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Nonlinear Dynamics of Allee Effect and Fear in a Delayed Diffusive Predator-Prey Model
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abstract: This paper investigates the dynamics of a predator–prey model incorporating both the Allee
effect and predator-induced fear, along with a delay representing the time required for prey to develop anti-
predation defenses. The model also includes diffusion terms to account for species movement and considers
harvesting pressure on both populations. We first establish the existence and local stability of the coexistence
equilibrium, then analyze the conditions under which a delay-induced Hopf bifurcation occurs. Using center
manifold theory and normal form analysis, we characterize the direction, stability, and periodicity of the
bifurcating solutions. Numerical simulations are conducted to validate the theoretical predictions and reveal
rich dynamics, including transitions from stability to periodic oscillations and the emergence of spatial patterns
due to asymmetric diffusion. These results highlight the critical role of delayed behavioral responses and spatial
heterogeneity in shaping ecological stability.
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1. Introduction

The dynamic relationship between predators and their prey is a central topic in ecology, playing
a fundamental role in population dynamics. Over the past three decades, extensive research has been
conducted on predator–prey models, leading to the development of more realistic frameworks based on
laboratory experiments and field observations. Understanding these interactions is essential for compre-
hending ecosystem dynamics. In this relationship, the predator depends on the prey as a food source,
while the prey must defend itself against predation to ensure its survival and reproduction. These in-
teractions have major repercussions not only on predator and prey populations but also on the overall
structure and functioning of ecosystems [1], [12], [24], [25], [26], [27], [32], [33].

The analysis of stability and bifurcations is essential for understanding the dynamics of predator–prey
systems and their sensitivity to parameter variations. In particular, the Hopf bifurcation plays a key role
in the emergence of periodic oscillations, reflecting the natural fluctuations of populations. Recent studies
have explored various factors influencing this bifurcation. Patra et al. (2021) demonstrated the impact
of defensive behaviors and gestation delays [13], while Ghimire and Wang (2021) showed that the Hopf
bifurcation in a cooperative predation context is always supercritical [14]. Yao et al. (2021) analyzed the

2020 Mathematics Subject Classification: 91B05, 91A06, 91B02, 91B50.

Submitted September 18, 2025. Published February 17, 2026

1
Typeset by BSPMstyle.
© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.79045


2 M. HAFDANE, A. IDMBAREK, N. BABA and Y. EL FOUTAYENI

effects of cooperative hunting and a Holling type III functional response on dynamic transitions [15], and
Lv (2022) highlighted the influence of memory and gestation delays in a diffusive model [16]. These stud-
ies emphasize the importance of Hopf bifurcation analysis in characterizing ecosystem dynamic regimes
and in better understanding their stability in the face of environmental disturbances.

The Allee effect is a biological phenomenon that strongly influences population dynamics. Described
by Warder Clyde Allee (1931), it represents a positive correlation between population density and growth
rate when numbers are low. Mathematically, this effect can be modeled by the following equation:

Ḣ(t) = H

(
aH

b+H
− c− dH

)
, (1.1)

where H(t) represents the prey density, a is the maximum growth rate, b represents the intensity of the
Allee effect, c is the mortality rate, and d denotes the effect of density on growth. This phenomenon
has been extensively studied in various contexts, notably in single-species models and host–parasitoid
interactions [28]. In 2007, Janga and Diamond [29] showed that in discrete-time models, a high intrinsic
growth rate could generate chaotic dynamics or even lead to extinction when the population falls below
a critical threshold. In a predator–prey framework, several studies have examined the Allee effect. For
example, in 2009, the authors [30] demonstrated that integrating this effect stabilized prey populations.
In 2016, another study [2] deepened this analysis by incorporating the impact of human predation on
predators and prey, highlighting the existence and stability of the positive equilibrium. Recent contribu-
tions have further explored the Allee effect in combination with harvesting and spatial dynamics [34], [36].

Another factor influencing population dynamics is predator-induced fear. Experimental studies have
shown that the presence of predators alters prey behavior, prompting them to reduce their feeding ac-
tivity and avoid risky areas, which can negatively affect their growth rate. For instance, Zanette et al.
(2011) [3] observed a 40% reduction in reproductive success in song sparrows exposed to predator cues.
From a theoretical perspective, Wang et al. (2016) [4] developed a predator–prey model incorporating
fear, showing that this effect could stabilize population dynamics by reducing oscillations. Pandey et
al. (2020) [5] later extended these results by introducing fear dynamics into a three-trophic-level model
based on the Hastings–Powell framework, demonstrating that adjusting the fear parameter could control
chaotic system behavior

These two effects can be combined in a single mathematical framework to model their interaction on
population dynamics. Thus, the Allee effect is modified to include predator-induced fear, leading to the
following expression:

Ḣ(t) = H

(
aH

(b+H)(1 + fS)
− c− dH

)
, (1.2)

where the term (1 + fS) represents the effect of predator-induced fear on prey growth, with f reflecting
the intensity of this fear as a function of predator density S.

Predator–prey interactions are also strongly influenced by the defensive strategies adopted by prey
to reduce predation risk. Several studies have explored the impact of these mechanisms on population
dynamics. For example, Tang and Xiao (2015) [10] analyzed a model incorporating active anti-predation
behavior, where adult prey counterattack vulnerable predators, revealing complex bifurcations such as
Hopf and Bogdanov–Takens bifurcations. Similarly, Sun et al. (2016) [11] studied a system in which
anti-predation behavior depended on a prey density threshold, uncovering bistability and tristability dy-
namics. However, these studies generally assume an immediate prey response, which does not always
reflect ecological reality.

In our model, we introduce a new approach by considering a delayed anti-predation mechanism.
Indeed, in many ecosystems, prey do not react instantly to predator presence but develop defense mech-
anisms after a certain delay. This phenomenon may correspond, for example, to the time required for



Nonlinear Dynamics of Allee Effect and Fear... 3

toxin production, the adoption of defensive behaviors, or the learning of avoidance strategies. Unlike
previous works, we introduce a delay τ to represent this biological latency, reflecting the fact that the
anti-predation effect manifests only after a certain time. This dynamic is modeled by the term g3H(t−τ)S.

Another factor influencing system dynamics is the fishing pressure exerted on both species. Over-
exploitation of resources can disrupt population balance and alter ecological interactions. We model
this effect using the terms E1H and E2S, representing the fishing effort applied to prey and predators,
respectively. Including these terms allows us to assess the impact of human activities on the viability
of the studied populations. Recent studies have highlighted the importance of incorporating harvesting
effort in predator–prey systems with Allee effect and fear [33].

Classical models based on ordinary differential equations often neglect the effects of spatial dispersion
among individuals. To better capture ecological heterogeneity, we introduce partial differential equations
(PDEs), which allow us to model population movement in space. The inclusion of diffusion terms makes
it possible to study the effects of spatial heterogeneity on predator–prey dynamics, considering individual
displacements in response to local density and resource variations. This approach provides a more com-
prehensive understanding of ecological interactions by integrating both temporal and spatial dynamics.

The studied model is thus defined by the following system:
∂H(x,t)

∂t = d1∆H +H
(

aH
(b+H)(1+fS) − c− dH

)
− g1HS − E1H,

∂S(x,t)
∂t = d2∆S + g2SH −mS − g3H(t− τ)S − E2S,

∂H(x,t)
∂ν = ∂S(x,t)

∂ν = 0, ∀x ∈ ∂Ω,∀t > 0
H(x, t) = H1(x, t) ≥ 0, S(x, t) = S1(x, t) ≥ 0, x ∈ Ω, t ∈ [−τ, 0].

(1.3)

The parameters of the model are defined in the following table:

Table 1: Meaning of model parameters

Parameter Meaning
a Maximum filtering capacity per individual in the population.
b Intensity of the Allee effect
c Prey mortality rate
d Intensity of intraspecific competition
f Intensity of predator-induced fear
g1 Prey mortality rate due to predation.
g2 Predator reproduction rate based on encountered prey.
m Predator mortality rate
g3 Intensity of the prey’s anti-predation behavior against predators.
τ Time required for the development of anti-predation defenses.
d1, d2 Diffusion coefficients
E1, E2 Fishing effort level applied to target species.

This work makes an original contribution to the study of predator-prey systems by analyzing the
stability of the model as a function of the delay τ, which represents the time required for the development
of prey defense mechanisms. In particular, we explore how this delay can influence the emergence of os-
cillations in population dynamics through a Hopf bifurcation analysis. This approach allows identifying
critical thresholds where the system behavior changes radically, highlighting the importance of delayed
effects in ecological interactions.

The structure of the paper is organized as follows. Section 2 establishes the existence and boundedness
of solutions. Section 3 investigates the stability of the coexistence equilibrium and identifies the conditions
under which a Hopf bifurcation arises, marking the onset of oscillatory dynamics. Section 4 provides a
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detailed analysis of the bifurcation properties, focusing on the qualitative features of the emerging periodic
solutions. Section 5 presents numerical simulations that illustrate how the delay parameter shapes the
system’s dynamical behavior. Section 6 concludes the paper by summarizing the main findings.

2. Existence and Boundedness of the Solution

Theorem 2.1 Assume that the initial data satisfy H1(x, t) ≥ 0 and S1(x, t) ≥ 0. Then system (1.3)
admits a unique positive solution (H(x, t), S(x, t)) defined for all x ∈ Ω and t > 0. Moreover, the solution
is uniformly bounded in Ω× (0,∞) and fulfills

lim sup
t→+∞

H(x, t) ≤ a

d
, ∥H(·, t)∥C(Ω) ≤ C1, ∥S(·, t)∥C(Ω) ≤ C2,

where C1 = max
{a
d
, maxΩH1(x)

}
and C2 depends on C1, |Ω|, and the initial data.

Proof: We first define

φ(H,S) = H

(
aH

(b+H)(1 + fS)
− c− dH

)
− g1HS − E1H,

ψ(H,S) = g2SH −mS − g3H(t− τ)S − E2S.

The partial derivatives

φS = − afH2

(b+H)(1 + fS)2
− g1H ≤ 0, ψH = g2S ≥ 0

show that the system is mixed quasimonotone in R2
+ = {(H,S) : H ≥ 0, S ≥ 0}. This property ensures

the existence of ordered upper and lower solutions. Let us consider the corresponding delayed ODE
system 

Ḣ(t) = H

(
aH

(b+H)(1 + fS)
− c− dH

)
− E1H,

Ṡ(t) = g2SH −mS − g3H(t− τ)S − E2S,

H(t) = H1, S(t) = S1, t ∈ [−τ, 0],

(2.1)

where H1 = supΩH1(x, t) and S1 = supΩ S1(x, t). Let (H̃, S̃) denote the unique positive solution of
(2.1). By standard comparison arguments, the solution (H,S) of system (2.1) satisfies

0 ≤ H(x, t) ≤ H̃(t), 0 ≤ S(x, t) ≤ S̃(t), ∀(x, t) ∈ Ω× (0,∞). (2.2)

The strong maximum principle further implies that H(x, t) > 0 and S(x, t) > 0 for all t > 0.
To obtain the upper bound of H, note that

∂H

∂t
− d1∆H = H

(
aH

(b+H)(1 + fS)
− c− dH

)
− g1HS − E1H ≤ H(a− dH).

By the parabolic comparison principle, we deduce

lim sup
t→+∞

max
Ω

H(x, t) ≤ a

d
.

Hence, ∥H(·, t)∥C(Ω) ≤ C1 for all t ≥ 0.
We now establish the boundedness of S. Let

h(t) =

∫
Ω

H(x, t) dx, s(t) =

∫
Ω

S(x, t) dx.
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Integrating the system over Ω and using the Neumann boundary conditions, we obtain

dh(t)

dt
=

∫
Ω

H

(
aH

(b+H)(1 + fS)
− c− dH − g1S − E1

)
dx,

ds(t)

dt
=

∫
Ω

S (g2H −m− g3H(t− τ)− E2)dx.

By summing the two relations, we get

d

dt

(
g2
g1
h+ s

)
≤ −m

(
g2
g1
h+ s

)
+
g2
g1

(a+m)C1|Ω|. (2.3)

Applying Gronwall’s inequality to (2.3) yields∫
Ω

S(x, t) dx ≤
(
g2
g1
h(0) + s(0)

)
e−mt +

g2
g1

(a+m)C1|Ω|
m

(1− e−mt).

Therefore,

∥S(·, t)∥L1(Ω) ≤
g2
g1

∥H1∥L1(Ω) + ∥S1∥L1(Ω) +

g2
g1

(a+m)C1|Ω|
m

.

By the uniform L1–boundedness and the local Lipschitz continuity of ψ(H,S), the application of the
regularity result of Aliakakos [31] ensures that

∥S(·, t)∥L∞(Ω) ≤ C2.

Combining these estimates completes the proof. 2

3. Stability Analysis

3.1. Equilibrium points

The main aim of this section is to identify the conditions under which a strictly positive equilibrium
point, characterized by the coexistence of both species, can exist.

Theorem 3.1 assuming that
(c+ E1 + dH∗)(b+H∗)− aH∗ < 0 (3.1)

If the condition stated holds, then the system (1.3) possesses a single and exclusive equilibrium point
(H∗, S∗) that is strictly positive.

Proof: To search this equilibrium, we solve the following equations{ aH
(b+H)(1+fS) − c− dH − g1S − E1 = 0

−m+ g2H − g3H − E2 = 0

Solving the second equation is equivalent to

H∗ =
E2 +m

g2 − g3
(3.2)

And according to the first equation, S∗ is the solution of

A2S
∗2 +A1S

∗ +A0 = 0 (3.3)

where

A2 = (b+H∗)g1f

A1 = (b+H∗)(fc+ fE1 + fdH∗ + g1)

A0 = (c+ E1 + dH∗)(b+H∗)− aH∗
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It is evident that both A2 and A1 are positive. Therefore, Equation (3.3) possesses a unique positive
solution S∗ if and only if A0 < 0, i.e.,(c+ E1 + dH∗)(b+H∗)− aH∗ < 0. 2

3.2. Stability

The main objective of this section is to analyze the stability and bifurcations of system (1.3) based
on the delay parameter [17], [18], [20]. The first step in this analysis involves linearizing the system at
the equilibrium point (H∗, S∗), we get

∂H(t)

∂t
= d∆H(t) +MH(t) +NH(t− τ)

where

H(t) =

(
H(t)
S(t)

)
, d =

(
d1 0
0 d2

)
, M =

(
m11 m12

g2S
∗ 0

)
, N =

(
0 0

−g3S∗ 0

)
,

and

m11 =
abH∗

(H∗ + b) (1 + fS∗)
− dH∗, m12 =

−af(H∗)2

(H∗ + b) (1 + fS∗)
2 − g1H

∗.

Characteristic equation

We consider the following equation

det
(
λI −Dn −M −Ne−λτ

)
= 0

where

I =

(
1 0
0 1

)
, and Dn = −n2/l2

(
d1 0
0 d2

)
.

By solving the previous equation, we get the characteristic equation corresponding to system (1.3)

λ2 + Snλ+ Fn + Ce−λτ = 0, (3.4)

where

Sn = (d1 + d2)
n2

l2
−m11

Fn =
n4

l4
d1d2 −m11d2

n2

l2
−m12g2v

∗

C = m12g3v
∗

Without delay

For τ = 0, the characteristic equation becomes as follows

λ2 + Snλ+ Fn + C = 0

If Fn + C > 0 and Sn > 0, then the system without delays is locally asymptotically stable around the
equilibrium point (H∗, S∗).
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With delay

Assuming that the characteristic equation admits a pair of purely imaginary roots±iω(ω > 0), we can
separate the real and imaginary parts of this equation, which leads to the following system{

ω2 − Fn = C cosωτ,
−Snω = −C sinωτ.

Thus,

cosωτ =
ω2 − Fn

C
and sinωτ =

Snω

C

Which implies that
ω4 +

(
S2
n − 2F 2

n

)
ω2 + F 2

n − C2 = 0.

Let η = ω2, then the above equation can be rewritten in the form:

F (η) = η2 +
(
S2
n − 2F 2

n

)
η + F 2

n − C2.

The equation F (η) = 0 :

• Has no positive roots if S2
n − 2F 2

n < 0.

• Has one unique positive root, if F 2
n − C2 < 0 holds.

• Has two positive roots, if S2
n − 2F 2

n < 0, F 2
n − C2 > 0,

(
S2
n − 2F 2

n

)2 − 4
(
F 2
n − C2

)2
> 0 holds.

For the last case, the critical delay is expressed as follows:
for l = 0, 1, 2, . . . and k = 0, 1, 2, . . .

τ
(k)
l =


1
ωl

[
arccos

(
ω2

l −Fn

C

)
+ 2kπ

]
, if ω2

l − Fn > 0,

1
ωl

[
2π − arccos

(
ω2

l −Fn

C

)
+ 2kπ

]
, if ω2

l − Fn < 0

Now, applying the transversality conditions leads to:

ℜ
[
dλ

dτ

]−1

τ=τ
(k)
l

= ℜ
(
2λ+ Sn

Cλe−λτ
− τ

λ

)

=
S2
nw

2 + 2w2
(
w2 − Fn

)
S2
nw

4 + (w3 − Fnw)
2

=

√
(S2

n − 2Fn)
2 − 4 (F 2

n − C2)

w4 + F 2
n + (S2

n − 2Fn)w2
> 0.

Consequently, we can deduce that for τ > τ
(k)
l , there exists at least one eigenvalue with a non-negative

real part. Furthermore, the conditions required for a Hopf bifurcation to occur are also essential in
demonstrating the presence of periodic solutions.

Theorem 3.2 For system (1.3)

• If the condition S2
n − 2F 2

n < 0 holds, the equilibrium is locally asymptotically stable for all τ > 0.

• If the condition F 2
n−C2 < 0 is satisfied, the equilibrium is locally asymptotically stable for 0 < τ < τ00

and unstable for τ > τ00 . Moreover, the system undergoes a Hopf bifurcation at τ = τ
(k)
0 for

k = 0, 1, 2, . . ..
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• If the conditions S2
n−2F 2

n < 0, F 2
n−C2 > 0, and

(
S2
n − 2F 2

n

)2−4
(
F 2
n − C2

)2
> 0 are satisfied, then

there exists m ∈ N such that: The equilibrium is locally asymptotically stable for τ ∈
[
0, τ

(0)
2

)
∪⋃m−1

j=0

(
τ
(j)
1 , τ

(j+1)
2

)
. The equilibrium is unstable for τ ∈

⋃m−1
j=0

(
τ
(j)
2 , τ

(j)
1

)
∪
(
τ
(m)
2 ,+∞

)
. The

system (1.3) undergoes a Hopf bifurcation at E2 when τ = τ
(k)
l , where l = 1, 2, and k = 0, 1, 2, · · · .

4. Hopf Bifurcation

Our objective in this section is to achieve the normal form of Hopf bifurcation for the interior equi-
librium. To do this, we introduce new variables H̄ (x, t) and S̄ (x, t), defined as deviations from their
steady-state values: H̄ (x, t) = H (x, τt)−H∗ and S̄ (x, t) = S (x, τt)− S∗. For the sake of convenience,
we will omit the bars in the subsequent equations. Consequently, the resulting system becomes:

∂H(x,t)
∂t = τ

[
d1∆H + (H +H∗)

(
a(H+H∗)

(b+(H+H∗))(1+f(S+S∗)) − c− d (H +H∗)− g1 (S + S∗)− E1

)]
,

∂S(x,t)
∂t = τ [d2∆S + (S + S∗) (−m+ g2 (H +H∗)− g3 (H (t− 1) +H∗)− E2)]

Let us introduce the notations: τ = τ̃+ε, andH = (H(x, t), S(x, t))T . The phase space C := C([−1, 0], X)
can then be reformulated as follows:

dH(t)

dt
= τ̃D∆H(t) + Lτ̃ (Ht) + P (Ht, ε) ,

where

Lε(χ) = ε

(
m11χ1(0) +m12χ2(0)

g2S
∗χ1(0) +−g3S∗χ1(−1)

)
and

P (χ, ε) = εD∆χ+ Lε(χ) + p(χ, ε),

such that
p(χ, ε) = (τ̃ + ε) (p1(χ, ε), p2(χ, ε))

T
,

with

p1(χ, ε) =
a (χ1(0) +H∗)

2

(b+ (χ1(0) +H∗)) (1 + f (χ2(0) + S∗))
− c (χ1(0) +H∗)− d (χ1(0) +H∗)

2

−g1 (χ1(0) +H∗) (χ2(0) + S∗)− E1 (χ1(0) +H∗) +m11χ1(0) +m12χ2(0)

p2(χ, ε) = −m (χ2(0) + S∗) + g2 (χ1(0) +H∗) (χ2(0) + S∗)− g3 (χ1(−1) +H∗) (χ2(0) + S∗)

−E2 (χ2(0) + S∗) + g2S
∗χ1(0)− g3S

∗χ1(−1)

Respectively, for χ = (χ1, χ2)
T ∈ C1. We know that Λn := {iωnτ̃ ,−iωnτ̃} are characteristic roots of

dx(t)

dt
= −τ̃Dn

2

l2
x(t) + Lτ̃ (xt)

The application of the Riesz representation theorem allows us to establish the existence of a 2× 2 matrix
function ηn(s, τ̃), (−1 ≤ s ≤ 0), whose elements are functions with bounded variation such that

−τ̃Dn
2

l2
χ(0) + Lτ̃ (χ) =

∫ 0

−1

dηn(s, τ)χ(s) forχ ∈ C
(
[−1, 0],R2

)
.

Choose

ηn(s, τ) =

 −τF s = −1
0 s ∈ (−1, 0)
τE s = 0
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where

E =

(
m11 − d1

n2

l2 m12

g2S
∗ −d2 n2

l2

)
, F =

(
0 0

−g3S∗ 0

)
We define

(ψ, χ) = ψ(0)χ(0)−
∫ 0

−1

∫ s

ξ=0

ψ(ξ − s)dηn(s, τ̃)χ(ξ)dξ forχ ∈ C
(
[−1, 0],R2

)
, ψ ∈ C

(
[0, 1],R2

)
.

A(τ̃) has two distinct purely imaginary eigenvalues. ±iωnτ̃ , they are eigenvalues of A∗.
Define l1(s) = (1, ζ)T eiωnτ̃s (s ∈ [−1, 0]), n1(r) = (1, ϑ)e−iωnτ̃r (r ∈ [0, 1]), where

ζ =
1

m12

(
−m11 + d1

n2

l2
+ iωn

)
,

ϑ =
e−iτ̃ωn

(g2 − g3)S∗

(
−m11 + d1

n2

l2
− iωn

)
Let Θ = (Θ1,Θ2) and κ

∗ = (κ∗1, κ
∗
2)

T
with

Θ1(s) =
l1(s)+l2(s)

2 =

(
Re
(
eiωnτ̃s

)
Re
(
ζeiωnτs

) )
Θ2(s) =

l1(s)−l2(s)
2i =

(
Im
(
eiωnτ̃s

)
Im
(
ζeiωnτ̃s

) ) s ∈ [−1, 0]

and

κ∗1(r) =
n1(r)+n2(r)

2 =

(
Re
(
e−iωnτ̃r

)
Re
(
ϑe−iωnτ̃r

) )
κ∗2(r) =

n1(r)−n2(r)
2i =

(
Im
(
e−iωnτ̃r

)
Im
(
ϑe−iωnr̃r

) ) r ∈ [0, 1]

Subsequently, we can calculate

D∗
1 := (κ∗1,Θ1) , D

∗
2 := (κ∗1,Θ2) , D

∗
3 := (κ∗2,Θ1) , D

∗
4 := (κ∗2,Θ2) .

Define

(κ∗,Θ) =
(
κ∗j ,Θk

)
=

(
D∗

1 D∗
2

D2
3 D∗

4

)
and create a new basis κ for P ∗ by

κ = (κ1, κ2)
T
= (κ∗,Θ)

−1
κ∗.

Then (κ,Θ) = I2. In addition, define pn :=
(
β1
n, β

2
n

)
, where

β1
n =

(
cos n

l x
0

)
, β2

n =

(
0

cos n
l x

)
.

Additionally, we define

c.pn = c1β
1
n + c2β

2
n, for c = (c1, c2)

T ∈ C1

and

< H,S >:=
1

lπ

∫ lπ

0

H1S1dx+
1

lπ

∫ lπ

0

H2S2dx for forH,S ∈ X
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and
⟨χ, p0⟩ =

(
< χ, p10 > , < χ, p20 >

)T
Rewrite Eq. (1.3) as form

dH(t)

dt
= Aτ̃Ht +R (Ht, ε) ,

where

R (Ht, ε) =

{
0, θ ∈ [−1, 0)
P (Ht, ε) , θ = 0

The solution is

Ht = Θ

(
y1
y2

)
pn + h (y1, y2, ε) ,

where (
y1
y2

)
= (κ,< Ht, pn >) ,

and

h (y1, y2, ε) ∈ PSC1, h(0, 0, 0) = 0, Dh(0, 0, 0) = 0

Then

Ht = Θ

(
y1(t)
y2(t)

)
pn + h (y1, y2, 0)

Let x = y1 − iy2, and notice that l1 = Θ1 + iΘ2. Then

Θ

(
y1
y2

)
pn = (Θ1,Θ2)

( x+x̄
2

i(x−x̄)
2

)
pn =

1

2

(
l1x+ l1x

)
pn

and h (y1, y2, 0) = h
(

x+x̄
2 , i(x−x̄)

2 , 0
)
. Eq. (3.12) is

Ht =
1

2

(
l1x+ l1x

)
pn + h

(
x+ x̄

2
,
i(x− x̄)

2
, 0

)

=
1

2

(
l1x+ l1x

)
pn +W (x, x̄),

where W (x, x̄) = h
(

x+x̄
2 , i(x−x̄)

2 , 0
)
, and ẋ = iωnτ̃x+ F (x, x̄), where

F (x, x̄) = (κ1(0)− iκ2(0)) < P (Ht, 0) , pn >

Let

W (x, x̄) =W20
x2

2 +W11xx̄+W02
x̄2

2 + · · · ,
F (x, x̄) = F20

x2

2 + F11xx̄+ F02
x̄2

2 + · · · ,
then

Ht(0) =
1

2
(x+ x̄) cos

(nx
l

)
+W

(1)
20 (0)

x2

2
+W

(1)
11 (0)xx̄+W

(1)
02 (0)

x̄2

2
+ · · · ,

St(0) =
1

2
(ζx+ ζ̄x̄) cos

(nx
l

)
+W

(2)
20 (0)

x2

2
+W

(2)
11 (0)xx̄+W

(2)
02 (0)

x̄2

2
+ · · · ,

Ht(−1) =
1

2

(
xe−iωnτ̃ + x̄eiωnτ̃

)
cos
(nx
l

)
+W

(1)
20 (−1)

x2

2
+W

(1)
11 (−1)xx̄+W

(1)
02 (−1)

x̄2

2
+ · · ·
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and

P̄1 (Ht, 0) =
1

τ̃
P1 = α20H

2
t (0) + α11Ht(0)St(0) + α02S

2
t (0) + α30H

3
t (0)

+α21H
2
t (0)St(0) + α12Ht(0)S

2
t (0) + α03S

3
t (0) + · · · ,

P̄2 (Ht, 0) =
1

τ̃
P2 = βHt(0)St(0) + δHt(−1)St(0) + · · ·

Where

α20 =
ab2

(b+H∗)
3
(1 + fS∗)

− d α11 =
−af

(
(H∗)2 + 2bH∗)

(b+H∗)
2
(1 + fS∗)

2 − g1 α02 =
af2(H∗)2

(b+H∗) (1 + fS∗)
3

α30 =
−ab2

(b+H∗)
4
(1 + fS∗)

α21 =
−ab2f

(b+H∗)
3
(1 + fS∗)

2 α12 =
af2

(
(H∗)2 + 2bH∗)

(b+H∗)
2
(1 + fS∗)

3

α03 =
−af3(H∗)2

(b+H∗) (1 + fS∗)
4 β = g2 δ = −g3

Therefore

P̄1 (Ht, 0) = cos2
(nx
l

)(x2
2
ϕ20 + xx̄ϕ11 +

x̄2

2
ϕ02

)
+
x2x̄

2

(
ϕ1 cos

nx

l
+ ϕ2 cos

3 nx

l

)
+ · · · ,

P̄2 (Ht, 0) = cos2
(nx
l

)(x2
2
µ20 + xx̄µ11 +

x̄2

2
µ02

)
+
x2x̄

2
µ1 cos

nx

l
+ · · · ,

Then

< P (Ht, 0) , pn >=τ̃
(
P̄1 (Ht, 0) p

1
n + P̄2 (Ht, 0) p

2
n

)
=
x2

2
τ̃

(
ϕ20
µ20

)
Λ + xx̄τ̃

(
ϕ11
µ11

)
Λ +

x̄2

2
τ̃ (µ02) Λ +

x2x̄

2
τ̃

(
σ1
σ2

)
+ · · · .

with

Λ =
1

lπ

∫ lπ

0

cos3
(nx
l

)
dx,

σ1 =
ϕ1
lπ

∫ lπ

0

cos2
(nx
l

)
dx+

ϕ2
lπ

∫ lπ

0

cos4
(nx
l

)
dx,

σ2 =
µ1

lπ

∫ lπ

0

cos2
(nx
l

)
dx

and
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ϕ20 =
1

2

(
α20 + α11η + α02η

2
)

µ20 =
1

2

(
βη + δηe−iωτ

)
ϕ11 =

1

4
(2α20 + α11 (η + η̄) + 2α02ηη̄) µ11 =

1

4

(
β(η̄ + η) + δ

(
ηeiωτ + η̄e−iωτ

))
ϕ02 =

1

2

(
α20 + α11η̄ + α02η̄

2
)

µ02 =
1

2

(
βη̄ + δη̄eiωτ

)

ϕ1 = α20

(
W 1

11(0) +
W 1

20(0)

2

)
+ α02

(
ηW 2

11(0) + η̄
W 2

20(0)

2

)

+α11

(
W 2

11(0)

2
+
W 2

20(0)

4
+
W 1

20(0)

4
η̄ +

W 1
11(0)

2
η

)

ϕ2 =
3

8
α30 +

α21

8
(2η + η̄) +

α12

8

(
η2 + 2ηη̄

)
+

3

8
α03η

2η̄

µ1 =
1

4
β
(
2W 2

11(0) +W 2
20(0) +W 1

20(0)η̄ + 2W 1
11(0)η

)
+
1

4
δ
(
2W 2

11(0)e
−iωτ +W 2

20(0)e
iωτ + 2ηW 1

11(−1) + η̄W 1
20(−1)

)

and

(κ1(0)− iκ2(0)) < P (Ht, 0) , pn > =
x2

2
(Λ1ϕ20 + Λ2µ20) Λτ̃ + xx̄ (Λ1ϕ11 + Λ2µ11) Λτ̃

+
x̄2

2

(
Λ1ϕ02 + Λ2ζ̄20

)
Λτ̃ +

x2x̄

2
τ̃ [Λ1σ1 + Λ2σ2] + · · · ,

Then we have F20 = F11 = F02 = 0, for n = 1, 2, 3, · · · .
If n = 0, we have:

F20 = Λ1τ̃ϕ20 + Λ2τ̃µ20, F11 = Λ1τ̃ϕ11 + Λ2τ̃µ11, F02 = Λ1τ̃ϕ02 + Λ2τ̃ ζ̄20.

And for n ∈ N0

F21 = τ̃ (Λ1σ1 + Λ2σ2)

From [19], we have

Ẇ (x, x̄) =W20xẋ+W11ẋx̄+W11x ˙̄x+W02 ˙̄x+ · · · ,
Aτ̃W (x, x̄) = Aτ̃W20

x2

2 +Aτ̃W11xx̄+Aτ̃W02
x̄2

2 + · · · ,

and
Ẇ (x, x̄) = Aτ̃W +H(x, x̄)

where

H(x, x̄) = H20
x2

2
+W11xx̄+H02

x̄2

2
+ · · ·

= X0P (Ht, 0)− Φ (κ,< X0P (Ht, 0) , pn > ·pn)
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Hence, we have
(2iωnτ̃ −Aτ̃ )W20 = H20, −Aτ̃W11 = H11,

(−2iωnτ̃ −Aτ̃ )W02 = H02,

that is
W20 = (2iωnτ̃ −Aτ̃ )

−1
H20, W11 = −A−1

τ̃ H11,

W02 = (−2iωnτ̃ −Aτ̃ )
−1
H02.

Then

H(x, x̄) =− Φ(0)κ(0) < P (Ht, 0) , pn > ·pn

=−
(
l1(θ) + l2(θ)

2
,
l1(θ)− l2(θ)

2i

)(
Φ1(0)
Φ2(0)

)
< P (Ht, 0) , pn > ·pn

=− 1

2
[l1(θ) (Φ1(0)− iΦ2(0)) + l2(θ) (Φ1(0) +iΦ2(0))] < P (Ht, 0) , pn > ·pn

=− 1

2

[(
l1(θ)F20 + l2(θ)F̄02

) x2
2

+ (l1(θ)F11 +l2(θ)F̄11

)
xx̄+

(
l1(θ)F02 + l2(θ)F̄20

) x̄2
2

]
+ · · ·

Therefore,

H20(θ) =

{
0 n ∈ N,
− 1

2

(
l1(θ)F20 + l2(θ)F̄02

)
· p0 n = 0,

H11(θ) =

{
0 n ∈ N,
− 1

2

(
l1(θ)F11 + l2(θ)F̄11

)
· p0 n = 0,

H02(θ) =

{
0 n ∈ N,
− 1

2

(
l1(θ)F02 + l2(θ)F̄20

)
· p0 n = 0,

and
H(x, x̄)(0) = P (Ht, 0)− Φ (κ,< P (Ht, 0) , pn >) · pn,

where

H20(0) =


τ̃

(
ϕ20
µ20

)
cos2

(
nx
l

)
, n ∈ N,

τ̃

(
ϕ20
µ20

)
− 1

2

(
l1(0)F20 + l2(0)F̄02

)
· p0, n = 0

H11(0) =


τ̃

(
ϕ11
µ11

)
cos2

(
nx
l

)
, n ∈ N,

τ̃

(
ϕ11
µ11

)
− 1

2

(
l1(0)F11 + l2(0)F̄11

)
· p0, n = 0.

By the definition of Aτ̃ , we have

Ẇ20 = Aτ̃W20 = 2iωnτ̃W20 +
1

2

(
l1(θ)F20 + l2(θ)F̄02

)
· pn, −1 ≤ θ < 0.

That is

W20(θ) =
i

2iωnτ̃

(
F20l1(θ) +

F̄02

3
l2(θ)

)
· pn + E1e

2iωnτ̃θ,

where

E1 =

{
W20(0) n = 1, 2, 3, . . . ,

W20(0)− i
2iωnτ̃

(F20l1(θ) + F̄02

3 l2(θ)
)
· p0 n = 0.

By the definition of Aτ̃ , we have for −1 ≤ θ < 0
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−
(
F20l1(0) +

F̄02

3
l2(0)

)
· p0 + 2iωnτ̃E1 − Lτ̃

(
i

2ωnτ̃

(
F20l1(0) +

F̄02

3
l2(0)

)
· pn + E1e

2iωnτ̃θ

)

−Aτ̃E1 −Aτ̃

(
i

2ωnτ̃

(
F20l1(0) +

F̄02

3
l2(0)

)
· p0
)

= τ̃

(
ϕ20
µ20

)
− 1

2

(
l1(0)F20 + l2(0)F̄02

)
· p0.

As

Aτ̃ l1(0) + Lτ̃ (l1 · p0) = iω0l1(0) · p0
and

Aτ̃ l2(0) + Lτ̃ (l2 · p0) = −iω0l2(0) · p0
we have

2iωnE1 −Aτ̃E1 − Lτ̃E1e
2iωn = τ̃

(
ϕ20
µ20

)
cos2

(nx
l

)
, n ∈ N0

That is

E1 = τ̃E

(
ϕ20
µ20

)
cos2

(nx
l

)
where

E =

(
2iωnτ̃ + d1

n2

l2 −m11 −m12

−g2v∗ + g3v
∗e−2iωnτ̃ 2iωnτ̃ + d2

n2

l2

)−1

Similarly, from (3.26), we have

−Ẇ11 =
i

2ωnτ̃

(
l1(θ)F11 + l2(θ)F̄11

)
· pn, −1 ≤ θ < 0.

That is

W11(θ) =
i

2iωnτ̃

(
l1(θ)F̄11 − l1(θ)F11

)
+ E2.

Similarly, we have

E2 = τ̃E∗
(
ϕ11
µ11

)
cos2

(nx
l

)
,

where

E∗ =

(
d1

n2

l2 −m11 −m12

−g2v∗ d2
n2

l2

)−1

.

Thus, we have:

c1(0) =
i

2ωnτ̃

(
F20F11 − 2 |F11|2 −

|F02|2

3

)
+

1

2
F21,

µ2 = − Re (c1(0))

Re
(
λ′
(
τ jn
)) , β2 = 2Re (c1(0))

T2 = − 1

ωnτ̃

[
Im (c1(0)) + ε2 Im

(
λ′
(
τ jn
))]

.
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According to Theorem 3.1 mentioned in [21], the nature of the Hopf bifurcation at any critical
value τ+j,n or τ−j,n is characterized by three coefficients. The coefficient µ2 determines the direction of
the bifurcation: if µ2 > 0, the Hopf bifurcation is supercritical, meaning that the bifurcating periodic
solutions exist for µ > 0; if µ2 < 0, it is subcritical and the solutions exist for µ < 0. The coefficient
β2 indicates the stability of these periodic solutions on the center manifold: if β2 < 0, the bifurcating
periodic solutions are orbitally asymptotically stable, whereas they are unstable if β2 > 0. Finally, the
coefficient T2 reflects how the period of the solutions changes: if T2 > 0, the period increases, while if
T2 < 0, it decreases.

5. Simulations and Discussion

In this section, we aim to validate the theoretical results by visualizing the model’s dynamics through
numerical simulations. To this end, we analyze the system’s stability and evolution using two comple-
mentary types of representations: bifurcation diagrams, which identify stability transitions as a function
of the delay τ , and spatiotemporal plots, which depict the evolution of populations in space and time. All
simulations are carried out in MATLAB to numerically solve the model equations and explore its dynamic
behavior. The parameters used in the numerical simulations are listed in Table 2. They represent key
biological characteristics that influence population dynamics and determine the system’s stability.

Table 2: Values of the parameters used in the model simulations.

a b c d f g1 g2 g3 m E1 E2

6.8 0.6 0.05 0.007 0.0003 0.0152 0.0062 0.00422 0.301 0.03 0.09

The analysis of the system’s dynamics begins with the determination of the strictly positive equi-
librium (H∗, S∗) by solving the steady-state equations of the model. Substituting the parameter val-
ues from Table 2 into Equation (3.2), we obtain H∗ = 197.47475. To ensure that this equilibrium
is well-defined, we substitute this value into the existence condition given by Equation (3.1), yielding
(c + E1 + dH∗)(b +H∗) − aH∗ = −1053.18. Since this value is negative, the existence condition of the
equilibrium is satisfied. Furthermore, this condition guarantees that A0 < 0, and since the coefficients A1

and A2 are positive, we are assured that the quadratic equation associated with S∗ has a unique positive
solution. We then solve this equation in the form A2S

2+A1S+A0 = 0, with A2 = 0.00090, A1 = 3.09763,
and A0 = −1053.17898. The function f(S) = A2S

2 + A1S + A0 is graphically represented in Figure 1,
where the intersection with the horizontal axis corresponds to the unique solution S∗ = 311.67084.

Figure 1: Graphical representation of the quadratic equation associated with S∗.

Thus, we obtain the strictly positive equilibrium point of the system, given by (H∗, S∗) = (197.47475,
311.67084), which numerically confirms the coexistence of both species in the studied model.

To numerically analyze the impact of the delay on the system’s stability, we constructed two bifur-
cation diagrams illustrating the evolution of prey and predator populations as functions of τ . These
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diagrams make it possible to identify the critical values of the delay beyond which the system undergoes
a behavioral transition, particularly from a stable equilibrium to the onset of periodic oscillations. As
shown in Figures 2, for τ < 1.308, the system converges to a stable steady state. However, when τ
exceeds this critical threshold, a Hopf bifurcation occurs, giving rise to self-sustained oscillations in the
populations.

(a) Bifurcation diagram of prey H. (b) Bifurcation diagram of predators S.

Figure 2: Transition between stability and oscillations as a function of τ .

From a biological perspective, the stability observed for τ < 1.308 indicates that the prey’s anti-
predation mechanisms are sufficiently rapid to effectively regulate predator–prey dynamics, thereby main-
taining a stable equilibrium. However, when the delay τ becomes too large, the prey’s response to pre-
dation pressure is too slow to adequately counter the impact of predators, resulting in cyclic population
oscillations. This phenomenon is comparable to natural cycles observed in certain animal populations,
where the availability of anti-predation defenses is delayed due to physiological or behavioral constraints.

To better understand the evolution of populations in space and time, we plotted the system’s solutions
as functions of the spatial variable x and time t. These representations illustrate the stability or instability
of the system as a function of the delay τ . When τ = 0, the system evolves in a stable manner: the
prey and predator densities gradually converge to their equilibrium values without significant oscillations.
This indicates that, in the absence of a delay in the anti-predation effect, population dynamics remain
well regulated and free of periodic fluctuations. For all simulations presented below, the initial conditions
were defined as small spatial perturbations around the equilibrium values, namely H(x, 0) = H∗(1 +
ε cos(x) sin(x)) and S(x, 0) = S∗(1 + ε cos(x) sin(x)), where ε denotes a small amplitude.
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(a) Spatiotemporal evolution of prey H(x, t) for τ = 0.
(b) Spatiotemporal evolution of predators S(x, t) for
τ = 0.

Figure 3: System dynamics for τ = 0: convergence to equilibrium without oscillations.

When τ = 1.4, the system’s dynamics change dramatically. Periodic oscillations emerge in the pop-
ulation densities, indicating a loss of equilibrium stability. These fluctuations demonstrate that delayed
anti-predation effects significantly influence the system’s behavior by introducing alternating phases of
population growth and decline. This behavior is characteristic of a Hopf bifurcation, in which the system
transitions from a stable steady state to an oscillatory regime as a consequence of the delay.

(a) Evolution of H(x, t) for τ = 1.4. (b) Evolution of S(x, t) for τ = 1.4.

Figure 4: System dynamics for τ = 1.4: emergence of periodic oscillations.

Beyond the effect of the delay, we now analyze the impact of spatial diffusion on the system’s dynamics.
We first consider a scenario in which the mobilities of prey and predators are relatively similar, with
d1 = 0.2 and d2 = 0.18.In this case, the spatial distribution remains homogeneous, and no particular
structuring is observed. However, when the prey diffusion rate becomes significantly higher than that
of the predators (d1 = 1.2 and d2 = 0.01), the system’s dynamics change markedly: spatial patterns
emerge, indicating a heterogeneous organization of populations. As shown in Figures 5, the low mobility
of predators prevents uniform regulation of the prey population, promoting the formation of aggregation
and depletion zones.
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(a) Spatial structures of prey H(x, t). (b) Spatial structures of predators S(x, t).

Figure 5: Formation of spatial structures due to asymmetric diffusion (d1 = 1.2, d2 = 0.01).

The presence of these spatial inhomogeneities resembles phenomena described by the theory of Tur-
ing–Hopf bifurcations, where the combination of delayed interactions and unequal diffusion between
species promotes the emergence of persistent spatial patterns. These results suggest that the system’s
dynamics depend not only on the temporal aspects of interactions but also on the capacity of individuals
to move and redistribute across space. Such behavior is frequently observed in marine ecosystems, where
prey species adopt rapid migration strategies to escape predation.

Our simulations therefore indicate that introducing a delay in the anti-predation response together
with an asymmetric diffusion process can profoundly alter system dynamics, affecting not only population
stability but also spatial organization. These findings underscore the importance of accounting for both
temporal and spatial factors in ecological modeling, as they can have significant implications for the
management and conservation of natural ecosystems.

6. Conclusion

In this study, we analyzed the dynamics of a predator–prey system by integrating multiple ecological
mechanisms often considered separately: the Allee effect, predator-induced fear, delayed anti-predation
responses, spatial diffusion, and human harvesting. By introducing a time lag τ , representing the period
required for prey to develop defenses, we demonstrated that the system undergoes a Hopf bifurcation
beyond a critical threshold, leading to the emergence of periodic population oscillations. The equilibrium
analysis confirmed the existence of a strictly positive coexistence state, whose stability was examined
through spectral analysis. Furthermore, we explored the characteristics of the Hopf bifurcation using
center manifold theory and normal form reduction, providing insight into the nature of the emerging
periodic solutions.

Numerical simulations supported these theoretical results, illustrating the transition from stable equi-
librium to oscillatory dynamics as the delay increased. Additionally, the inclusion of spatial diffusion
revealed that differences in prey and predator mobility could generate spatial heterogeneities, emphasiz-
ing the role of movement and dispersal in shaping population distributions. By incorporating harvesting
terms, we also assessed the impact of human exploitation on population stability and long-term dynamics.

Overall, the novelty of this work lies in the combined consideration of multiple interacting mechanisms,
the Allee effect, fear, delayed anti-predation responses, spatial diffusion, and harvesting, which allows for
a more realistic and comprehensive understanding of predator–prey dynamics. Our findings highlight that
ecological interactions are not only shaped by immediate predator–prey encounters but are also profoundly
influenced by delayed behavioral responses, spatial heterogeneity, and human activities, offering new
insights into population management and conservation strategies.
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