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ABSTRACT: Graph theory is a dynamic tool for designing and modeling of an interconnection system by
a network/graph. The processor nodes behave as the vertices and the connections between them behave
as edges of such graph. The best use of system is decided by its topology. To characterize the topological
aspects of underlying interconnection networks or graphs one of the most studied graph invariant is atom bomb
connectivity index. To define new networks of our own choice the transformation of graph is an important tool.
In this paper we will talk about the transformed family of graphs or networks. Let €2 be the connected graph
of n vertices and Qﬁ’l be made up by attaching the the k number of pendent paths with the fully connected
vertices of the graph Q. By applying the transformations A, and AE; 0<a<l—-20<<k—1 we get
the transformed graphs Aa(Q’fL‘l) and Ag(QlfL‘Z) respectively. In this paper we derive new inequalities for the
graph family Q%! and transformed graphs Aq (Q’le) and A2 (Q’f;l) which involves ABC(2). The existence
of ABC(Q2) made the inequalities more general than all formerly defined for ABC index. Additionally, we
characterize extremal graphs which make the inequalities compact.

Keywords: Atom bond connectivity index, extremal graph, networks, equivalence classes, graph
invariants, transformed graphs, pendent paths.

Contents
1 Introduction 1
2 Title Material 2
3 Graph Transformations 5
4 Conclusion 11

1. Introduction

The advancement in technology mainly networking, computer, biological and electrical networks made
practicable the accurate data transfer within very small duration. The Internet, social media, biological,
ecological and neural networks are few examples of such networks. Telecommunications based on inter-
connection networks are used to share data files. Similarly, data exchange using computing devices also
based on computer network through data linkage; optical fiber cable (OFC) and wireless media such as
Wi-Fi. Different algorithms used for directing, arranging/determining numerical calculations and image
processing. Multiprocessor interconnection networks (MIN’s) are used to design powerful microprocessors
and memory chips [1,2].

Graph theory provides a fundamental tool for designing and analyzing such networks. Intuitively the
interconnection system modified by graph with processor nodes behave as vertices and connection be-
tween them behave as edges of that graph. Graph theory and interconnection networks give a exhaustive
understanding of these interrelated topics via their topology. The topology of a graph give information
about the fashion by which vertices attached in the graph. The topological indices are graph invariants
used to study the graph’s topology . Apart from computer networks graph theory regards as a powerful
tool in different areas of research, like in database management system, circuit design, secret sharing
schemes, coding theory and theoretical chemistry [3]. The topological descriptors of various intercon-
nection networks previously computed in [4,5,6]. Along with inter-connection networks, these invariants
are equally important in Chemical graph theory which deals with problems in chemistry using associated
graph of chemical compounds [7].
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The study of underlying substance using their graph with the help of graph invariants play an im-
portant role in chem-informatics, materials science, pharmaceutical sciences, engineering and so forth
[8]. Among theoretical molecular descriptors, topological indices have an affect in chemistry due to the
prediction of physio-chemical properties of that substance. Its role in QSPR/QSAR analysis to model
physical and chemical properties of molecules is also remarkable [9,10,11]. Actually, topological indices
are designed on the ground of transformation which associates a numeric value with the graph which
characterizes its topology [12]. In 1947 Harold Wiener proposed first topological index given the name as
Wiener index [13].It gives best connection with the boiling points of alkanes. The discovery of Winner
index provides emerging research platform to the research community. Interest to maximize the accuracy
in prediction of physio-chemical properties with practical results in Quantitative Structure property rela-
tionship (QSPR) analysis encouraged to define a large class of topological indices. For the first time, an
index defined on the base of the degrees of end vertices edges by Milan Randi¢ named Randi¢ connectivity
index [14], as

i Z vV degudegv

wweE(Q)

Due to this reason, it attains a great attraction of the researchers till now. In 1998 Estrada et al. [15]
introduced Atom Bomb Connectivity index

ds + dt - 2
AB
c Z ©dydy sdy
steE(G

The ABC index has excellent correlation with the heat of formation of alkanes [16,17]. Star graph among
trees and complete graph in general for fixed number of vertices has maximal value of index. Bounds
and extremal characterization of ABC index for underlying families of graphs studied at some extent in
[18,19,20].It encouraged us to study ABC index for Q! and transformed graphs A, (2%!) and AZ(QF1)
under the fact of transformations A, and A2; 0 < a <1—-20 < 8 < k — 1 respectively as recently
Muhammad Asif et al. [26] derived the bonds and extermal characterization of graphs and transformed
graphs for GA index. We characterize extremal graphs for all of these families of graphs.

2. Title Material

Through out this work, let graph QF comprises with n-vertex simple connected graph § along with
k pendent paths of length [ > 2 attached with v € Q having degree d,, > 1.The order of Q! is n + kI,
size m + kl and degy = 0 < dega < degs < ... < Aq + 1 be its degree sequence.

Let graph Q = Q(V, E) with degree of vertex u € Q, dg < d, < Ag and dg < d, < Ag + 1 be the
degree of v € Q%! . For validity of our proved results we defined following list of useful graphs.
Type-I: Let dq < d, < Ag where u € V(Q). QF! of type-I obtained by attaching pendent paths of
length [ with vertices of degree d,, = Aq in such a way that the vertices with pendent path are adjacent
to the vertices with out pendent paths.

The graph of type-I shown in figure 1.
Type-II: QF ! of type-II is the graph of type-I with pendent path attached to all vertices.

The graph of type-1I shown in figure 2.

Theorem 2.1 let graph QF! comprises with n-vertex simple connected graph Q along with k pendent
paths of length | > 2 attached with v € Q of degree d,,, mazimum degree Aq + 1 and minimum dq. Then

ABC(QZJ) > kAQ \/i(AQ‘f'l)l“v‘\/iAé o 5Q+AQ_2
2 Aq(Aqg +1) V' 0dg

+ ABC(Q).
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Figure 2: Graph QF! of type-II

Equality holds for graphs of type-II. and

L-‘—AQ 725071—679\/2AQ—2

+ ABC(Q).
V2 da@ary Ao ()

ABC(QF) <k

Equality holds for graph of type-1.

Proof: let a simple graph € of order n, Size m, maximum degree A and minimum dq, . Q%! be the graph
formed by k number of paths having length [ pendent at distinct vertices u € €2 such that 1 < d, < Agq.

The Atom Bomb Connectivity index of any graph € is

ds +di — 2

ABC(Q) = i

steE(Q)

The construction of Q! | > 2 implies |E(QF!)| = m + kl and for st € E(QFY) (dg + dy) € {3,4,d, +
2,dy +dy,dy +d, + 1}. The edge set of QF! partitioned as Az = {st € Q%! 1 d, =1,d, =2}, Ay = {st €
Qﬁ’l tds =dy = 2},Adu+2 = {St S Qﬁ’l tds =dy + 1,59 <d, < Aﬂ,dt = 2}3Adu+d,, = {St S Q]fL’l 100 <
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ds = du,dt =d, < AQ} and Ad“,—o—d,,—i-l = {St S Q?L’l : 59 <ds; = du,dt =d, + ].,dl, < AQ}

dy, +d ds +di —2
kdy __ t — t
ABC(QFY = \ id, Z V" i,

st are edges of st are edges
pendent paths of Q
ds +dy — ds +di — ds+dy —2
ABC(OQF) = Y T+ D> T+ D (2.1)
stEAs dsdy stEA, dsdy StEAq, 12 ddy
V d sdt V d sdt
étEAdu+dy+1 steAdqudv

The construction of (%) implies that the cardinality of As is k i.e|A3| = k,|A4] = k(I — 2) ,
|Ady+2l =k, [Ady+d,+1] < kAq and |Ag, 44, < kAg. The function f(z) = y/2t2Z=2 is deceasing, where
a < z is a constant . So, for dqg minimum degree of vertices of 2 and maximum degree A , we have,

2+4ds+1-2 (Ap+D)+(Ap+1)— ds+1+di—2 ds+di—2 _ Agk [da+Ag—2
\ T2 A1) \/57 (AotD(Aa+1) 2 < (dot1)dy and d..d; > ABC(Q) 2 s0ho

From equation 2.1 we have

k k(l—2) k kAgV2Aq kAq [dg+ Aq—2
ABC(QFY) > — 4 +—+———— +ABC(Q) — 1/ :
@5 = V2 V2 V2 2(Aq+1) @) 2 dolAq

after simplification we get,

kAo [V2(Aa + DI+ V2AE [0+ A -2
ABC(Q) > o _ et 2e 2L ABom). 2.2

. 24d.+1-2 1 ds+1+di—2 do+(0o+1)—2 ds+di—2
Now, again set /555 = 5 5 /S < \/ a0t and Dgea, L. Ld, o =

ABC(Q2) — kAq,/ AQAJriAA‘ZQ by the characteristics of f(z) = 4/ %‘;2 in equation 2.1 , we get following

inequality.

X k k(l — 2) 200 — 1 kéq
ABC(QFY < +kAqy |~ + ABC(Q) — ——+/2Aq — 2.
O8) < 5T+ g e R+ ABCE) VI
after simplification we get,
ABC() <k |—&=+4+ Aqy| ———— — —+/2Aq — 2| + ABC(Q). (2.3)
V2 59(5Q+1) CAg
The inequalities 2.2 and 2.3 completes the proof. O

The 2.1 shows generalization of the above defined inequalities. One can get more inequalities of their
desire by replacing ABC(Q)) with already defined bonds of ABC index.

Corollary 2.1 let graph Q%! comprises with n-vertex simple connected graph 0 along with k pendent
paths of length | > 2 attached with v € Q of degree d,,, mazimum degree Aq + 1 and minimum dq. Then

ABC(QﬁJ) > kAQ \/i(AQ‘f'l)l“v‘\/iAQ o 5Q+AQ_2 +m
2 Aq(Aq +1) V' d0dg

V2Aq —2
Aq
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tm oo+ Aqg —2
V AT

Equality holds for reqular graph of the type-I1

-1
ABC(QF < k % b Ag | Pazl o pRoT

SoGat1) Aa

Equality holds for reqular graph of the type-1I.

Proof: Using results of theorem 2.1 and Inequality regarding ABC index proved in as,

mY222 =2 4 poiq) < [l B0 =2
Aq doAq

we get desired results.

3. Graph Transformations

Let H(Q?) C E(), the Q' = Q — H be the new graph generated by removing set edges of H(Q) and
Q" = Q —V1(Q) be the new graph generated by deleting set of vertices V1(Q) C V() . We use following
transformations as used in [25]. These transformations have solid effect over ABC of QFl.

Transformation A:
Let wj € V(Q),dy, > 1 for 1 < j <k < n and paths pendent at w; of the form {wju]l,u}u?7u?u§?,
1-1,1

u Uj

ooy U } comprises QX! . Then

- Uy j

k k
k1Y — okl 2,3 3.4 1-11 2 23 -1 1
AQ) = Q0 — E {ujuy, wjuj..., u; uj}—l—g {wjug, ujug, ..., uj u;
=1

j=1

The transformation A shown in figure 3.

Figure 3: figure
Transformation A

In theorem 3.1 we discuss the effect of transformation A over ABC index.

Theorem 3.1 let graph QF! comprises with n-vertex simple connected graph Q along with k pendent
paths of length | > 2 attached with v € Q of degree d, > 2, mazimum degree of v € Q%! is Aqg + 1 and
minimum 0q. Then
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kAq
- 2

kAq [Aq+6g—2
5 A/ Aodg + ABC(9Q).

Equality hold for all graphs of type-II.

V2(8q +a+1)(1 — o)+ ay/(Ag + @) (Ag + a+ 1) + Agy/2(Aq + @)

ABC(Aa(@31)) Ag(Ag +a+1)

_ - -
ABC(AL(QH) < k[l a+a\/59(5g+a)+AQ\/(25Q+a ) d0v2Bq -2 + ABO(Q),

- \/E (59(69 + o+ 1) Agq
Equality holds for all graphs of the type-1.

Proof: let a simple graph Q of order n, Size m, minimum degree dq and maximum Ag . Q! be the
graph formed by k number of paths of length [ pendent at distinct fully connected vertices of 2. The
Atom bomb connectivity index of any graph € is

ds+dy —2

ABC(Q) = T

steE(G)
The construction of QF! 1 > 2 implies |E(QF!)| = m+kl. After successive applications of transformation

Aas Aq, o < 1—1 the edge set of A () partitioned as By, 4 q,)(Aa(QE1), (ds +dy) € {3,4,du+a +
2,dy +a+3,dy +dy,dy +a+14+d,}.

E3(Aq QM) = {steQbl:d,=1,d, =2}
Ey(A QM) = {steQbl:.d,=d, =2}
Ey var2(Aa(QFD) = ({stec QP 6q<dy=dy+a+1,d, <Ag,d; =1}
Ei,tar3(Aa(QE)) = {steQFl:6g <d,=d, +a+1,d, < Aq,d; =2}
Eg rar1(Aa(QF)) = {steQFl.6q <d,=dy+a,d, < Ag,d;, =1}
Eg,1a,(Aa(QF)) = (st e Q8 6g <d, =dy,d; = d, < Aq}
Ei varird, (Aa(QFD)) = {stc QP 6q <d,,d, < Aq,ds =dy, +a+1,d; =d,}.
ds + dy — 2
ABC(An(T3Y) = > 3 Vodd (3.1)

kL ;
Elacgstdegy) (Aa(l)) E éteA Tk
CE(AL(TE1) (degs+degy) (Aa(T7"))

The cardinality of Az is k i.¢| E3(Aq ()| = &, |E4(Aa (5| = k(I—a—2) , |Eq, tas2(Aa(QED)] =
ka and |Eg, 1a+3(Aa(Q51))| = k. The function f(z) = y/%t2=2 is deceasing, where a < x is a constant .
So, for §p minimum degree of 2 and Ag maximum, for any graph %711":&_)2 = % . % >

1+Ag+a+1—2 (Ag+a+1)+(Ag+a+1)—2 (ds+a+1)+di—2 ds+di—2
\/ vyl \/ (BatarD@atatl) = @rarnd 0 Dgca, .\ Tad, - = ABCQ) -

’CAT“, / %. Substituting these changes in equation 3.1, we have following inequality

ABC(Aa(Q31) =

ko ki-a-2) l4Agtati-2 k.
V2 V2 1(Ag+a+1) V2

kAq (AQ+(1+1)+(AQ+Q—|—1)—2 kAo [Aq+da —2
ABC(Q2) — 1/ .




AN APPROACH TO THE ATOMIC BOND CONNECTIVITY INDEX FOR GRAPHS UNDER... 7

after simplification, we get required result

kAo [ V2(Aa+a+1)(1—a)+ay/(Ag + a)(Aq +a+1) + Aay/2(Aq + ) 59
2 Aq(Ao+a+1) ~3.2)

kAq Aq +0q — 2
S A HABO(Q). (3.3)

24ds+1+a—2 1+ds+1+a—2 1+dg0+a+1-—2
f —

ABO(Aa() =

Now, again from equation 3.1 and inequalities SdoFTta) ot 1ta) T0atatD) °

(60)+ (0 tatl)_2 (dotatl)td;—2 dotd,—2 )
Ga)0atath) Z\/ @oraind 0 Xgen,, o, \ Tad, . S ABCQ) — 35 V24¢

k k(lfa72) 1+6g+a+1-2 k (59)+(5Q+OZ+1)72
ABC(Aa(QF)y < o Blza=2) g LokA
(Aa (7)) NG V2 + 1(0o +a+1) * ﬂ+ (60)(0a + o+ 1)

+ ABC@) - F2 AR, 3.

After simplification we get,

ABC(AQ(QZ’Z)) < & +CM\/(SQ((SQ+OC)+AQ\/(25Q+OC_1)_(5Q\/2AQ—2 + ABC(®)4)
V2 500 +a+1) Ag
The equations 3.2 and 3.4 completes the proof. a

Transformation B:
Let w; € V(Q),dy;, > 1for 1 < j <k < n and paths pendent at w; of the form {w]uj,u}u?,ufu?,
e ué ! l} comprises Q! . Then for fixed vertex w;

kly W=l 1,2 3 -1, 1
B(Q2) = {u uj7uju],. U }+{w1uj7uju],ujuj,. BUG U

The transformation B shown in figure 4.

Figure 4: figure
Transformation B for fixed vertex w;
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Figure 5: figure
Transformation Ag

Transformation A?

Let 0 < a<l—1and 0 < B < k—1. The transformation A'g is the composition of successive
applications of transformation A and B as A, and Bpg respectively [25].

In theorem 3.2 we discuss the effect of transformation A% over ABC index.

Theorem 3.2 let graph QF! comprises with n-vertex simple connected graph Q along with k pendent
paths of length | > 2 attached with v € Q of degree d,, mazimum degree of v € Q& is Ag + 1 and
minimum 0q. Then

5 (! (k—ﬂ—wm( An> !
ABC(AQ(Qn )) 2 AQ+04+1 a AQ—’_OZ—’_l—’_\/§ +2\/AQ+(0¢+1)(ﬂ+1)

Ag\28q + (@+ )(B+1) — 2)

<2a(ﬁ+1)\/AQ+(a+1)(ﬂ+1)1+ N/ETES

k(l—a) 7AQ(IC—6) Aq + g —2
T [P+ ABO(®)

Equality holds for graph of the type-II with « = « and § = 0.

k—B8-1) 200 +a—1
ABC(AB (QF1 <(7 aVéag+a+Agy | —————
( a( n )) = 6Q+a+1 Q Q 69

1
+ Via+(a+D)(B+1) (a(5+1)\/59+(a+1)(5+1)1+AQ\/

k(l —a)  da(k—B)
Sy V2(Ag — 1) + ABC(9).

Equality holds for graph of the type-I with o = o and 8 = 0.

2060+ (a+1)(B+1) —2
19

Proof: let a simple graph  of order n, Size m, minimum degree dg and maximum Ag . Q! be the
graph formed by k& number of paths of length [ pendent at distinct fully connected vertices of €2. The
Atom Bomb Connectivity index of any graph 2 is
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ds +dy —2

ABC(Q) = i

steE(G)

The construction of QF! 1 > 2 implies |E(Q5!)| = m + kl . Let u* be the fixed vertex. Applications of
transformation A5 has an effect over the edge set partition as E(y_1q4,) (A5 (1), (ds+dy) € {3,4,du+a+
2,dy+a+3,dy+dy, dy+at14dy,, dy+(B4+1) (a+1) +dy, dy= +(B+1) (+1)+1,dy +(B+1) (a+1)+2}.

Es(AB(QRh)) = {steQFl:d,=1,d, =2}
Ey(AB(QRh)) = {steQbl:d, =d, =2}
Eg tar2(APQFY) = (ste QP 6g<di=dy+a+1,d, <Aq,d;, =1}
Eg, tars(ABQFY)) = {steQFl:6g <d,=d,+a+1,d, < Aq,d; =2}
By, va,(AB(QFY)) = {steQbl:.6q <d,=dy di =d, < Ag}
Eaq, vatira, (AZQFY) = (st QM 6q <d, =di,dy < Aq,ds =dy +a+1}
Ege+(84+1) (a4, (AR(QD) = {st e Qp': 00 <dy =dy,dy < Ag,ds = dy + (B+1)
(a+1)}
Eq,.+(8+1)(at1)+1(ASQED)) = {st e Qb 6g < dy,dy < Aq,ds =dy + (B+1)(a+1)
. dy=1}
(D) 2(ALD) = {st e Qp' i 0o <dy,dy < Ag,ds =dy + (B+1)(a +1)
. dy =2}
ABC(A,(QF)) = ds +di —2 35
(Aa()) - )%IB(M 2 d.d, (3.5)
CE(AP (o)) Blasran (ALQ)
The cardinality of E3 is k i.e|E3(A'§(QfL7l))| k| Eg(AB(QEN)) | = k(I—a—2) , |Eq, +ara(AZ(QED)] =
alk -6 —1), |Edu+a+3(Ag<Qﬁ’l))| =k-B-1,|Eq *+(6+1)(a+1)+1(14§(92’l))| = a(f+1) and

|Edye +(841)(at1) +2(Aﬁ( M =8+1

The function f(z) =/ ‘”‘x 2 is deceasing, where a < z is a constant . So, for g minimum degree of
Q and
. 2+(ds+a+1)—2 1+(Ag+a+1)—2 di+(ds+a+1)
Aq maximum, we have, 4/ ICR +O;t+1) f \/ 1(A%+0;+1) < \/ ;t(ds+aa+1) ,
\/2+<ds+(a+1)<ﬂ+1)) 2 _ \/1+(d s+ (et D(BHD)=2 5 \/1+(Asz+(a+1)(5+1))*2 BAgtotD)+Ag+(at+1)(+1)—2
2(ds+(a+1)(B+1)) \/5 ’ 1(d5+(a+1)(5+1)) 1(Aq+(a+1)(B+1)) (Ag+a+)(Ag+(at+1)(B+1)) —

(di+a+1)(ds+(at+1)(8+1))—2
(de+a+1)(ds+(a+1)(B+1))

ds +d¢ — 2 Aq(r—p— A 1 A 1) —2 Aq +6g —2
) \/T > ABO(Q) 4 22k (Ag+ta+1)+(Ag+a+1) ~ Ao(k—B) atdo—2
stehy 1 dsdy 2 (Ag+a+1)(Ag +a+1) Aado

Substituting these changes in equation 3.5, we got the following inequality,

and
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ABC(AL () = % + K 7‘5_ 2k _ji_ L a8 1)\/1 *f@‘;iﬁilff -
1+ (Ag+ (a+1)(B+1)—2  B+1  Aqgk—p—-1)
* O‘(5+1)\/ 1(AQQ+(a+1)(B+1)) Vo 2
(Ao+a+1D)+(Ao+a+1)—2 Ag [(Aata+1)+(Aa+(a+1)(B+1) -2
(Ag+a+1)(Ag+a+1) 2 (Ag+a+1)(Ag+ (a+1)(B+1))

Aok —B) [Ag+ o0 —2
+ ABC(9Q) — ”(2 ),/ “Aggzz

after simplification, we get required result

ABo(Asktyy > K P DvBata
arn - Ag+a+1

Aq 1
A 20 (3
(a otatd +\f)+2¢AQ+ LS

Aov28q+ (a+1)(B+1) —2
\/AQ+O{+1

( B+D)VAg+(a+1D)(B+1) -1+

Kl-a) Aqlk—B) [Agtdq—2
=% 5/ As TABC()

Now, again Substituting the following inequalities in equation 3.5,

2+ (ds+a+1)—2 1+ (bo+a+1) —2> 1+ (ds+a+1)
2(ds +a+1) f 10 +a+1) - I(ds +a+1)
2+ (ds+ (a+1)(B+1)—2 1+ (d a+1)( D)-2_ [1+0o+(a+1)(B+1)) -2
’ 2(ds + (a+1)(8+1)) f d +@+D(B+1)  ~ 1(0a + (e +1)(B+1))

So+(a+ DB+ +da—2_ [dit(at+D(B+1)+di—2
’ ba(do+ (a+1)(B+1) — (ds+ (a+1)(B+1))de

ds + di — do+ (do+a+1)—2 Aqg+ Aqg —2
S e < up A ok — )y 2 .
d.d; ClY + Aaw-s- 1>¢ 3000 + o +1) alk =0\ =X Aq

StEAG, 1d,

We get,

V2 V2 V2 1(6g +a+1)

1+ 0o+ (@+1)(B+1)—-2 B+1
+C““””\/ ot @I DG+)) V3

So+ (bo+a+1)—2 do+ (bo+ (a+1)(B+1)) —
* AQUC—B—”\/ Salda + o+ 1) +AQ\/ balba + (a +1)(5 + 1)

Ao+ Ap =2
+ ABC(Q)—&g(k—B),/%.

ABO(AZ(Q") < k+k(la2)+kﬂ1+a(k51)\/1+(59+0‘+1)2
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after simplification, we get required result

ABC(AP (QF)) < \(/%% (om/(SQ T o+ Mgy 25”;;”) (3.7)

200+ (a+1)(B+1) —2
93

1
+ Viat@+D(B+1) <a(ﬁ+1)\/5g+(a+1)(5+1)1+AQ\/

k(l —a)  da(k—B)
v V2(Aq — 1) + ABC(Q)

The inequalities 3.6 and 3.7 completes the proof. O

4. Conclusion

The study of mathematical aspect regarding topological indices is a partially open problem [19,23,24]
that for which members family of graphs, certain index has minimal or maximal value? In this work we
discussed this fundamental question general graphs with pendent paths for the most studied index named
Atom Bomb Connectivity index ABC and develop tight bounds by characterizing graphs. In theorem 3.1
and 3.2, we defined tight bonds for the transformed graphs under the effect of transformations defined in
[25].
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