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Unilateral Elliptic Problems with L'—data in Anisotropic Weighted Sobolev Spaces
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ABSTRACT: In this work, we prove an existence result for a class of strongly nonlinear elliptic equations given
by

—div(a(z,v, Vv)) + ¥(z,v,Vv) + &(z,Vv) = f inQ

where the source term f belongs to L!(£2). The function ¥ is assumed to have critical growth with respect
to the gradient Vo, without any growth restriction concerning the variable v, while the function @(z, Vv)
grows as |Vo|Pi~1.

Keywords: Anisotropic weighted Sobolev spaces, anisotropic degenerate elliptic equations, entropy
solutions, L1-data.
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1. Introduction

Let © be a bounded open subset of RY, where N > 2, and let p be a real number such that 1 <
p < oo. Consider a vector of weight functions w(-) = {w;(-):4=0,...,N}, where each w;(:) is a
measurable function that is strictly positive almost everywhere in ) and satisfies certain integrability
conditions (refer to the Preliminaries section for details). We define the weighted anisotropic Sobolev
space X = VVO1 Pi(Q,w) corresponding to the weight vector w.

We examine the following nonlinear Dirichlet problem:

{ ve Wy (Qw), W(x,v,Vov)e L'(Q), &, Vv)e L'(Q) (1.1)
A(w) + ¥ (z,v,Vv) + &(z, Vo) = f  in D'(Q) '

where f is a given element in the space of distributions ©’(€2).
Here, the operator A(v) is defined as A(v) = —div(a(z,v, Vv)), representing a Leray-Lions type
operator that maps elements from X into its dual space X* = W~1Pi (Q w*). The dual weight vector
* *

w* = Jw;

wil_pi :1=0,1,... ,N}, and p} denotes the Holder conjugate of p;, that is, p, = pfil.

The nonlinear lower-order term ¥(z,v, Vv) exhibits at most a growth rate proportional to |Vu|Pi.
Additionally, it fulfills a sign condition relative to its second argument, and it also verify a coercivity
condition as specified below.
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Ppi

N
W(z,5,6)| = 83 wila) I

i=1

Pi=1 We study problem (1.1) in

for sufficiently large |s|. The term @(x, Vv) grows at most like |[Vv
a non-variational framework, where f € L(Q).

When H = 0 and in the variational setting-specifically when the source term f belongs to
W—12" (Q,w*) -an existence result for the following unilateral problem has been established in [2]:

veE Ky, W(z,v,Vv)el'(Q), ¥(z,v,Vv)ve LY(Q)
(A(v),v —u) + / U(x,v, Vu)(v —u)de < (f,v —u)
forﬂall u € Ky NL>®(Q)

which corresponds to the equation in problem (1.1). The proof relies on a method involving the strong
convergence of the approximated solutions’ positive and negative parts, denoted v and v, respectively.In
the non-variational setting, where f € L'({2), the term

/Qf(v — u)dzx,

is not well-defined, and as a result, the previous formulation is no longer applicable. To address this,
the authors in [6] established an existence result for the unilateral problem using a different approach
based on the strong convergence of truncations. The problem is formulated as follows:

veE Ky, W(r,v,Vv)el'(Q)

(A(v), Tk(v —u)) + / U(x,v, Vu)Ti(v —u)de < / fTi(v —u)dx
Q Q

for all w € Ky and all £ > 0

where T}, denotes the truncation function at level k, and the convex set K is defined by

Ky = {UGWOLP(Q,’LU)Z’UZ’(/J a.e. in Q}

In the weighted case (i.e., when w = 1 ) and for nonzero @, Del Vecchio studyied problem (1.1) in [12],
under the assumption that @ depends only on x and v. When g also depends on Vv, existence results
for problem (1.1) were first established by Monetti and Randazzo in [23] for the equation case.

Extensive research has been devoted to examining the existence of solutions for parabolic and elliptic
problems under different sets of hypotheses. For a comprehensive overview, readers can refer to the
extensive studies and publications available on this subject (see [9,10,15,16,17,18,19,4,5,20]).

The primary objective of this paper is to establish an existence result for degenerate unilateral prob-
lems related to (1.1), in the setting where @ # 0 and the source term f belongs to L*(2). Our result
extends the work presented in [24] to the framework of anisotropic weighted Sobolev spaces.

The remainder of the paper is structured as follows: Section 2 provides the necessary preliminaries,
including notations, assumptions, and several technical lemmas essential for the analysis. In Section 3,
we present the main result, and in the final section, we provide the detailed proof of this result.

2. Preliminaries

2.1. Anisotropic weighted Sobolev spaces

In this work, we extend the concept of Sobolev spaces by introducing a new class of anisotropic weighted
Sobolev spaces. Let  denote a bounded open subset of RN, pg,p1,...,pn be N + 1 exponents with
1<pi<oofori=0,1,...,N and w = {w;(z),0 < i < N} represent a collection of measurable weight
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functions that are almost everywhere strictly positive on 2. We also adopt the following assumption:
there exist

w; € Lige(9), (2.1)

—1

w’ € L .(9), (2.2)

K3

for any 0 < ¢ < N. The anisotropic weighted orlicz space LPi(),~), where v is a weight function on
will be formulated by the following expression,

LPi(Q,v) = {’U = v(w),v*yp%‘ € L’”(Q)}

o= ([ 1@l "

and endowed by the norm

[vllLri(0,4) = llv
We put
0 i ov .
(p) = (po,---spn), D°v=v and D'v= fori=1,...,N,
£
and we consider that
p =min{po,p1,...,pn} then p>1 (2.3)

The anisotropic weighted Sobolev space Wl’(pi)(Q, w) is defined as the space of real-valued functions

1
v € LPo (Q,wg) = {U(gc), vwy® € Lo (Q)} such that the derivatives in the sense of distributions fulfill
Div € LPi (Q,w;) fori=1,...,N

Which is a Banach space endowed by the following norm

v
8@-

N
1ol o0 = 10llpo,wo + D (2.4)
i=1

Ppi,wi

The hypothesis (2.1) ensures that C§°(2) ¢ Wh®P)(Q, w) and consequently, we may define the
subspace V = Wol’(pi)(Q, w) of WH(P)(Q,w) as the closure of C§°(Q) with respect to the norm (2.4).
Moreover, condition (2.2) ensures that W) (Q, w) and WO1 (P ”(Q,w) are reflexive Banach spaces.

We notice that the dual space of weighted Sobolev spaces Wol’(p) (©, w) is equivalent to w-L() (Q, w*),
where w* = {wl* = wil_p/

Pl = p?’il, (see [13] for the isotropic case).

We further define 7% (Q, w) as follows

,1=0,.. .,N} and (p}) = (py, P, - --,P) where p’ is the conjugate of p;; i.e.,

7'0171” (Qw) = {’U : @ — R measurable : T (v) € W&’pi(Q,w)» Vk > 0}7

where T}, : R — R is the truncation at height k defined by T} (s) = max(—k, min(k, s)).
2.2. Technical results

Lemma 2.1 [7] Let Q be a bounded open subset of RN, w a weight function on Q, if (2.1) and (2.2)
are verified then LPi(Q,w) — L ().

Lemma 2.2 ([21]Theorem 13.47) Let (vy,),, be a sequence in L*(Q) and v € L*(Q) such that

1. v, > v a.e. in §Q,
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2. vp >0 andv >0 a.e in
3. [ undx — [, vdx
then v, — v in L1(Q).

Lemma 2.3 [I] Let v a weight function, f € L"(Q,7), and (fn), C L"(R,7) such that |/full, ., <
¢, l<r<oolffolr)— f(x) ae inQ, then f, — f weakly in L™ (€, ).

Lemma 2.4 (See lemma 8 in [8]) Let (uy,), be a bounded sequence in Wol’(pi)(Q,w). If up, — u weakly
in Wol’(pi)(ﬂ,w), therefore Ty, (u,) — Ti(u) weakly in Wol’(pi)(Q,w) for any k > 0.

3. Basic Assumptions and Existence Results

We state the following assumptions:
Assumption (H;) :
- The space X = Wol’p* (Q,w) is fitted with the norm
1

llolllx = <Z/\ xm)pi

and it is equivalent to the norm (2.4). Note that (X, |||v|||x) is a uniformly convex and thus reflexive
Banach space.
- We can find a weight function ¢ on §2 such that

o€ L) and o'~ % € L}, () (3.1)

for some parameter 1 < ¢; < p; + p} and ¢} = ¢;/(¢; — 1), such that the Hardy inequality

(/ lo(z %ada:>qli <c<

holds for every v € X with a constant ¢ > 0 independent of v. Furthermore, the imbedding X —
L%(Q, o) reached by the Hardy inequality (3.2) is compact, i.e.

1

w;( dm) h (3.2)

axz

X —— L% (Q,0) (3.3)

Assumptions (Hs) :

Let A(v) = —diva(z,v, Vou) be the Leray-Lions operator acting from W, (Q,w) into its dual
W—Lpi (Q,w*), where a : @ x R x RN — RY is a Carathéodory function satisfying, for a.e z € Q,
for all s € R and all £,&* € RY (€ # ¢*), the following assumptions:

1 1 a; N L/
jai(z,5,6)] < arw]" (x) [§(x) + o7 [s|"0 + > w (@) |G|, fori=1,...,N,  (34)
j=1
la(a,s,€) —a(z,5,6)] - [€ €] > (3.5)
N
aw,5,€) - > as Z x) & (3.6)

=1

where §(-) is a positive function in L (Q), o is the weight function already defined in (3.1) and ay, oy
are positive constants.

Let  : Q x RxRY - Rand H: Q x RY — R be two Carathéodory functions satisfying, for a.e
x € Q and for all s € R, ¢ € RY, the following assumption Assumption (H3) :
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U(x,s,&)s>0 (3.7)

W (x,,6)| < b(lsl) ( +sz &Ip‘) (3-8)

w (w85|>Bsz )|&ilPe for || > &, (3.9)

i=1

x \\H

N
[2(z, &) < hlw) d_w" (@) |G (3.10)

where 8 > 0,5 > 0,b : Rt — RTis a continuous increasing function, ¢ € L'(Q2) and h € L"(2) with
r > max(N, p;). Given a measurable function ¢ :  — R, called an obstacle function, such that
Yt e WP (Q, w) N L=(Q), (3.11)

and consider the set Ky = {v € WP (Q,w) : v > ae. in Q} which is convex. We assume that the
source term

fer (). (3.12)

We shall prove the following existence result concerning the nonlinear Dirichlet boundary value prob-
lem (1.1).

Theorem 3.1 Under the assumptions (3.4)-(3.12), there exists at least one solution of (1.1) in the
following sense
ve Ky, ¥z, Vou)eLY(Q), & Vv)el(Q),

(A(v), Tk(v —u)) + /Q(W(:E, v, Vv) + &(z, Vu)) T (v — u)dx
< / [Ti(v — u)dz,Yu € Ky N L*(Q), Yk > 0.
Q

Lemma 3.1 [3/Assume that (H1) and (Hz) are fulfilled. For any sequence (v,) weakly convergent to u
; 1,p;
in Wy (Q,w) such that

/ [a (z,vn, VU,) — a(z, vy, VV)] - [Vu, — Vu]dz — 0
Q

we have v, — v strongly in Wy (Q, w).
4. Proof of Theorem 3.1
4.1. Step 1: A priori estimates.

Let €, be a sequence of compact subsets of €2 such that €, is increasing to 2 as n — oco. Let us

define
P(,¢)

'
(z,5,€) Xq, and @, (z,§) = 1+ Loz §)|XQn

L4 o[ # (2, 5,6
where xgq, is the characteristic function of €2,,.
Consider the sequence of approximate problems

Wn(xv 576) =

vn € Ky, ¥ (2,00, Vo) € LYQ), &, (z,Vv,) € LY(Q),
U (x, Up, an) vy, € Ll(Q), @, (x,Vvu,) v, € Ll(Q),

(A(vn),vn —u) + /Q (¥ (z,vn, VU,) + @y, (2, Vuy,)) (s, — u) dz (4.1)

/fn vp, —u)dr, Yve KyNLe(Q),
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where (f,,) is a sequence of smooth functions which converges strongly to f in L*(2) with || f,.|| @) <
Cy.

U (x,s,8) = P(z,58) and @, (z,§) = 1@&

1+ 2% (z,s,6)| + 512, 6)|
Note that ¥, (z, s,£) and @, (x, &) are satisfying the following conditions
¥ (z,5,§)] <n and [P (z,6)] <n

We define the operator W, : Wy P (Q,w) — W~1Pi (Q,w*) b

(Wpv,u) = /Q (¥(x,v,Vv) + &, (x, Vv)) udz.

Thanks to the classical result of Theorem 8.2 of [22] and by using the following lemma which we can be
proved by the same way as Lemma 4.2 of [22], the problem (4.1) has at least one solution v,.

Lemma 4.1 The operator B, = A+ ¥, from K, into WL (Q, w*) is pseudomonotone. Moreover,
B, is coercive in the following sense

(Bpu,u — ug)
[l

Taking u € Ky and choosing h > ||¢T || so as @ = T}, (v, — Tj (vn, — u)) € Ky N L°(Q). Using the test
function @ in (4.1) and letting h — +o0, we obtain

— 400 if ||ul| = +o0,u € Ky, where uy € Ky

(A (vp), Tk (v — ) —|—/Q ¥ (z,vp, VU,) + Dy (z, V)] Tk (v, — u) do+

(4.2)
< / foTk (v —u)dx, forallue Ky andforall k> 0.
Q
For k > k + |||, where p is defined in (3.9), taking u = ¢)"as a test function in (4.1) we get
<A (Un), Tk (vn — 1/J+)> + / [ (x,vn, VUn) + @y, (z, Vu,,)] Tk (vn — ﬁﬁ) dx
Q
(4.3)

< ‘/anTk (Un_w+)

which implies by using (3.12) and Young’s inequality

/ a(x,v,, Vu,) - VT (vn - w+) dx + / VU (x,vn, Vu,) Tk (vn — 1/1+) dx
Q

0
< kOﬁ—kZ/ il/ (8;;? pi_ld”"
. 5 N avn Pi
Ska-FC(k»Pi»N»ﬁ)/Q@(x) pldx—kEZ/wi(x) 9, dx
i N v |* B Ova [
gcmki;/{m_wgk}w( ) | Zar et ? Z/wn L v B

where CY, is a constant not depending on n and may be different at each occurrence. Using (3.11) together
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with the fact that |v,| >k — |97 > & on the set {|v, — ™| > k}, then we have
) £

pi 1
de < =
o0x; .

< k/ | (x, v, Vu,)|dx
{lon =9t |>k}

1
=13 / U (z,v5, Vop) Ty (v — ¢F) da
{lvn—yt[>k}

{lvn— ¢+|>k}

< / U (z,v5, Vop) Ty (v, — 9F) da
Q

Hence, we have

ou, |7
0 (%, Un, Von) - VT (v = 0F) do < Cr+ Z/ n|™ g
/Q | ) ( ) k {lon— w+|<k} ox;
This implies that
Di
/ a (z,vn, Vo) - Vopdr <Cj + = B E ’-/ wi() Ovuy, "
ton=wti=h {lvn—pF|<k} ox;

+ / |a (z,vn, Vo) - Vz/)+| dx.
{lvn—y+|<k}

By using Young’s inequality we obtain for a positive constant A

ﬂ N v P
a(x,vn, Vo) - Vogde <Cj + 7§ : wi(z) | 22
k
{lvn—9+|<k} i {|on—1p+|<k}

oz, dzx

JrZ/ \az (z, vn,an)|p7 - pl(az)dz

{|vn—9+|<k} pz
N

1
i / -w; (T
; {Jon—gpt| <k} PAP? (x)

Di

ot
aIz’

dr.

By virtue of (3.4), we get

w\m

/ (z,vp, Vuy,) - Vupdx
{lvn— ¢+|<k}
N 2
Z/ w;(x) Oun
= Jlon—v+i<k} I
AP
+2ralN [ e+ —afN / (2)
i Q {lvn— w+|<k}
)\pl ovy,
o' N
> >\axz
<Ok+ﬂ2/

)\Pi

%

dzr

{lon— w+\<k}

ovuy, |P
ox;

dx

{lvn— w+\<k}

_|_

- ozlf’/"N o(z) |v,|" dz
p; {Ivn|<k+llw+|\ }

)\P

; ZN /

i Z {lvn— w+\<k}
B AP o / ‘avn

<Ci + N

>Uk (kf Z {on— 1/)+‘<k} ) 8$1

ou, |P
ox;

dx

dz.
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Using the coercivity condition (3.6) we obtain

Ovuy, |7
@ dx
22:/Ivn w+|<k} 0x;
’ N ’.
B A / v, [P
=G - 70‘ PN wilx dz.
<k ' ; {lon—p+|<k} (z) ox;

Choosing A > 0 small enough such that ay > % + 2 o ozl ‘N for k > ==, then

N
S / wilx)
i—1 Y {lvn—9Y+[<k}

On the other hand, from (4.3) we have

ovy, [P

L

dx S Cl.

/ U (x,vn, Vo) T (vn — w+) dx <kCy + k/ |Py, (2, Vop,)| dx
Q Q

_/ a(a:,vn,an) : (Un ¢+)
{lvn—yF|<k}

which implies by using (3.12), (3.6) and Young’s inequality, that

/ VU (z,vp, VUn) Tk (’Un — w+) dx
Q

<kcf+k2/

— / a(x,v,, Vu,) - Vu,dz
{lvn—9F|<k}

an
63:1

L
Y
Py

s

dm + / a(z, v, Vuy,) - Vi da
{lon—pF|<k}

Ovuy, |P

i

d;v

<ACs +Clhp VBN [ 10l \piderAﬁZ/wz

+ / |a (z,vp, V) - Vz/}ﬂ dz.
{lvn =9+ |<k}

In view of (4.4), the last term of the right-hand side of (4.5) is uniformly bounded in n, then

v, |P*
U (x,v,, Vo) T, ) de <Cj + X / 2 dx
/Q ( i (v = 0) ; 62 {Jvn— ¢+|<k} ox;
v, [P
+ A8 / (z o dx.
Z Al

By using (3.11) we have for k > & + |||

Pi
kﬂZ/ Oun dr < k/ ¥ (x, v, Vu,)|dx
{lvn— 1/1+|>k} Li Q
< / VU (2,0, V) T (Un — 1/)+) dx
Q
Therefore, we obtain
ov,, |P Ovuy, [P
(k—=Np / dm < Crp+ M3 / dx
Z {lon— w+|>k} Ox; Z {Jon— ¢+|<k} Oz

<Cp+ )\501~



UNILATERAL ELLIPTIC PROBLEMS WITH L!— DATA...

Consequently
lonllly <€ (4.6)
where C is a constant not depending on n. The boundedness of the sequence (v,) in X with (3.3)
implies the existence of a function u in VVO1 Pi(Q,w) and a therefore subsequence, still denoted by (vy,),

such that
vn — v weakly in WP (Q,w), strongly in L%(Q,0) and a.e. in Q. (4.7
4.2. Step 2: Almost everywhere convergence of the gradients.

2
For k > |4 |land 6 > (M) let o(s) = se?”. Tt is well known that for all s € R one has

2@2
b(k) 1
1(a) > 4.8
w(s) =l = 5 (4.8)
where k is a fixed real number which will be used as a level of truncation. Let n = e~40k* and

zn = Tk (V) — Tx(v). Using v, = v, — n¢ (25,) as a test function in (4.1) to get

U (z, 0, V) Tar (N (2)) dx + /Q D, (z, Vo) Tsk, (ne (2,)) dz

(A (v0) , T, (2 () + /

Q

< [ T (g (za)) o
Q
We have |ng (z,)] < |zn| < 2k < 3k, so

W(:r,vn,an)go(zn)der/@n (x,Vu,) ¢ (z,) dx

(A (0) 10 (2n)) + / [
(4.9)

Q
< /Q o (zn) dz.

Since ¢ (z,) — 0 weakly in L>°(Q2) and f, — f strongly in L'(Q), the right-hand side of (4.9)
converges to zero when n tends to co. As for the last term of the left-hand side of (4.9) we have

1, pi—1

N
/Q By (2, Vo) 0 (2)| i < /Q 2)p (o)l 3wl @)

i—1
< Hhﬁﬂ(zn)HLm(Q) I onlls™ -

ovy,
83%

dz

The Lebesgue dominated convergence theorem easily implies
D(x)p (#n) — 0 strongly in LPi(£2)
and from (4.6) we conclude that

/ |Py, (z, V) ¢ (2,)] dx — 0, as n — .
Q

By using the fact that ¥ (x, vy, Vu,) ¢ (2,) > 0 on the subset {z € Q: |v,| > k}, we can write (4.9) as
follows
A o)+ [ W Vo)) ds < am) (4.10)
{lvnl<k}
where ¢;(n), (i = 1,2,...), denote various sequences of real numbers which converge to zero when n
tends to co. On the one hand
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(A (vn), ¢ (2n)) /{ - a(z,vn, Vo) - (VT (V) = VT (v)) ¢’ (20) dz
+ / a (z,Vn, V,) - (VT (vp) — VT (V) ¢’ (2,) dz
{lvn|>k}
:/Qa(a:,Tk (0n) sV Tk (1n)) - (VTk (0) — VTk(0)) &' (2) da
— / a (2, Un, VU,) - VT (0)@ (2,) dx
{lvn|>k}

:/Q la (2, T (0n) , VT (vn)) — @ (2, T () s VT (0))]
VT (vn) — VTR (0)] ¢ (20) dz

+ / a(z, Ty (vn),VT(v)) - (VTk (vn) — VT§(0)) ¢ (2,) dz
Q

- / a(x,v,, Vo) - VT (v)¢' (2,,) dz.
{"Un|>k}

Concerning the second term of the right-hand side of the above equality, by using (4.7) and Lemma
2.4, we have T}, (v,) — Ti(v) weakly in Wy (2, w). Thus

VT (v,) — VT (v) weakly in TIY | LP* (Q, w;) . (4.11)

Moreover, by the growth condition (3.4) we can show the equi-integrability of the sequence
(a(z, Tk (vpn) , VIK(v)) ¢’ (21)),,- Then, from (4.7) we have

a(z, Ty (vn),VTE () ¢ (zn) = a(x, Tk (v), VTk(v)) a.e. in Q.

Therefore by using Vitali’s theorem one has
a(z, Ty (vn),VTE () ¢ (z) = a(x, Tk (v), VT (v)) strongly in HiI\LILp; (Qwy)). (4.12)
Since (4.11) and (4.12) we deduce that
/Qa (2, Ty (vn), VT(v)) - (VT (vn) — VT () ¢ (25) dz — 0 when n — oco.

Thanks to (3.2), (4.6) and (4.7), the sequence (a(z, vy, Vu,) ¢ (2,)),, is bounded in TIN | LPi (€, w?).

Then, since VT (v)X{ju, >k} — 0 strongly in Y, LPi (9, w;), we have

n

/ a(x,v,, Vu,) - VT (v)¢' (2,) dz — 0 when n — oo.
{lvn|>k}

Consequently we can write

(A(vn), ¢ (2n)) :/Q [a (2, Tk (vn) , VTi (vn)) — a (2, Tk (Un) , VTi(v))]
VTk (vn) — VT(0)] @ (20) dx + e2(n).

(4.13)

By using (3.6) and (3.10), the second term in the left hand-side of (4.10), yields
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/ W(x,vvan)ga(zn) dl}
{on|<k}

N

= /{Iun<k} " (Z i)

i=1

/| )l (20)| e + b(k /
{lvn\<k}11

< e3(n) + b(k / Z ’aTngn)

< <y(m) + 2 [ 4T () VT (0) - Vi (00) [ (o) s

= o)+ [ fa, T (00) VT (00) = 00T (0) VT (0)]

VT (vn) = VT (0)] | (20)] d

Ovu, |*

ai]']i

't lela )I) | (2n)| d

6vn pi

i

|l (2n)| dz

|0 (2n)| d

" %]Z) /Q a(z, Ty (vn) , VTi (vn)) - VTi(0) [0 (20) | d
0T ), VT (VT (00) ~ VT (@) o )
az Jo

For the last term we have

‘/Qa(ﬂCka (n), VI (0)) - (VT (vn) — VIk(v))| ¢ (2n) |dz|
< o(2k) /Q la (@, T (Un) , VTk(0))] [V Tk () — VT (0)| da.

As in (4.12), we use (3.4), (4.7) and Vitali’s theorem to obtain
a(z, Ty (V) , VTi(v)) = a (z, Ti(v), VT (v)) strongly in IIN | LPé (Q,w}).
By using (4.11) we get

/Qa(x,Tk (Un) ,, VT (v)) - (Vi (vn) — VT (0)) |¢ (zn)]| dz — 0 as n — 0.

In addition, the sequence (a (,T) (vn), VT (v,))), converges weakly in TIY | LPi (€, w?) to a function

I, thanks to (3.4) and (4.6). Thus

n

[ 0@ T (0) 9T (0) - V(o) ¢ (2 d

= / (a(x, Tk (vn),VTk (Un)) = lx) - VIR(V) |@ (2)| dx + / Iy - VT (v) o (zn)] dz.
Q Q

By using ¢ (2,) — 0 weakly in L>°(Q2), we deduce that

/Qa (x, Tk (vn) , VTi (vn)) - VIR (v) |¢ (zn)] dz — 0 as n — oo.

/ U (z,0p, VU,) @ (2) do
{lvnl<k}

<ealw) + "0 [ 0@, Te (02), VT3 (00) = a2 T (00) VT )

(VT (vn) = VT (0)] | (2n)] d
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which with (4.10) and (4.13) give

/Q [a (z, T (vn) , VTi (vn)) = a(z, Ty (vn) , VTi(v))] - [VTg (vn) = VTi(v)]

(w’ (2n) — 281 (zn>) dz < e5(n).

Using (3.5) and (4.8)to obtain
0< 5 [ 10T (0,) VT (02)) = (. T (0) . VT(0))] - [V (1) = VT (0)] di < ()
Then

/Q [a(z, Tk (vn) , VT (Un)) — a (z, Tk (vn) , VIR(0))] - [VTi (vn) — VI (V)] dz — 0 as n — .

By virtue of Lemma 3.1 and the fact that T} (v,) — Ty (v) weakly in W, (Q,w), we conclude that

Ty (V) — Ti(v) strongly in Wy P (Q, w) for any fixed k > ot (4.14)
So that

N
VT (v,) = VI (v) strongly in H LY (Q,w;) .
i=1

As in [11], we deduce that there exists a subsequence still denoted by v, such that

Vu, - Vv ae. in . (4.15)
4.3. Step 3: Equi-integrability of the non-linearities ¥ (z, v, Vvu,) + @, (z, Vu,).
By using Vitali’s theorem we will show that

W (2,0, V) + Dy (1, VUp,) = ¥(x,v, Vo) + b(z, Vo) strongly in L' (Q). (4.16)
Thanks to (4.7) and (4.15) we have

¥ (z,vp, VU,) + & (2, Vu,) = (2,0, Vv) + &(z, Vv) a.e. in €,

so it suffices to prove that ¥ (x,v,, Vu,) + &, (x, Vv,) is uniformly equi-integrable in Q. For any
measurable subset E of Q2 and any m > 0 we have

/ |y7 (l‘, Uns an) + @n (Jf, V’Un)| dx

E

:/ ‘W(ZL’,U”,V’U")—FQI)H (JS,VUn)\dJS
EO{jvnl<m}

+ / | (2,0, VU,) + Dy, (z, V)| dz
En{|vn|>m}

N i (4.17)
< /Eb(m) <c(x) + ;wl(x) ) dx

+ (/E e (x)dx) g i:; (/E wi(x) " dm) g

+/ ‘W(l',’uruv’l}n)"‘@n (.’13‘7V’Un)‘d33
En{|vn|>m}

0T, (Up)
8@-

0T (v)
6%—
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In view of (4.14) for any € > 0 there exists u(e,m) > 0 such that for all E satisfying |E| < u(e,m)
we have

(4.18)

S

e ([rean) 3 ([ o) [l ) f

=1 [

N ™

Now, for m > 2+ ||[¢ ", we define a function ¢,, satisfying for all s € R

Om(s)=0 if|s|<m—1,
(s)=1 iftm—1<]1s| <m,
Om(s) =57 i [s| = m.

Note that v, — ¢, () € Ky, then by using it as test function in (4.2) we get

<A (Un) T ((bm (Un))> + /Q (!P (.%', Un, V’Un) + P, ($7 V'Un)) T, (qu (Un)) dx

< /Q FaTh (6 (v2)) do

which implies, for k > 1

/ a(z,vn, Vo) - Vo, @l (vy,) do + / (@ (2, 0n, VUp) + §p (2, VUp)) ¢ () dx
Q Q

< /ﬂ Fam (0) dz.

Since (3.6) and by using the fact that ¢,, (v,) and v,, have the same sign we conclude that

/ | (z,vp, V)| de < / |P., (x,an)|dx+/ | fru| dx.
{lvn|>m} {lvn|>m—1} {lvn|>m—1}

The right-hand side of the above inequality converges to 0 uniformly in n when m tends to oo by using
(3.12), Holder’s inequality, f,, — f strongly in L'(2) and the fact that |{|v,| > m}| — 0 uniformly in n
when m — oco. Hence there exists m(g) > 1 such that

/ W (2, v, V)| dz < = V. (4.19)
{lval>m} 2
Finally from (4.17), (4.18) and (4.19) we have
/ | (z,vp, VU,) + Py, (z, V)| de < e Vn,
E

if |[E| < p(e) for some u(e) > 0, which gives the uniform equi-integrability in Q of ¥ (z,v,, Vu,) +
Dy, (z, Vo).
4.4. Step 4: Passage to the limit.

We can write (4.2) as follows

/ a (z,vn, Vo) - VI (vy, —u) dx + / (¥ (2,0, VUp) + Py, (2, V) Ty (vy, — u) dz
o Q (4.20)

< /anTk (U, — u) de.
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for all v € Ky N L>®(Q) and all & > 0. From (3.4) and (4.6) we have a (z,v,, Vv,) is bounded in
Y | LPi (Q,w*) and since (4.7) and (4.15) we have a (z, v, Vo, ) — a(z,v, Vo) a.e. in Q. Therefore by
Lemma 2.3 we obtain

a (2, vn, V) = a(z, v, Vu) weakly in IV | LPi (Q, w}) .

Let E be a measurable subset in  and for ¢ = 1,..., N we have
= 0Ty (vp, — ) / = 0 (vn, — w)
v () | 2 T gy = P () | S W Cwlemrd
\/;wl (fﬂ) axi €z 5 w; (I’) 81‘1- X{|'Un u|<k} L

ou
(“)xi

L ov
< i —
_/sz (x)< 3o, )X{un<k+u|w}dﬁf
It julloo (Vn)

1 au 1
< [wF@|gtars [ v (a:)\ 1

By using (4.7), (4.14) and Vitali’s theorem we get VT, (v, — u) — VT (v—u) strongly in TIY | LPi (Q, w;).
So that

dx.

/ a (z,vpn, Vo) - VI, (v, —u) de — / a(z,v,Vv) - VI (v — u)dx as n — oo.
Q Q

Finally we use (4.16) and the fact that f, — f strongly in L'(Q) for passing to the limit in (4.20)
and this complete the proof of Theorem (3.1).
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