mathcal{Z} = \xi$ in (6.3), we obtain

$$\frac{(1-\mu)}{\sigma} g(\varphi\mathcal{U}, \varphi\mathcal{V}) = 0, \quad \sigma \neq 0, \quad (6.4)$$

from which it gives $\mu = 1$, as $g(\varphi\mathcal{U}, \varphi\mathcal{V}) \neq 0$. Putting $\mu = 1$ in (3.3), it follows that

$$\mathcal{S}(\mathcal{U}, \mathcal{V}) = \frac{1}{\sigma} [1 - \Lambda + \frac{\rho r}{2} + \frac{1}{2}(p + \frac{2}{n})]g(\mathcal{U}, \mathcal{V}). \quad (6.5)$$

This relation shows that the manifold is an Einstein manifold. Thus, we have the following result:

Theorem 6.1 *An $(LPK)_n$ with the Codazzi type Ricci tensor admitting a CERYS ($g, K = \xi, \sigma, \rho, \Lambda, \mu$) is an Einstein manifold of the form (6.5).*

Definition 6.2 *An $(LPK)_n$ is said to have cyclic parallel Ricci tensor, if its Ricci tensor S ($\neq 0$) of type $(0, 2)$ satisfies the relation*

$$(\nabla_Z S)(U, V) + (\nabla_U S)(V, Z) + (\nabla_V S)(U, Z) = 0, \quad (6.6)$$

for all $U, V, Z \in \chi(\mathbb{M})$.

Let an $(LPK)_n$ admitting a CERYS ($g, K = \xi, \sigma, \rho, \Lambda, \mu$) has a cyclic parallel Ricci tensor, thus (6.6) holds. By taking the covariant derivative of (3.3) along Z and using (2.7), we easily find

$$(\nabla_Z S)(U, V) = \frac{(1 - \mu)}{\sigma} \{ -g(Z, U)\eta(V) - g(Z, V)\eta(U) - 2\eta(U)\eta(V)\eta(Z) \}. \quad (6.7)$$

Similarly, we have

$$(\nabla_U S)(V, Z) = \frac{(1 - \mu)}{\sigma} \{ -g(U, V)\eta(Z) - g(U, Z)\eta(V) - 2\eta(U)\eta(V)\eta(Z) \}, \quad (6.8)$$

and

$$(\nabla_V S)(Z, U) = \frac{(1 - \mu)}{\sigma} \{ -g(V, Z)\eta(U) - g(V, U)\eta(Z) - 2\eta(U)\eta(V)\eta(Z) \}. \quad (6.9)$$

Now using (6.7), (6.8) and (6.9) in (6.6), we lead to

$$\frac{(1 - \mu)}{\sigma} \{ g(U, V)\eta(Z) + g(V, Z)\eta(U) + g(Z, U)\eta(V) + 3\eta(U)\eta(V)\eta(Z) \} = 0. \quad (6.10)$$

Putting $Z = \xi$ in (6.10) and using (2.1) and (2.3), we obtain

$$\frac{(1 - \mu)}{\sigma} g(\varphi U, \varphi V) = 0, \quad (6.11)$$

from which it follows that $\mu = 1$, as $g(\varphi U, \varphi V) \neq 0$. By using $\mu = 1$ in (3.3), we get

$$S(U, V) = \frac{1}{\sigma} [1 - \Lambda + \frac{\rho r}{2} + \frac{1}{2}(p + \frac{2}{n})]g(U, V). \quad (6.12)$$

Thus, we have the following theorem:

Theorem 6.2 *If an $(LPK)_n$ admits a CERYS ($g, K = \xi, \sigma, \rho, \Lambda, \mu$), and the manifold has a cyclic parallel Ricci tensor. Then, the manifold is an Einstein manifold of the form (6.12).*

7. Example

We consider a 3-dimensional manifold $\mathbb{M} = \{(t_1, t_2, t_3) \in R^3\}$, where (t_1, t_2, t_3) are the standard coordinates in R^3 . Let ϱ_1, ϱ_2 and ϱ_3 be the vector fields on \mathbb{M} given by

$$\varrho_1 = \cosh t_3 \frac{\partial}{\partial t_1} + \sinh t_3 \frac{\partial}{\partial t_2}, \quad \varrho_2 = \sinh t_3 \frac{\partial}{\partial t_1} + \cosh t_3 \frac{\partial}{\partial t_2}, \quad \varrho_3 = \frac{\partial}{\partial t_3} = \xi,$$

which are linearly independent at each point of \mathbb{M} . Let g be the metric (semi-Riemannian) defined by

$$g(\varrho_1, \varrho_1) = g(\varrho_2, \varrho_2) = 1, \quad g(\varrho_3, \varrho_3) = -1, \quad g(\varrho_1, \varrho_2) = g(\varrho_1, \varrho_3) = g(\varrho_2, \varrho_3) = 0.$$

Let the 1-form η on \mathbb{M} is defined by $\eta(U) = g(U, \varrho_3)$ for all $U \in \chi(\mathbb{M})$. Let the $(1, 1)$ tensor field φ on \mathbb{M} is defined by

$$\varphi \varrho_1 = -\varrho_2, \quad \varphi \varrho_2 = -\varrho_1, \quad \varphi \varrho_3 = 0.$$

The linearity of φ and g yields

$$\eta(\varrho_3) = -1, \quad \varphi^2 \mathcal{U} = \mathcal{U} + \eta(\mathcal{U})\xi, \quad g(\varphi\mathcal{U}, \varphi\mathcal{V}) = g(\mathcal{U}, \mathcal{V}) + \eta(\mathcal{U})\eta(\mathcal{V}),$$

for all $\mathcal{U}, \mathcal{V} \in \chi(\mathbb{M})$.

Now, by direct computations, we obtain

$$[\varrho_1, \varrho_2] = 0, \quad [\varrho_2, \varrho_3] = -\varrho_1, \quad [\varrho_1, \varrho_3] = -\varrho_2.$$

By using Koszul's formula, we can easily calculate

$$\begin{aligned} \nabla_{\varrho_1} \varrho_1 &= 0, & \nabla_{\varrho_2} \varrho_1 &= -\varrho_3, & \nabla_{\varrho_3} \varrho_1 &= 0, \\ \nabla_{\varrho_1} \varrho_2 &= -\varrho_3, & \nabla_{\varrho_2} \varrho_2 &= 0, & \nabla_{\varrho_3} \varrho_2 &= 0, \\ \nabla_{\varrho_1} \varrho_3 &= -\varrho_2, & \nabla_{\varrho_2} \varrho_3 &= -\varrho_1, & \nabla_{\varrho_3} \varrho_3 &= 0. \end{aligned}$$

Also, one can easily verify that

$$\nabla_{\mathcal{U}} \xi = -\mathcal{U} - \eta(\mathcal{U})\xi \quad \text{and} \quad (\nabla_{\mathcal{U}} \varphi)\mathcal{V} = -g(\varphi\mathcal{U}, \mathcal{V})\xi - \eta(\mathcal{V})\varphi\mathcal{U}.$$

Thus, the manifold \mathbb{M} is an LP -Kenmotsu manifold. It is known that

$$\mathcal{R}(\mathcal{U}, \mathcal{V})\mathcal{Z} = \nabla_{\mathcal{U}}\nabla_{\mathcal{V}}\mathcal{Z} - \nabla_{\mathcal{V}}\nabla_{\mathcal{U}}\mathcal{Z} - \nabla_{[\mathcal{U}, \mathcal{V}]}\mathcal{Z}.$$

By using the above relations, we can easily obtain the components of \mathcal{R} as follows:

$$\begin{aligned} \mathcal{R}(\varrho_1, \varrho_2)\varrho_1 &= \varrho_2, & \mathcal{R}(\varrho_1, \varrho_2)\varrho_2 &= -\varrho_1, & \mathcal{R}(\varrho_1, \varrho_2)\varrho_3 &= 0, \\ \mathcal{R}(\varrho_2, \varrho_3)\varrho_1 &= 0, & \mathcal{R}(\varrho_2, \varrho_3)\varrho_2 &= -\varrho_3, & \mathcal{R}(\varrho_2, \varrho_3)\varrho_3 &= -\varrho_2, \\ \mathcal{R}(\varrho_1, \varrho_3)\varrho_1 &= -\varrho_3, & \mathcal{R}(\varrho_1, \varrho_3)\varrho_2 &= 0, & \mathcal{R}(\varrho_1, \varrho_3)\varrho_3 &= -\varrho_1. \end{aligned}$$

From these values of \mathcal{R} , we can easily calculate

$$\mathcal{S}(\varrho_1, \varrho_1) = \mathcal{S}(\varrho_2, \varrho_2) = 0, \quad \mathcal{S}(\varrho_3, \varrho_3) = -2 \implies r = 2. \quad (7.1)$$

Putting $\mathcal{U} = \mathcal{V} = \xi$ in (3.3) and using (7.1) and (2.12) it follows that

$$\Lambda - \mu = \rho - 2\sigma + \frac{1}{2}(p + \frac{2}{3}).$$

Hence Λ and μ satisfies (3.5), and so g defines a CERYS on the given $(LPK)_3$.

Acknowledgments

The authors would like to thank the anonymous referees and the editor for their careful reading and valuable comments and suggestions on this article.

References

1. Haseeb, A. and Khan, M. A., *Conformal η -Ricci-Yamabe solitons within the framework of ϵ -LP-Sasakian 3 manifolds*. *Adv. Math. Phys.* 2022, 8 pages. Article ID 3847889
2. Ahmad, M., Gazala and Al-Shabrawi, M. A., *A note on LP-Kenmotsu manifolds admitting conformal Ricci-Yamabe solitons*, *Int. J. Anal. Appl.* (2023), 21:32.
3. Basu, N. and Bhattacharyya, A., *Conformal Ricci soliton in Kenmotsu manifold*, *Global Journal of Advanced Research on Classical and Modern Geometries*, 4(2015), 15-21.
4. De, U. C., Sardar, A. and De, K., *Ricci-Yamabe solitons and 3-dimensional Riemannian manifolds*, *Turk J Math.*, 46(3) (2022), 1078-1088.
5. Fischer, A. E., *An introduction to conformal Ricci flow*, *Classical and Quantum Gravity*, 21(3) (2004), 171-218.
6. Güler, S. and Crasmareanu, M., *Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy*, *Turk. J. Math.*, 43 (2019), 2631-2641.

7. Gray, A., *Einstein-like manifolds which are not Einstein*, Geom. Dedicata, 7(1978), 259-280.
8. Yoldas, H. I., *Notes on η -Einstein solitons on para-Kenmotsu manifolds*, Math. Meth. Appl. Sci., 46 (2023), 17632-17640.
9. Yoldas, H. I., *Some soliton types on Riemannian manifolds*, Romanian Journal of Mathematics and Computer Science, 11 (2021), 13-20.
10. Yoldas, H. I., *Remarks on some soliton types with certain vector fields*, Fundamentals of Contemporary Mathematical Sciences, 3(2) (2022), 146-159.
11. Hamilton, R. S., *Lectures on Geometric Flows* (Unpublished manuscript, 1989).
12. Barbosa, E. and Jr, E. R., *On conformal solutions of the Yamabe flow*, Arch. Math. (Basel), 101 (1) (2013), 79-89.
13. Haseeb, A., Bilal, M., Chaubey, S. K. and A. A. H., *ζ -conformally flat LP -Kenmotsu manifolds and Ricci-Yamabe solitons*, Mathematics, 11(1) (2023), 14 pages.
14. Hamilton, R. S., *The Ricci Flow on Surfaces*, Mathematics and General Relativity (Santa Cruz, CA, 1986), Contemp. Math., A.M.S., 71 (1988), 237-262.
15. Haseeb, A. and Prasad, R., *Certain results on Lorentzian para-Kenmotsu manifolds*, Bol. Soc. Parana. Mat., 39(3) (2021), 201-220.
16. Haseeb, A. and Prasad, R., *Some results on Lorentzian para-Kenmotsu manifolds*, Bull. Transilvania Univ. of Brasov, 13(62) (2020), no. 1, 185-198.
17. Li, Y., Haseeb, A. and Ali, M., *LP -Kenmotsu manifolds admitting η -Ricci solitons and spacetime*, Journal of Mathematics, 2022, Article ID 6605127, 10 pages.
18. Mirjoyan, V. A., *Structure theorems for Riemannian Ricci semisymmetric spaces*, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 6 (1992), 80-89.
19. Pankaj, Chaubey, S. K and Prasad, R., *Three dimensional Lorentzian para-Kenmotsu manifolds and Yamabe soliton*, Honam Mathematical J., 43(4) (2021), 613-626.
20. Singh, J. P. and Khatri, M., *On Ricci-Yamabe soliton and geometrical structure in a perfect fluid spacetime*, Afr. Mat., 32(2021), 1645-1656.
21. Yoldas, H. I., *On Kenmotsu manifolds admitting η -Ricci-Yamabe solitons*, Int. J. Geom. Met. Mod. Phys., 18(12) (2021), 2150189.
22. Li, Y., Ganguly, D., Dey, S. and Bhattacharyya, A., *Conformal η -Ricci solitons within the framework of indefinite Kenmotsu manifolds*, AIMS Math. 7, 5408-5430 (2022) <https://doi.org/10.3934/math.2022300>
23. Zhang, P., Li, Y., Roy, S., Dey, S. and Bhattacharyya, A., *Geometrical structure in a perfect fluid spacetime with conformal Ricci-Yamabe soliton*, Symmetry, 14(2022), 594.

Gazala

Department of Mathematics and Statistics,

Integral University, Kursi Road,

Lucknow-226026, India.

E-mail address: gazala.math@gmail.com

and

Abdul Haseeb (Corresponding Author)

Department of Mathematics,

College of Science, Jazan University, Jazan University, P.O. Box. 114,

Kingdom of Saudi Arabia.

E-mail address: malikhaseeb80@gmail.com, haseeb@jazanu.edu.sa

and

Mobin Ahmad

Department of Mathematics and Statistics,

Integral University, Kursi Road,

Lucknow-226026, India.

E-mail address: mobinahmad68@gmail.com

and

Sunil Kumar Yadav

*Department of Applied Science and Humanities,
United College of Engineering & Research, A-31, UPSIDC Institutional Area,
Naini-211010, Prayagraj, Uttar Pradesh, India.
E-mail address: prof_sky16@yahoo.com*