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The Regular Pendant Domination Number of Some Special Graphs

Rashmi, S. V. Divya Rashmi and H. C. Abhilash

abstract: This article aims to explore the concept of regular pendant domination across various distinct
graph types, including complete graphs, path graphs, cycle graphs, lollipop graphs, barbell graphs, bistar
graphs, Petersen graphs, fan graphs, cone graphs, helm graphs, windmill graphs and complete bipartite graphs.
Additionally, we examine regular domination in relation to specific graph operations, such as the join and the
corona product of two graphs.
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1. Introduction

Let G = (V,E) be any graph with |V (G)| = n and |E(G)| = m edges. Then n, m are respectively
called the order and the size of the graph G. For each vertex v ∈ V , the open neighborhood of v is the
set N(v) containing all the vertices u adjacent to v and the closed neighborhood of v is the set N [v]
containing v and all the vertices u adjacent to v. Let S be any subset of V , then the open neighborhood
of S is N(S) =

⋃
v∈S N(v) and the closed neighborhood of S is N [S] = N(S)

⋃
S.

The minimum and maximum of the degree among the vertices of G is denoted by δ(G) and ∆(G)
respectively. A graph G is said to be regular if δ(G) = ∆(G). A vertex v of a graph G is called a cut
vertex if its removal increases the number of components. A bridge or cut edge of a graph is an edge
whose removal increases the number of components. A vertex of degree zero is called an isolated vertex
and a vertex of a degree one is called a pendant vertex. An edge incident to a pendant vertex is called
a pendant edge. The corona of two disjoint graphs G1 and G2 is defined to be the graph G = G1 ◦ G2

formed from one copy of G1 and | V (G1) | copies of G2 where the ith vertex of G1 is adjacent to every
vertex in the ith copy of G2. The graph containing no cycle is called a tree. A unicyclic graph is a
connected graph that contains exactly one cycle. A spanning subgraph of a graph G is a subgraph that
includes all the vertices of G, but may not include all the edges.

A subset S of V (G) is a dominating set of G if each vertex u ∈ V − S is adjacent to a vertex in
S. The least cardinality of a dominating set in G is called the domination number of G and is usually
denoted by γ(G). If S is a dominating set of a graph G and each vertex in S has the same degree,
then S is said to be a regular dominating set of G. Regular domination number γr(G) of graph G is
defined as the minimum among all regular dominating sets. In 2021, Prabakaran et al. [7] described
regular dominating set (RDS) and regular dominating number γr(G) in fuzzy graph and studied various
properties and bounds of regular domination number in several fuzzy graphs. Inspiring by this idea, we
assess the regular pendant domination number of some simple, connected, and undirected graphs as well
as the join and corona of two graphs.
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A dominating set S in G is called a pendant dominating set if ⟨S⟩ contains at least one pendant vertex.
The least cardinality of the pendant dominating set in G is called the pendant domination number of G,
denoted by γpe(G). The more details about the pendant domination parameter refer [5].

2. Regular Pendant Domination

Definition 2.1 Let G be a simple graph, a set S ⊆ V (G) is said to be regular pendant dominating
set (RPDS) of G if each vertex v ∈ V (G)− S is adjacent to some vertex in S and each vertex in S
has the same degree. The least cardinality of a regular pendant dominating set in G is called the
regular pendant domination number of G and is usually denoted by γRpe(G).

Example 2.1 Let G1 be a graph as shown in Figure 1. If we consider S as {u2, u3} ⊆ V (G1) and
induced subgraph of S contains a pendant vertex and deg(u2) = deg(u3), it is implied that the set S is a
regular pendant dominating set of graph G1. Let S′ = {u1, u4} be the subset of V (G1). Due to the fact
that S′s vertices have same degree but induced subgraph doesn’t contain a pendant vertex, therefore it is
not a regular pendant dominating set. Therefore γRpe(G1) =| S |= 2.
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Figure 1. Graph G1

Theorem 2.1 γRpe(Kn) = 2 for a complete graph Kn with n ≥ 2 vertices.

Proof 2.1 Any two vertices can form the minimal regular pendant dominating set in a complete graph
Kn since all the vertices have degree n− 1. So, γRpe(Kn) = 2.

Theorem 2.2 For n ≥ 4,

γRpe(Pn) =


n
3 + 1, if n ≡ 0 (mod 3);

⌈n
3 ⌉ if n ≡ 1 (mod 3);

⌈n
3 ⌉+ 1, if n ≡ 2 (mod 3).

Proof 2.2 Let V (Pn) = {v1, v2, ..., vn} be a vertex set of path graph. Since we are aware that the path
graph comprises n vertices, n − 1 edges, two pendant vertices, and n − 2 vertices of degree two. If S
is a regular pendant dominating set, there are two alternatives for S. If v1, vn ∈ S, then v1, vn cannot
dominate n−4 vertices of Pn and induced subgraph doesnot contain a pendant vertex, which is in conflict
with the concept of regular pendant dominating set. Now if v2, v3, ..., vn−1 ∈ S then this will be a regular
pendant dominating set but not minimal. It is obvious that for a minimum regular pendant dominating
set, v2, v3 and vn−1 must be a members of S. Now we construct the regular pendant dominating set S as
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follows:
Case 1: Suppose n ≡ 0 (mod 3). Then n = 3k, for some integer k > 0.
S = {v2, v3i : 0 < i ≤ (k − 1)} ∪ {vn−1}. Then | S |= n

3 + 1. There n
3 + 1 vertices of S are of same

degree, induced subgraph contains a pendant vertex and dominate all remaining vertices of Pn. Therefore
γRpe(Pn) =

n
3 + 1 if n = 3k.

Case 2: Suppose n ≡ 1 (mod 3). Then n = 3k + 1, for some integer k > 0. The set S = {v2, v3i : 0 <
i ≤ (k − 1)} ∪ {vn−1} will be the regular pendant dominating set of Pn. Therefore γRpe(Pn) = ⌈n

3 ⌉.
Case 3: Proof of this case is similar to Case 1.

Theorem 2.3 For n ≥ 4, γRpe(Cn) = γpe(Cn).

Definition 2.1 The lollipop graph is represented by the symbol Lm,n and consists of a bridge between a
complete graph Kn and a path graph Pm. The lollipop graph for n = 3 and m = 6 is as follows:
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Figure 2. Lollipop graph L3,6

Theorem 2.4 For n ≥ 3, the regular pendant domination number of the lollipop graph γRpe(L3,n) =
γRpe(Pn) + 1.

Proof 2.3 Assume that L3,n is a lollipop graph with n + 3 vertices and edges. The vertex set of L3,n

is defined as {u1, u2, u3, v1, v2, ..., vn}. Here deg(u1) = deg(u2) = 2, deg(u3) = 3, deg(vn) = 1 and
deg(vi) = 2 ∀1 ≤ i ≤ (n − 1). If L3,n has a regular pendant dominating set, then S must include the
vertices whose degrees are equal. This suggest that neither the degree three nor the degree one vertices
can belong to S because they cannot dominate the other vertices of L3,m. We now construct the following
set using vertices of degree 2:
S = S′ ∪ {u1} where the set S′ is a regular pendant dominating set of path graph on n vertices. and the
set S is a regular pendant dominating set of L3,n, in accordance with the definition of regular pendant
dominating set. Additionally the above set S′ is the minimal regular pendant dominating set of L3,n.
Therefore γRpe(L3,n) = γRpe(Pn) + 1.

Corollary 2.1 Lollipop graph L3,n has no γRpe− set for n = 1

Proof 2.4 In Figure 2. deg(v1) = deg(v2) = 2, deg(v3) = 3 and deg(u1) = 1. Given that the cardinality
of the regular pendant dominating set is greater than 2, if we consider the set S = {u1, v3} as a regular
pendant dominating set, however, this would not be possible because both vertices have a different degree.
Additionally if we consider the set v1, v2 we see that it is not a regular pendant dominating set since these
vertices cannot dominate the vertex u1. To construct a regular pendant dominating set all possible cases
fail. As a result, it is implies that lollipop graph L3,1 has no γRpe− set.
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Figure 3: Lollipop graph L3,1

Definition 2.2 If we link an edge between two copies of complete graph Kn, then the resulting graph is
called a barbell graph and it is represented by Bn. For n = 4, the barbell graph B4 is shown below
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Figure 4: Barbell Graph B4

Theorem 2.5 Barbel graph Bn has a regular pendant dominating set with γRpe(Bn) = 2 for any n.

Proof 2.5 The barbell graph Bn contains 2n vertices, 2(n−1) of them have degree n−1, while remaining
two have degree n. Let S indicates the regular pendant dominating set. There are two choices for S here:
First, we need to choose two vertex of degree n − 1 from each copy of complete graph Kn and these two
vertices in Kn are must be adjacent to a vertex of degree n if S has vertices of degree n− 1 and induced
subgraph contains a pendant vertex. This is necessary for the regular pendant dominating set. But the set
S is not a minimal regular pendant dominating set. Additionally, it is evident from fig 1 that vertices of
degree n dominate all other vertices and induced subgraph contains a pendant vertex. This one is minimal
regular pendant dominating set of cardinality two. As a result we can say that γRpe(Bn) = 2 for any n.

Definition 2.3 A graph is said to be a complete bipartite graph in which the vertices can be divided into
two subsets, say V1 and V2, so that no edge has both ends in the same subset and every vertex in V1 set
is connected to every vertex in V2. It is represented by Km,n

Theorem 2.6 For a complete bipartite graph Km,n, γRpe(Km,n) = 2 if m = n.

Proof 2.6 Let V1 = {u1, u2, ..., um} and V2 = {v1, v2, ..., vn} be two partite sets of the complete bipartite
graph Km,n, which has m and n vertices respectively. If m = n, then construct regular pendant dominating
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set, we choose one vertex from vertex set V1 and another from set V2. Additionally, this a regular pendant
dominating set with minimum cardinality. Therefore, γRpe(Km,n) = 2 for m = n.

Definition 2.4 Bistar Bn,n is the graph obtained by joining the center (apex) vertices of two copies of
K1,n by an edge. The vertex set of Bn,n is Bn,n = {u, v, ui, vi 1 ≤ i ≤ n}, where u, v are apex vertices
and ui, vi are pendant vertices.

Theorem 2.7 If G ∼= Bn,n is a bistar graph then γRpe(G) = 2.

Proof 2.7 There are 2n pendant vertices and two apex vertices of degree n + 1 in a bistar graph. Two
vertices of the same degree are required for a regular pendant dominating set. As a result, the vertex the
pendant vertices cannot create a regular pendant dominating set, so we must select two apex vertices to
make a regular pendant dominating set that is the least minimal regular pendant dominating set. Therefore
γRpe(Bn,n) = 2.

Theorem 2.8 For a Petersen graph G, γRpe(G) = γpe(G).

Theorem 2.9 For any fan graph Fm,n with m ≥ 2 and n ≥ 4 vertices, then γRpe(Fm,n) = γpe(Pn).

Definition 2.5 A cone graph, Cm,n, is produced when a cycle graph Cm on n vertices and an empty
graph Kn on n vertices are joined. For m = 6 and n = 2, the cone graph is as shown in the figure 5:
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Figure 5: Cone graph C6,2

Theorem 2.10 For a cone graph Cm,n with m ≥ 3 and n ≥ 2 vertices

γRpe(Cm,n) =


m
3 + 1, if m ≡ 0 (mod 3);

⌈m
3 ⌉ if m ≡ 1 (mod 3);

⌈m
3 ⌉+ 1, if m ≡ 2 (mod 3).

Proof 2.8 As we know, a cone graph Cm,n is formed by joining a cycle graph Cm and empty graph Kn

on n vertices, i.e., Cm,n = Cm +Kn. According to the notion of joining two graphs, every vertex of Kn

is connected to every vertex of Cm in the cycle, which has vertex of degree of two. The degree of each
vertex in Cm and Kn are n+2 and m respectively. Now we construct the regular pendant dominating set
of cone graph as follows:
Case 1: Suppose m ≡ 0 (mod 3). Then m = 3k, for some integer k > 0.
S = {v1, v2, v3i−1 : 1 < i ≤ k} is a regular pendant dominating set of Cm,n. Hence γRpe(Cm,n) ≤| S |.
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i.e., γRpe(Cm,n) ≤ m
3 + 1. There n

3 + 1 vertices of S are of same degree, induced subgraph contains a
pendant vertex and dominate all remaining vertices of Cm,n. Therefore γRpe(Cm,n) =

m
3 + 1 if m = 3k

Case 2: Suppose m ≡ 1 (mod 3). Then m = 3k + 1, for some integer k > 0. The set S = {v1, v2, v3i−1 :
1 < i ≤ k} will be the regular pendant dominating set of Cm,n. Therefore γRpe(Cm,n) = ⌈n

3 ⌉
Case 3: Proof of this case is similar to Case 1.

Theorem 2.11 Let Pn and Pm be two path graphs on n ≥ 4 and m ≥ 4 vertices. Then

γRsp(Pn + Pm) =

{
2, if m = n,
γRpe(Pk), if m ̸= n.

Where k is min (m,n).

Proof 2.9 Let V (Pn) = {v1, v2, ..., vn} and V (Pm) = {v1, v2, ..., vm} be the vertex sets of Pn and Pm

respectively. Now according to the definition of join of graphs every vertex of Pn is adjacent to every
vertex of Pm, therefore deg(v1) = deg(vn) = m+1. and deg(vi) = m+2 for all 2 ≤ i ≤ n− 1. Similarly,
deg(u1) = deg(un) = n+ 1 and deg(uj) = n+ 2, for all 2 ≤ j ≤ m− 1. Here we consider three cases as
follows:
Case 1: If m = n
To construct a regular pendant dominating set, we require minimum two vertices of the same degree that
can dominate all other vertices of V (Pn + Pm). In this case any two vertices in the graph form a regular
pendant dominating set also S must be a minimum because any regular pendant dominating set cannot
be a singleton set. Therefore γRsp(Pn + Pm) = 2
Case 2: If n ≤ m
In this case we create Table 1 to determine the regular pendant domination number as follows Conse-
quently, using the values from the above table as a generalisation, we have γRsp(Pn + Pm) = γRpe(Pk)
Where k is min (m,n).
Case 3: If n > m

Table 1: Regular pendant domination of Pn + Pm

S.No. Values of n Values of m γRsp(Pn + Pm)
1 n=4 m=5,6,7,... 2
2 n=5 m=6,7,8,... 3
3 n=6 m=7,8,9... 3
4 n=7 m=8,9,10,... 3
5 n=8 m= 9,10,11,... 4
6 n=9 m=10,11,12,... 4
7 n=10 m=11,12,13,... 4
8 n=11 m=12,13,14,... 5
9 n=12 m= 13,14,15,... 5
10 n=13 m=14,15,16,... 5
11 n=14 m=15,16,17,... 6
12 n=15 m=16,17,18,... 6

The proof is the same as in Case 2.
From the above two cases, we conclude that γRsp(Pn + Pm) = γRpe(Pk)
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Figure 6: Join of two graphs P3 + P3

Corollary 2.2 For m = 3 or n = 3 then γRpe(Pn + Pm) = 2

Proof 2.10 From figure it is obvious that deg(v1) = deg(v3) = deg(u1) = deg(u3) = 4 and deg(v2) =
deg(u2) = 5. A regular pendant dominating set of least cardinality can be formed here by taking the
vertices v2 and u2. Hence γRpe(P3 + P3) = 2.

Definition 2.6 Windmill graph Wm,n is an undirected graph constructed by joining m copies of complete
graph Kn with a common vertex K1. The figure of windmill graph for m = 3 and n = 4 is as below:

Figure 7. Windmill graph: W3,4

Theorem 2.12 For any windmill graph Wm,n with m ≥ 2 and n ≥ 3, γRpe(Wm,n) = n.

Proof 2.11 A windmill graph is formed by joining m copies of the complete graph Kn at a single common
vertex, and is denoted by the notation mKn+K1. It is clear that a regular pendant dominating set cannot
be formed using the common vertex v, as a regular pendant dominating set must include at least two
vertices. Every vertex in the m copies of the complete graph has a degree of n. Now, we must choose two
vertices from any one of the complete graph and at least one vertex from m− 1 copies of complete graph
in order to build a regular pendant dominating set. Therefore γRpe(Wm,n) = n

Theorem 2.13 Let G be a non-regular graph G of order n and H ba a complete graph Km on m vertices,
then γRpe(G ◦H) = n+ 1.
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Proof 2.12 Let G be a non-regular graph and {v1, v2, ...., vn} be its vertex set. According to the definition
of corona, there are n- copies of Km attached to each vertex G. Since G is a non regular graph, its vertex
does not form an regular pendant dominating set. Now, to construct the minimum regular pendant
dominating set of G ◦Km, select two vertices from any one copy of complete graph and one vertex from
n− 1 copies of Km. Therefore, γRpe(G ◦H) = n+ 1.

Theorem 2.14 Let Pn and Pm be two path graphs on n and m vertices respectively, then γRpe(Pn◦Pm) =
n× γRpe(Pm)

Proof 2.13 As we know that path graph on n vertices not a regular graph and deg(v1) = deg(vn) = m+1
and deg(vi) = m + 2 for 2 ≤ I ≤ n − 1. Its clear that either vertices of degree m + 1 or m + 2 are not
sufficient to form a regular pendant dominating set of Pn ◦ Pm. Now we another choice to form a
regular pendant dominating set with vertices of n copies of Pm. As we already prove that regular pendant
domination number of path graph so that we have to select regular pendant domination number of n copies
of Pm. Thus γRpe(Pn ◦ Pm) = n× γRpe(Pm).

Corollary 2.3

1. γRpe(Pn ◦ Pm) = 2 for n = 2 and m ∈ Z+.

2. γRpe(Pn ◦Km) = 2 for n = 2 and m ∈ Z+.

Theorem 2.15 Let G be a non- regular graph of order n and H be a complete graph Km on m vertices,
then γRpe(G ◦H) = n+ 1.

Proof 2.14 Let G be a non-regular graph and {v1, v2, v3, ..., vn} be its vertex set. According to the
definition of corona, there are n-copies of Km attached to each vertex G. Since G is a non-regular
graph, its vertex does not form an regular pendant dominating set. Now, to construct the regular pendant
dominating set of G◦Km of minimum cardinaltiy, select at least edge from any one of the complete graph
and select one vertex from n− 1 copies of Km. Therefore, γRpe(G ◦H) = n+ 1.

3. Application of Regular Pendant Domination

The concept of domination has its application in identifying minimum number of security guards to
guard a city. Also the pendant domination is about keeping at least one security guard assigned as a
back up. Identifying the minimum number of security guards needed to protect a city while assigning
each guard an equal amount of responsibilities (by allocating each guard an equal number of positions)
with at least one security guard assigned as a back up is the application of regular pendant domination.

4. Conclusion

Motivated by the concept of regular domination in fuzzy graph and regular domination in some special
graph described by Prabakaran et al. and Jyoti Rani etal. [14] we introduced concept of regular pendant
domination for simple graphs. Here, we determined the regular pendant domination number of several
graphs like complete graph, path graph, cycle graph. Further regular pendant domination number can
also be determined for specific graph operations such as join and corona of two graphs.
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