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Spectral Properties of Identity Graph for Group of Integers Modulo n using Degree-Based
Matrices ∗

Mamika Ujianita Romdhini

abstract: This paper investigates the spectral properties of the identity graph associated with the group
Zn, utilizing five degree-based matrices. Specifically, the study employs the maximum and minimum degree,
greatest common divisor, and first and second Zagreb matrices. For each case, the characteristic polynomial
and the corresponding graph energy are derived. Furthermore, a comparative analysis is conducted between
the computed energies and previously established results in the literature.
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1. Introduction

Most research on graphs defined on groups focuses on computing various parameters related to graph
theory. To identify interesting groups, we can use graphs to discover new information about them
and to put conditions on the various graphs defined within them. The process of finding properties
may also lead us to discover beautiful graphs [6]. Graph-theoretic methods have long been applied to
algebraic structures, especially groups, to extract structural and spectral properties through graphical
representations. Several studies have recently extended the analysis of graphs defined on groups to explore
new classes of graphs, such as co-prime order graphs, identity graphs, and divisor-related graphs, thereby
enriching the interplay between algebra and graph theory.

Kandasamy and Smarandache [9] first introduced the concept of identity graphs of groups, establishing
an important foundation for representing group elements and their relationships graphically. Subsequent
works have expanded this perspective by defining additional group-based graphs and studying their
topological and spectral parameters.

In particular, several recent contributions have examined the structure and genus of co-prime order
graphs, offering results closely related to identity and commuting graphs. For instance, Hao et al. [8]
analyzed the co-prime order graph of a group and established new characterizations of its connectivity
and clique number. Later, Li et al. [12] investigated finite groups whose co-prime order graphs have
positive genus, thus linking algebraic group properties with graph embeddings. Further algebraic labeling
properties were examined by Saini et al. [21], who introduced divisor labeling for co-prime order graphs
of finite groups. Related to these, Saini et al. [22] studied co-prime order graphs of finite abelian p-
groups, providing insights into their degree distribution and connectivity. A comprehensive overview
of graphs defined on groups in terms of element order has also been provided by [1,13], summarizing
major directions and applications in this growing field. These developments complement the current
investigation of identity graphs and their spectral properties. They collectively highlight the increasing
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importance of degree-based matrices and characteristic polynomials in understanding the underlying
algebraic and combinatorial structure of group-based graphs.

These developments complement the current investigation of identity graphs and their spectral prop-
erties. They collectively highlight the increasing importance of degree-based matrices and characteristic
polynomials in understanding the underlying algebraic and combinatorial structure of group-based graphs.
Traditionally, a graph is represented by its adjacency matrix; however, researchers have extended this
concept by defining new types of matrices derived from the degree of the graph. Adiga and Smitha [3]
discovered the definition of the maximum degree matrix, and one year later, Adiga and Swamy [4] defined
the minimum degree matrix of a graph. Then, in 2020, Romdhini and Nawawi [19] discussed these types
of graph matrices for commuting graphs that are defined on the dihedral groups. Moreover, researchers
also introduced several graph matrices, including the greatest common divisor degree matrix [15] and
first and second Zagreb matrices [14] as well as Zagreb index [2]. Romdhini and Nawawi [18] combined
these two matrices of commuting graphs for dihedral groups.

As the association of graph and matrix, Gutman [7] pioneered the definition of the energy of a graph
based on the eigenvalues of the matrix. Moreover, the exploration of the graph energy results in the
energy of a graph is never an odd integer [5]. This result is our baseline for further investigation in this
paper. In addition, we can see the justification of the energy value in [17]. The classification of the
energy value of the graph is also at our attention, as presented in [11]. The graph can be hyperenergetic
if it satisfies the particular requirement that will be explained in the next section.

Therefore, this inspires us to observe multiple graph energies employing distinct matrices, including
the maximum and minimum degree, greatest common divisor, and first and second Zagreb matrices for
the identity graph. This research focuses on a group of integers modulo n, Zn =

{
0, 1, 2, . . . , n− 1

}
. We

divided the analysis into two cases, odd n and even n.
We manage this paper as follows. In the second section of this paper, we present the basic definition

and notation that are useful for the next section. The goals of this research are achieved as presented
in the third section. We start with the simplified process of finding the determinant formula. Then, we
use this formula for investigating the energy of the identity graph for Zn for odd n and for formulating
the characteristic polynomial for even n. We eventually derive the conclusion of this research in the last
section.

2. Preliminaries

This section serves as a reminder of the fundamental definition and theorems that are valuable for
our primary findings. We begin by defining the identity graph.

Definition 2.1 [9] The identity graph of a group G, which is written as ΓG, is a graph with the
elements of the group as its vertices. Two different vertices u and v will be adjacent whenever
uv = e, and every element of G\{e} will be adjacent to the identity element e.
In this study, we refer to the identity graph of Zn as ΓZn

. The subsequent two theorems delineate
ΓZn for both odd and even values of n.

Theorem 2.1 [9] For Zn =
{
0, 1, 2, ..., n− 1

}
with n ≥ 3 and n is odd, then ΓZn

comprises n−1
2 of K3.

Theorem 2.2 [9] For Zn =
{
0, 1, 2, ..., n− 1

}
with n ≥ 2 and n is even, then ΓZn comprises n−2

2 of K3

and a K2.

Let dvi be the degree of vertex vi, which is the number of ΓZn
vertices that are adjacent to vi in ΓZn

. We
need the degree of every vertex in ΓZn

to make the matrices of ΓZn
.

Theorem 2.3 [20] In ΓZn
, if n is an odd integer, then

1. d0 = n− 1, and

2. da = 2, for a ̸= 0.

Theorem 2.4 [20] In ΓZn
, if n is an even integer, then
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1. d0 = n− 1,

2. dn
2
= 1, and

3. da = 2, for a ̸= 0, n
2 .

Upon the definition of the maximum degree, minimum degree, greatest common divisor degree, first
and second Zagreb matrices, the degree-based matrices of ΓZn . Here is how the definition goes.

Definition 2.2 [3] The maximum degree matrix of ΓZn
is MaxD(ΓZn

) = [maxdij ] in which (i, j)-th
entry is

maxdij =

{
max{dvi , dvj}, if vi, vj are adjacent
0, otherwise

Definition 2.3 [4] The minimum degree matrix of ΓZn is MinD(ΓZn) = [mindij ] in which (i, j)-th
entry is

mindij =

{
min{dvi , dvj}, if vi, vj are adjacent
0, otherwise.

Definition 2.4 [15] The greatest common divisor degree matrix of ΓZn
is GCDD(ΓZn

) = [gcdij ] in
which (i, j)-th entry is

gcdij =

{
g.c.d.{dvi , dvj}, if vi, vj are adjacent
0, otherwise.

Definition 2.5 [14] The first Zagreb matrix of ΓZn is Z1(ΓZn) = [z1ij ] in which (i, j)-th entry is

z1ij =

{
dvi + dvj , if vi, vj are adjacent
0, otherwise.

Definition 2.6 [14] The second Zagreb matrix of ΓZn
is Z2(ΓZn

) = [z2ij ] in which (i, j)-th entry

z2ij =

{
dvi · dvj , if vi, vj are adjacent
0, otherwise.

The characteristic formula of MaxD(ΓZn
) is defined as

PMaxD(ΓZn )(λ) = |λIn −MaxD(ΓZn
)| . (2.1)

The solution to the equation PMaxD(ΓZn )(λ) = 0 correspond to the eigenvalues of ΓZn . The definition
of graph energy is derived from the eigenvalues of ΓZn as seen below.

Definition 2.7 [7] The maximum degree energy of ΓZn
can be written by

EMaxD(ΓZn
) =

n∑
i=1

|λi| ,

where λ1, λ2, . . . , λn represent the eigenvalues of MaxD(ΓZn). The energy value of ΓZn is deemed
hyperenergetic if it exceeds 2(n− 1) [11].
The spectrum of ΓZn

corresponding with the maximum degree matrix is

SpecMaxD(ΓZn
) = {(λ1)

k1 , (λ2)
k2 , . . . , (λn)

kn},

where the multiplicities of the eigenvalues are denoted as k1, k2, . . . , kn. The spectral radius of ΓZn that
corresponds to the maximum degree matrix is

ρMaxD(ΓZn
) = max{|λ| : λ ∈ SpecMaxD(ΓZn

)}.

Similarly, the notation for other matrices can be utilized analogously.
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3. Main Results

To derive the determinant in Equation 2.1, we require the characteristic formula of a square matrix
M to facilitate the computation of the characteristic polynomial of ΓZn

.

Theorem 3.1 Let a, b are real numbers and M be an n× n matrix as follows:

M =



0 a a . . . a a
a 0 0 . . . 0 b
a 0 0 . . . b 0
...

...
...

. . .
...

...
a 0 b . . . 0 0
a b 0 . . . 0 0


.

Then the characteristic polynomial of M can be simplified as follows:

PM (λ) =
(
λ2 − bλ− a2(n− 1)

)
(λ− b)

n−3
2 (λ+ b)

n−1
2 .

Proof: Using Equation 2.1 for real numbers a, b, we obtain the characteristic formula of M as seen below.

PM (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −a −a . . . −a −a
−a λ 0 . . . 0 −b
−a 0 λ . . . −b 0
...

...
...

. . .
...

...
−a 0 −b . . . λ 0
−a −b 0 . . . 0 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Now let Ri and Ci be the i-th row and column of PM (λ), respectively. By employing subsequent row
and column operations, it is necessary to simplify the determinant above with the following steps:

1. Replace the
(
n+1
2 + 1

)
-th row with the result of subtracting the elements of that row from the

elements of the
(
n+3
2 − i

)
-th row; that is, perform the row operation: Rn+1

2 +1 −→ Rn+1
2 +i−Rn+3

2 −i,

for i = 1, 2, . . . , n−1
2 .

2. Replace the
(
n+3
2 − i

)
-th column with the result of the summation of the elements of that col-

umn and the elements of the
(
n+1
2 + i

)
-th column; in other words, perform the column operation:

Cn+3
2 −i −→ Cn+3

2 −i + Cn+1
2 +i, for i = 1, 2, . . . , n−1

2 .

3. Apply the following column operation: C1 −→ C1 +
a

λ−bC2 +
a

λ−bC3 + . . .+ a
λ−bCn+1

2
.

Hence PM (λ) is

PM (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− a2(n−1)
λ−2 −2a −2a . . . −2a −2a −a −a . . . −a −a

0 λ− b 0 . . . 0 0 0 0 . . . 0 −b
0 0 λ− b . . . 0 0 0 0 . . . −b 0
...

...
...

. . .
...

...
...

. . .
...

...
...

0 0 0 . . . λ− b 0 0 −b . . . 0 0
0 0 0 . . . 0 λ− b −b 0 . . . 0 0
0 0 0 . . . 0 0 λ+ b 0 . . . 0 0
0 0 0 . . . 0 0 0 λ+ b . . . 0 0
...

...
...

. . .
...

...
...

. . .
...

...
...

0 0 0 . . . 0 0 0 0 . . . λ+ b 0
0 0 0 . . . 0 0 0 0 . . . 0 λ+ b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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We see that, PM (λ) must be

PM (λ) =

(
λ− a2(n− 1)

λ− b

)
(λ− b)

n−1
2 (λ+ b)

n−1
2 =

(
λ2 − bλ− a2(n− 1)

)
(λ− b)

n−3
2 (λ+ b)

n−1
2 .

2

Theorem 3.2 Let

M =



0 a a . . . a c a . . . a a
a 0 0 . . . 0 0 0 . . . 0 b
a 0 0 . . . 0 0 0 . . . b 0
...

...
...

. . .
...

...
...

...
...

...
a 0 0 . . . 0 0 b . . . 0 0
c 0 0 . . . 0 0 0 . . . 0 0
a 0 0 . . . b 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
a 0 b . . . 0 0 0 . . . 0 0
a b 0 . . . 0 0 0 . . . 0 0


,

where a, b, c are real numbers. Then the characteristic polynomial of M can be simplified as follows:

PM (λ) = λ3 − bλ2 −
(
a2(n− 2) + c2

)
λ+ bc2.

Proof: By taking real numbers a, b, c and Equation 2.1, the characteristic formula of M is as follows.

PM (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −a −a . . . −a −c −a . . . −a −a
−a λ 0 . . . 0 0 0 . . . 0 −b
−a 0 λ . . . 0 0 0 . . . −b 0
...

...
...

. . .
...

...
...

. . .
...

...
−a 0 0 . . . λ 0 −b . . . 0 0
−c 0 0 . . . 0 λ 0 . . . 0 0
−a 0 0 . . . −b 0 λ . . . 0 0
...

...
...

. . .
...

...
...

. . .
...

...
−a 0 −b . . . 0 0 0 . . . λ 0
−a −b 0 . . . 0 0 0 . . . 0 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We have to make the above determinant easier through the application of row and column operations.

1. Replace the
(
n
2 + 1 + i

)
-th row with the result of subtracting the elements of that row from the

elements of the
(
n
2 + 1− i

)
-th row; that is, perform the row operation: Rn

2 +1+i −→ Rn
2 +1+i −

Rn
2 +1−i, for i = 1, 2, . . . , n

2 − 1.

2. Replace the
(
n
2 + 1− i

)
-th column with the result of the summation of the elements of that column

and the elements of the
(
n
2 + 1 + i

)
-th column; in other words, perform the column operation:

Cn
2 +1−i −→ Cn

2 +1−i + Cn
2 +1+i, for i = 1, 2, . . . , n

2 − 1.

3. Apply the following column operation: C1 −→ C1 +
a

λ−bC2 +
a

λ−bC3 + . . .+ a
λ−bCn

2 −1 +
c
λCn

2
.
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consequently, we may express PM (λ) as follows:

PM (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− a2(n−2)
λ−b − c2

λ −2a −2a . . . −2a −a −a . . . −a −a

0 λ− b 0 . . . 0 0 0 . . . 0 −b
0 0 λ− b . . . 0 0 0 . . . −b 0
...

...
...

. . .
...

...
...

. . .
...

...
0 0 0 . . . λ− b 0 −b . . . 0 0
0 0 0 . . . 0 λ 0 . . . 0 0
0 0 0 . . . 0 0 λ+ b . . . 0 0
...

...
...

. . .
...

...
...

. . .
...

...
0 0 0 . . . 0 0 0 . . . λ+ b 0
0 0 0 . . . 0 0 0 . . . 0 λ+ b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

It implies that

PM (λ) =

(
λ− a2(n− 2)

λ− b
− c2

λ

)
(λ− b)

n
2 −1λ(λ+ b)

n
2 −1

=
(
λ3 − bλ2 −

(
a2(n− 2) + c2

)
λ+ bc2

)
(λ− b)

n
2 −3(λ+ b)

n
2 −1.

2

3.1. The Energy of ΓZn for Odd n

In this section, we present the degree-based energy of ΓZn
for odd n.

Theorem 3.3 In ΓZn
for odd n, the maximum degree energy of ΓZn

is

EMaxD(ΓZn) = 2
(
n− 2 +

√
1 + (n− 1)3

)
.

Proof: Using Theorems 2.1 and 2.3 and following Definition 2.2, we may formulate an n× n maximum
degree matrix for ΓZn as outlined:

MaxD(ΓZn
) =

0 1 2 . . . n− 2 n− 1



0 0 n− 1 n− 1 . . . n− 1 n− 1
1 n− 1 0 0 . . . 0 2
2 n− 1 0 0 . . . 2 0
...

...
...

...
. . .

...
...

n− 2 n− 1 0 2 . . . 0 0
n− 1 n− 1 2 0 . . . 0 0

By applying Theorem 3.1 with a = n− 1 and b = 2, we obtain the following

PMaxD(ΓZn )(λ) =
(
λ2 − 2λ− (n− 1)3

)
(λ− 2)

n−3
2 (λ+ 2)

n−1
2 .

The solution of PMaxD(ΓZn )(λ) = 0 are λ1 = 2 of multiplicity n−3
2 , λ2 = −2 of multiplicity n−1

2 , and

λ3,4 = 1±
√
1 + (n− 1)3 both of multiplicity 1. As a result, the spectrum of ΓZn

is

SpecMaxD(ΓZn
) =

{(
1 +

√
1 + (n− 1)3

)1

, (2)
n−3
2 , (−2)

n−1
2 ,

(
1−

√
1 + (n− 1)3

)1
}
.

The spectral radius of ΓZn is obtained as follows.

ρMaxD(ΓZn
) = 1 +

√
1 + (n− 1)3.
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Therefore, the maximum degree energy of ΓZn
is as follows:

EMaxD(ΓZn) =

(
n− 3

2

)
|2|+

(
n− 1

2

)
| − 2|+

∣∣∣1±√
1 + (n− 1)3

∣∣∣
=2

(
n− 2 +

√
1 + (n− 1)3

)
.

2

Theorem 3.4 In ΓZn
for odd n, the minimum degree energy of ΓZn

is

EMinD(ΓZn
) = 2

(
n− 2 +

√
1 + 4(n− 1)

)
.

Proof: From the results of Theorems 2.1 and 2.3 and by Definition 2.3, we may formulate an n × n
minimum degree matrix of ΓZn as outlined:

MinD(ΓZn
) =

0 1 2 . . . n− 2 n− 1



0 0 2 2 . . . 2 2
1 2 0 0 . . . 0 2
2 2 0 0 . . . 2 0
...

...
...

...
. . .

...
...

n− 2 2 0 2 . . . 0 0
n− 1 2 2 0 . . . 0 0

By Theorem 3.1 with a = b = 2, consequently

PMinD(ΓZn )(λ) =
(
λ2 − 2λ− 4(n− 1)

)
(λ− 2)

n−3
2 (λ+ 2)

n−1
2 .

The solution of PMinD(ΓZn )(λ) = 0 are λ1 = 2 of multiplicity n−3
2 , λ2 = −2 of multiplicity n−1

2 , and

λ3,4 = 1±
√
1 + 4(n− 1) both of multiplicity 1.As a result, the spectrum of ΓZn

is

SpecMinD(ΓZn
) =

{(
1 +

√
1 + 4(n− 1)

)1

, (2)
n−3
2 , (−2)

n−1
2 ,

(
1−

√
1 + 4(n− 1)

)1
}
.

We obtain ΓZn
is

ρMinD(ΓZn
) = 1 +

√
1 + 4(n− 1).

Thus, the maximum degree energy of ΓZn is obtained below:

EMinD(ΓZn
) =

(
n− 3

2

)
|2|+

(
n− 1

2

)
| − 2|+

∣∣∣1±√
1 + 4(n− 1)

∣∣∣
=2

(
n− 2 +

√
1 + 4(n− 1)

)
.

2

Theorem 3.5 In ΓZn
for odd n, the greatest common divisor degree energy of ΓZn

is

EGCDD(ΓZn) = 2
(
2(n− 2) +

√
4 + (n+ 1)2(n− 1)

)
.
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Proof: Based on Theorems 2.1 and 2.3, we know that g.c.d.(n − 1, 2) = 2, g.c.d.(2, 2) = 2. By using
Definition 2.4, setting that an n× n greatest common divisor degree matrix of ΓZn as follows:

GCDD(ΓZn
) =

0 1 2 . . . n− 2 n− 1



0 0 2 2 . . . 2 2
1 2 0 0 . . . 0 2
2 2 0 0 . . . 2 0
...

...
...

...
. . .

...
...

n− 2 2 0 2 . . . 0 0
n− 1 2 2 0 . . . 0 0

= MinD(ΓZn
)

Therefore, based on Theorem 3.4, the greatest common divisor degree energy of ΓZn
is as follows:

EGCDD(ΓZn
) = 2

(
n− 2 +

√
1 + 4(n− 1)

)
.

2

Theorem 3.6 In ΓZn
for odd n, the first Zagreb energy of ΓZn

is

EZ1
(ΓZn

) = 2
(
n− 2 +

√
1 + 4(n− 1)

)
.

Proof: The n×n first Zagreb matrix of ΓZn
can be constructed by following Theorems 2.1 and 2.3, and

Definition 2.5. It is given below:

Z1(ΓZn
) =

0 1 2 . . . n− 2 n− 1



0 0 n+ 1 n+ 1 . . . n+ 1 n+ 1
1 n+ 1 0 0 . . . 0 4
2 n+ 1 0 0 . . . 4 0
...

...
...

...
. . .

...
...

n− 2 n+ 1 0 4 . . . 0 0
n− 1 n+ 1 4 0 . . . 0 0

By using Theorem 3.1 with a = n+ 1 and b = 4, hence,

PZ1(ΓZn )(λ) =
(
λ2 − 4λ− (n+ 1)2(n− 1)

)
(λ− 4)

n−3
2 (λ+ 4)

n−1
2 .

The solution of PZ1(ΓZn )(λ) = 0 are λ1 = 4 of multiplicity n−3
2 , λ2 = −4 of multiplicity n−1

2 , and

λ3,4 = 2±
√
4 + (n+ 1)2(n− 1) both of multiplicity 1. As a result, we have

SpecZ1
(ΓZn

) =

{(
2 +

√
4 + (n+ 1)2(n− 1)

)1

, (4)
n−3
2 , (−4)

n−1
2 ,

(
2−

√
4 + (n+ 1)2(n− 1)

)1
}
.

We get ΓZn
is

ρZ1
(ΓZn

) = 2 +
√

4 + (n+ 1)2(n− 1).

Therefore, the maximum degree energy of ΓZn
is as follows:

EZ1
(ΓZn

) =

(
n− 3

2

)
|4|+

(
n− 1

2

)
| − 4|+

∣∣∣2±√
4 + (n+ 1)2(n− 1)

∣∣∣
= 2

(
2(n− 2) +

√
4 + (n+ 1)2(n− 1)

)
.

2
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Theorem 3.7 In ΓZn
for odd n, the second Zagreb energy of ΓZn

is

EZ2
(ΓZn

) = 4
(
n− 2 +

√
1 + (n− 1)3

)
.

Proof: Using Definition 2.6 and Theorems 2.1 and 2.3, we have an n × n second Zagreb matrix of ΓZn

as follows:

Z2(ΓZn
) =

0 1 2 . . . n− 2 n− 1



0 0 2(n− 1) 2(n− 1) . . . 2(n− 1) 2(n− 1)
1 2(n− 1) 0 0 . . . 0 4
2 2(n− 1) 0 0 . . . 4 0
...

...
...

...
. . .

...
...

n− 2 2(n− 1) 0 4 . . . 0 0
n− 1 2(n− 1) 4 0 . . . 0 0

By takin a = 2(n− 1) and b = 4 in Theorem 3.1, then we get

PZ2(ΓZn )(λ) =
(
λ2 − 4λ− 4(n− 1)3

)
(λ− 4)

n−3
2 (λ+ 4)

n−1
2 .

The solution of PZ2(ΓZn )(λ) = 0 are λ1 = 4 of multiplicity n−3
2 , λ2 = −4 of multiplicity n−1

2 , and

λ3,4 = 2
(
1±

√
1 + (n− 1)3

)
both of multiplicity 1. Hence,

SpecZ2(ΓZn) =

{(
2
(
1 +

√
1 + (n− 1)3

))1

, (4)
n−3
2 , (−4)

n−1
2 ,

(
2
(
1−

√
1 + (n− 1)3

))1
}
.

We can see that

ρZ2(ΓZn) = 2
(
1 +

√
1 + (n− 1)3

)
.

Therefore,

EZ2
(ΓZn

) =

(
n− 3

2

)
|4|+

(
n− 1

2

)
| − 4|+

∣∣∣2(1±√
1 + (n− 1)3

)∣∣∣
=4

(
n− 2 +

√
1 + (n− 1)3

)
.

2

From Theorems 3.3, 3.4, 3.5, 3.6, and 3.7, we can conclude a statement as presented in below:

Corollary 3.1 For odd n, the energy of ΓZn
is never an odd integer based on MaxD(ΓZn

), MinD(ΓZn
),

GCDD(ΓZn), Z1(ΓZn), and Z2(ΓZn).

In comparing the obtained energies and the requirement of the hyperenergetic graph, an interesting
result is obtained.

Corollary 3.2 For odd n, ΓZn is always hyperenergetic based on MaxD(ΓZn), MinD(ΓZn), GCDD(ΓZn),
Z1(ΓZn), and Z2(ΓZn).

3.2. The Characteristic Polynomial of ΓZn for Even n

For even n, we show the characteristic formula of the identity graph for Zn based on five matrices.

Theorem 3.8 In ΓZn
for even n, the characteristic polynomial of MaxD(ΓZn

) is

PMaxD(ΓZn )(λ) =
(
λ3 − 2λ2 − (n− 1)3λ+ 2(n− 1)2

)
(λ− 2)

n
2 −3(λ+ 2)

n
2 −1.
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Proof: By taking Definition 2.2 and by Theorem 2.2 and 2.4, we have the maximum degree of ΓZn
for

even n as an n× n matrix as follows:

MaxD(ΓZn) =

0 1 2 . . . n
2 − 1 n

2
n
2 + 1 . . . n− 2 n− 1



0 0 n− 1 n− 1 . . . n− 1 n− 1 n− 1 . . . n− 1 n− 1
1 n− 1 0 0 . . . 0 0 0 . . . 0 2
2 n− 1 0 0 . . . 0 0 0 . . . 2 0
...

...
...

...
. . .

...
...

...
...

...
...

n
2 − 1 n− 1 0 0 . . . 0 0 2 . . . 0 0

n
2 n− 1 0 0 . . . 0 0 0 . . . 0 0

n
2 + 1 n− 1 0 0 . . . 2 0 0 . . . 0 0
...

...
...

...
. . .

...
...

...
...

...
...

n− 2 n− 1 0 2 . . . 0 0 0 . . . 0 0
n− 1 n− 1 2 0 . . . 0 0 0 . . . 0 0

.

By taking Theorem 3.2 with a = n−1 and b = c = 2, it is possible to formulate the subsequent expression:

PMaxD(ΓZn )(λ) =
(
λ3 − 2λ2 − (n− 1)3λ+ 2(n− 1)2

)
(λ− 2)

n
2 −3(λ+ 2)

n
2 −1.

2

Theorem 3.9 In ΓZn
for even n, the characteristic formula of MinD(ΓZn

) is

PMinD(ΓZn )(λ) =
(
λ3 − 2λ2 −

(
(n− 2)(n− 1)2 + 1

)
λ+ 2

)
(λ− 2)

n
2 −3(λ+ 2)

n
2 −1.

Proof: By Defintion 2.3 and from the vertex degree of Theorem 2.4 and graph form of Theorem 2.2, we
can cosntruct the minimum degree of ΓZn

for even n as an n× n matrix as follows:

MinD(ΓZn
) =

0 1 2 . . . n
2 − 1 n

2
n
2 + 1 . . . n− 2 n− 1



0 0 2 2 . . . 2 1 2 . . . 2 2
1 2 0 0 . . . 0 0 0 . . . 0 2
2 2 0 0 . . . 0 0 0 . . . 2 0
...

...
...

...
. . .

...
...

...
...

...
...

n
2 − 1 2 0 0 . . . 0 0 2 . . . 0 0

n
2 1 0 0 . . . 0 0 0 . . . 0 0

n
2 + 1 2 0 0 . . . 2 0 0 . . . 0 0
...

...
...

...
. . .

...
...

...
...

...
...

n− 2 2 0 2 . . . 0 0 0 . . . 0 0
n− 1 2 2 0 . . . 0 0 0 . . . 0 0

.

Theorem 3.2 with a = n− 1, b = 2, and c = 1 implies

PMinD(ΓZn )(λ) =
(
λ3 − 2λ2 −

(
(n− 2)(n− 1)2 + 1

)
λ+ 2

)
(λ− 2)

n
2 −3(λ+ 2)

n
2 −1.

2

Theorem 3.10 In ΓZn
, for even n, the characteristic polynomial of GCDD(ΓZn

) is

PGCDD(ΓZn )(λ) =
(
λ3 − 2λ2 − (n− 1)λ+ 2

)
(λ− 2)

n
2 −3(λ+ 2)

n
2 −1.
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Proof: From Definition 2.4 and according Theorem 2.2 and the degree of every vertex in Theorem 2.4,
we have GCDD-matrix of ΓZn for even n as an n× n matrix as follows:

GCDD(ΓZn
) =

0 1 2 . . . n
2 − 1 n

2
n
2 + 1 . . . n− 2 n− 1



0 0 1 1 . . . 1 1 1 . . . 1 1
1 1 0 0 . . . 0 0 0 . . . 0 2
2 1 0 0 . . . 0 0 0 . . . 2 0
...

...
...

...
. . .

...
...

...
...

...
...

n
2 − 1 1 0 0 . . . 0 0 2 . . . 0 0

n
2 1 0 0 . . . 0 0 0 . . . 0 0

n
2 + 1 1 0 0 . . . 2 0 0 . . . 0 0
...

...
...

...
. . .

...
...

...
...

...
...

n− 2 1 0 2 . . . 0 0 0 . . . 0 0
n− 1 1 2 0 . . . 0 0 0 . . . 0 0

.

As a result Theorem 3.2 with a = c = 1 and b = 2, it is possible to formulate the subsequent expression:

PGCDD(ΓZn )(λ) =
(
λ3 − 2λ2 − (n− 1)λ+ 2

)
(λ− 2)

n
2 −3(λ+ 2)

n
2 −1.

2

Theorem 3.11 In ΓZn for even n, the characteristic polynomial of Z1(ΓZn) is

PZ1(ΓZn )(λ) =
(
λ3 − 4λ2 −

(
(n− 2)(n+ 1)2 + n2

)
λ+ 4n2

)
(λ− 4)

n
2 −3(λ+ 4)

n
2 −1.

Proof: By Definition 2.3, and following Theorems 2.2 and 2.4, we get the first Zagreb matrix of ΓZn
for

even n as an n× n matrix as follows:

Z1(ΓZn
) =

0 1 2 . . . n
2 − 1 n

2
n
2 + 1 . . . n− 2 n− 1



0 0 n+ 1 n+ 1 . . . n+ 1 n n+ 1 . . . n+ 1 n+ 1
1 n+ 1 0 0 . . . 0 0 0 . . . 0 4
2 n+ 1 0 0 . . . 0 0 0 . . . 4 0
...

...
...

...
. . .

...
...

...
...

...
...

n
2 − 1 n+ 1 0 0 . . . 0 0 4 . . . 0 0

n
2 n 0 0 . . . 0 0 0 . . . 0 0

n
2 + 1 n+ 1 0 0 . . . 4 0 0 . . . 0 0
...

...
...

...
. . .

...
...

...
...

...
...

n− 2 n+ 1 0 4 . . . 0 0 0 . . . 0 0
n− 1 n+ 1 4 0 . . . 0 0 0 . . . 0 0

.

Theorem 3.2 with a = n+ 1, b = 4, and c = n implies

PZ1(ΓZn )(λ) =
(
λ3 − 4λ2 −

(
(n− 2)(n+ 1)2 + n2

)
λ+ 4n2

)
(λ− 4)

n
2 −3(λ+ 4)

n
2 −1.

2

Theorem 3.12 In ΓZn
, the characteristic formula of Z2(ΓZn

) for even n is

PZ2(ΓZn )(λ) =
(
λ3 − 4λ2 − (4n− 7)(n− 1)2)λ+ 4(n− 1)2

)
(λ− 4)

n
2 −3(λ+ 4)

n
2 −1.
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Proof: Based on Theorems 2.2 and 2.4, and following Definition 2.6, we have the second Zagreb matrix
of ΓZn

for even n as an n× n matrix as follows:

Z2(ΓZn ) =

0 1 2 . . . n
2
− 1 n

2
n
2
+ 1 . . . n− 2 n− 1



0 0 2(n− 1) 2(n− 1) . . . 2(n− 1) n− 1 2(n− 1) . . . 2(n− 1) 2(n− 1)
1 2(n− 1) 0 0 . . . 0 0 0 . . . 0 4
2 2(n− 1) 0 0 . . . 0 0 0 . . . 4 0
...

...
...

...
. . .

...
...

...
...

...
...

n
2
− 1 2(n− 1) 0 0 . . . 0 0 4 . . . 0 0
n
2

n− 1 0 0 . . . 0 0 0 . . . 0 0
n
2
+ 1 2(n− 1) 0 0 . . . 4 0 0 . . . 0 0

...
...

...
...

. . .
...

...
...

...
...

...
n− 2 2(n− 1) 0 4 . . . 0 0 0 . . . 0 0
n− 1 2(n− 1) 4 0 . . . 0 0 0 . . . 0 0

.

Theorem 3.2 with a = 2(n− 1), b = 4, and c = n− 1 implies

PZ2(ΓZn )(λ) =
(
λ3 − 4λ2 − (4n− 7)(n− 1)2)λ+ 4(n− 1)2

)
(λ− 4)

n
2 −3(λ+ 4)

n
2 −1.

2

4. Conclusions

This research has presented the energy of the identity graph for Zn for odd n and the characteristic
polynomial for even n corresponding with five degree-based matrices. We highlight that the obtained
energies are hyperenergetic and are never an odd integer. In the future, it is possible to find the degree-
based energy of the identity graph for Zn for even n.
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