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Unilateral Elliptic Problems with L1−data in Anisotropic Weighted Sobolev Spaces

Ouidad AZRAIBI, Badr EL HAJI, Ibrahim EN-NAJI and Ismail JAMIAI

abstract: In this work, we prove an existence result for a class of strongly nonlinear elliptic equations given
by

−div(a(x, υ,∇υ)) + Ψ(x, υ,∇υ) + Φ(x,∇υ) = f in Ω

where the source term f belongs to L1(Ω). The function Ψ is assumed to have critical growth with respect
to the gradient ∇υ, without any growth restriction concerning the variable υ, while the function Φ(x,∇υ)
grows as |∇υ|pi−1..

Keywords:Anisotropic weighted Sobolev spaces, anisotropic degenerate elliptic equations, entropy
solutions, L1-data.
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1. Introduction

Let Ω be a bounded open subset of RN , where N ≥ 2, and let p be a real number such that 1 <
p < ∞. Consider a vector of weight functions w(·) = {wi(·) : i = 0, . . . , N}, where each wi(·) is a
measurable function that is strictly positive almost everywhere in Ω and satisfies certain integrability
conditions (refer to the Preliminaries section for details). We define the weighted anisotropic Sobolev
space X =W 1,pi

0 (Ω, w) corresponding to the weight vector w.
We examine the following nonlinear Dirichlet problem:{

v ∈W 1,pi
0 (Ω, w), Ψ(x, v,∇v) ∈ L1(Ω), Φ(x,∇v) ∈ L1(Ω)

A(v) + Ψ(x, v,∇v) + Φ(x,∇v) = f in D′(Ω)
(1.1)

where f is a given element in the space of distributions D′(Ω).
Here, the operator A(v) is defined as A(v) = −div(a(x, v,∇v)), representing a Leray-Lions type

operator that maps elements from X into its dual space X∗ = W−1,p′i (Ω, w∗). The dual weight vector

w∗ =
{
w∗
i = w

1−p′i
i : i = 0, 1, . . . , N

}
, and p′i denotes the Holder conjugate of pi, that is, p

′
i =

pi
pi−1 .

The nonlinear lower-order term Ψ(x, v,∇v) exhibits at most a growth rate proportional to |∇v|pi .
Additionally, it fulfills a sign condition relative to its second argument, and it also verify a coercivity
condition as specified below.
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|Ψ(x, s, ξ)| ≥ β

N∑
i=1

wi(x) |ξi|pi

for sufficiently large |s|. The term Φ(x,∇υ) grows at most like |∇υ|pi−1. We study problem (1.1) in
a non-variational framework, where f ∈ L1(Ω).

When H ≡ 0 and in the variational setting-specifically when the source term f belongs to
W−1,p′ (Ω, w∗) -an existence result for the following unilateral problem has been established in [2]:

υ ∈ Kψ, Ψ(x, υ,∇υ) ∈ L1(Ω), Ψ(x, υ,∇υ)υ ∈ L1(Ω)

⟨A(υ), υ − u⟩+
∫
Ω

Ψ(x, υ,∇υ)(υ − u)dx ≤ ⟨f, υ − u⟩

for all u ∈ Kψ ∩ L∞(Ω)

which corresponds to the equation in problem (1.1). The proof relies on a method involving the strong
convergence of the approximated solutions’ positive and negative parts, denoted υ+ε and υ

−
ε , respectively.In

the non-variational setting, where f ∈ L1(Ω), the term∫
Ω

f(υ − u)dx,

is not well-defined, and as a result, the previous formulation is no longer applicable. To address this,
the authors in [6] established an existence result for the unilateral problem using a different approach
based on the strong convergence of truncations. The problem is formulated as follows:

υ ∈ Kψ, Ψ(x, υ,∇υ) ∈ L1(Ω)

⟨A(υ), Tk(υ − u)⟩+
∫
Ω

Ψ(x, υ,∇υ)Tk(υ − u)dx ≤
∫
Ω

fTk(υ − u)dx

for all u ∈ Kψ and all k > 0

where Tk denotes the truncation function at level k, and the convex set Kψ is defined by

Kψ =
{
υ ∈W 1,p

0 (Ω, w) : υ ≥ ψ a.e. in Ω
}

In the weighted case (i.e., when w ≡ 1 ) and for nonzero Φ, Del Vecchio studyied problem (1.1) in [12],
under the assumption that Φ depends only on x and υ. When g also depends on ∇υ, existence results
for problem (1.1) were first established by Monetti and Randazzo in [23] for the equation case.

Extensive research has been devoted to examining the existence of solutions for parabolic and elliptic
problems under different sets of hypotheses. For a comprehensive overview, readers can refer to the
extensive studies and publications available on this subject (see [9,10,15,16,17,18,19,4,5,20]).

The primary objective of this paper is to establish an existence result for degenerate unilateral prob-
lems related to (1.1), in the setting where Φ ̸= 0 and the source term f belongs to L1(Ω). Our result
extends the work presented in [24] to the framework of anisotropic weighted Sobolev spaces.

The remainder of the paper is structured as follows: Section 2 provides the necessary preliminaries,
including notations, assumptions, and several technical lemmas essential for the analysis. In Section 3,
we present the main result, and in the final section, we provide the detailed proof of this result.

2. Preliminaries

2.1. Anisotropic weighted Sobolev spaces

In this work, we extend the concept of Sobolev spaces by introducing a new class of anisotropic weighted
Sobolev spaces. Let Ω denote a bounded open subset of RN , p0, p1, . . . , pN be N + 1 exponents with
1 < pi < ∞ for i = 0, 1, . . . , N and w = {wi(x), 0 ≤ i ≤ N} represent a collection of measurable weight
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functions that are almost everywhere strictly positive on Ω. We also adopt the following assumption:
there exist

wi ∈ L1
loc(Ω), (2.1)

w
−1

pi−1

i ∈ L1
loc(Ω), (2.2)

for any 0 ≤ i ≤ N . The anisotropic weighted orlicz space Lpi(Ω, γ), where γ is a weight function on Ω
will be formulated by the following expression,

Lpi(Ω, γ) =
{
υ = υ(x), υγ

1
pi ∈ Lpi(Ω)

}
and endowed by the norm

∥υ∥Lpi (Ω,γ) = ∥υ∥pi,γ =

(∫
Ω

|υ(x)|piγ(x)dx
) 1

pi

.

We put

(p) = (p0, . . . , pN ) , D0υ = υ and Diυ =
∂υ

∂xi
for i = 1, . . . , N,

and we consider that

p = min {p0, p1, . . . , pN} then p > 1. (2.3)

The anisotropic weighted Sobolev space W 1,(pi)(Ω, w) is defined as the space of real-valued functions

υ ∈ Lp0 (Ω, w0) =

{
υ(x), υw

1
p0
0 ∈ Lp0(Ω)

}
such that the derivatives in the sense of distributions fulfill

Diυ ∈ Lpi (Ω, wi) for i = 1, . . . , N

Which is a Banach space endowed by the following norm

∥υ∥1,(pi),w = ∥υ∥p0,w0
+

N∑
i=1

∥∥∥∥ ∂υ∂xi
∥∥∥∥
pi,wi

. (2.4)

The hypothesis (2.1) ensures that C∞
0 (Ω) ⊂ W 1,(pi)(Ω, w) and consequently, we may define the

subspace V =W
1,(pi)
0 (Ω, w) of W 1,(pi)(Ω, w) as the closure of C∞

0 (Ω) with respect to the norm (2.4).

Moreover, condition (2.2) ensures that W 1,(pi)(Ω, w) and W
1,(pi)
0 (Ω, w) are reflexive Banach spaces.

We notice that the dual space of weighted Sobolev spacesW
1,(p)
0 (Ω, w) is equivalent toW−1,(p′) (Ω, w∗),

where w∗ =
{
w∗
i = w1−p′

i , i = 0, . . . , N
}

and (p′i) = (p′0, p
′
1, . . . , p

′
N ) where p′ is the conjugate of pi; i.e.,

p′i =
pi
pi−1 , (see [13] for the isotropic case).

We further define T 1,pi
0 (Ω, w) as follows

T 1,pi
0 (Ω, w) =

{
υ : Ω → R measurable : Tk(υ) ∈W 1,pi

0 (Ω, w), ∀k ≥ 0
}
,

where Tk : R → R is the truncation at height k defined by Tk(s) = max(−k,min(k, s)).

2.2. Technical results

Lemma 2.1 [7] Let Ω be a bounded open subset of RN , w a weight function on Ω, if (2.1) and (2.2)
are verified then Lpi(Ω, w) ↪→ L1

loc(Ω).

Lemma 2.2 ( [21]Theorem 13.47) Let (υn)n be a sequence in L1(Ω) and υ ∈ L1(Ω) such that

1. υn → υ a.e. in Ω,



4 O. AZRAIBI, B. EL HAJI, I. EN-NAJI and I. JAMIAI

2. υn ≥ 0 and υ ≥ 0 a.e. in Ω,

3.
∫
Ω
υndx→

∫
Ω
υdx

then υn → υ in L1(Ω).

Lemma 2.3 [1] Let γ a weight function, f ∈ Lr(Ω, γ), and (fn)n ⊂ Lr(Ω, γ) such that ∥fn∥r,γ ≤
c, 1 < r <∞ If fn(x) → f(x) a.e. in Ω, then fn → f weakly in Lr(Ω, γ).

Lemma 2.4 (See lemma 8 in [8]) Let (un)n be a bounded sequence in W
1,(pi)
0 (Ω, ω). If un ⇀ u weakly

in W
1,(pi)
0 (Ω, ω), therefore Tk (un)⇀ Tk(u) weakly in W

1,(pi)
0 (Ω, ω) for any k > 0.

3. Basic Assumptions and Existence Results

We state the following assumptions:
Assumption (H1) :
- The space X =W 1,pi

0 (Ω, w) is fitted with the norm

|||υ|||X =

(
N∑
i=1

∫
Ω

∣∣∣∣ ∂υ∂xi
∣∣∣∣pi wi(x)dx

) 1
pi

and it is equivalent to the norm (2.4). Note that (X, |||υ|||X) is a uniformly convex and thus reflexive
Banach space.

- We can find a weight function σ on Ω such that

σ ∈ L1(Ω) and σ1−q′i ∈ L1
loc(Ω) (3.1)

for some parameter 1 < qi < pi + p′i and q
′
i = qi/(qi − 1), such that the Hardy inequality

(∫
Ω

|υ(x)|qiσdx
) 1

qi

≤ c

(
N∑
i=1

∫
Ω

∣∣∣∣ ∂υ∂xi
∣∣∣∣pi wi(x)dx

) 1
pi

(3.2)

holds for every υ ∈ X with a constant c > 0 independent of υ. Furthermore, the imbedding X ↪→
Lqi(Ω, σ) reached by the Hardy inequality (3.2) is compact, i.e.

X ↪→↪→ Lqi(Ω, σ) (3.3)

Assumptions (H2) :
Let A(υ) = − div a(x, υ,∇υ) be the Leray-Lions operator acting from W 1,pi

0 (Ω, w) into its dual

W−1,p′i (Ω, w∗), where a : Ω × R × RN → RN is a Carathéodory function satisfying, for a.e x ∈ Ω,
for all s ∈ R and all ξ, ξ∗ ∈ RN (ξ ̸= ξ∗), the following assumptions:

|ai(x, s, ξ)| ≤ α1w
1
pi
i (x)

δ(x) + σ
1
p′
i |s|

qi
p′
i +

N∑
j=1

w
1
p′
i
j (x) |ξj |pi−1

 , for i = 1, . . . , N, (3.4)

[a(x, s, ξ)− a (x, s, ξ∗)] · [ξ − ξ∗] > 0, (3.5)

a(x, s, ξ) · ξ ≥ α2

N∑
i=1

wi(x) |ξi|pi (3.6)

where δ(·) is a positive function in Lp
′
i(Ω), σ is the weight function already defined in (3.1) and α1, α2

are positive constants.
Let Ψ : Ω × R × RN → R and H : Ω × RN → R be two Carathéodory functions satisfying, for a.e

x ∈ Ω and for all s ∈ R, ξ ∈ RN , the following assumption Assumption (H3) :
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Ψ(x, s, ξ)s ≥ 0 (3.7)

|Ψ(x, s, ξ)| ≤ b(|s|)

(
c(x) +

N∑
i=1

wi(x) |ξi|pi
)

(3.8)

|Ψ(x, s, ξ)| ≥ β

N∑
i=1

wi(x) |ξi|pi for |s| > κ, (3.9)

|Φ(x, ξ)| ≤ h(x)

N∑
i=1

w
1
p′
i
i (x) |ξi|pi−1

(3.10)

where β > 0, κ > 0, b : R+ → R+is a continuous increasing function, c ∈ L1(Ω) and h ∈ Lr(Ω) with
r > max(N, pi). Given a measurable function ψ : Ω → R, called an obstacle function, such that

ψ+ ∈W 1,pi
0 (Ω, w) ∩ L∞(Ω), (3.11)

and consider the set Kψ =
{
υ ∈W 1,pi

0 (Ω, w) : υ ≥ ψ a.e. in Ω} which is convex. We assume that the

source term

f ∈ L1(Ω). (3.12)

We shall prove the following existence result concerning the nonlinear Dirichlet boundary value prob-
lem (1.1).

Theorem 3.1 Under the assumptions (3.4)-(3.12), there exists at least one solution of (1.1) in the
following sense 

υ ∈ Kψ, Ψ(x, υ,∇υ) ∈ L1(Ω), Φ(x,∇υ) ∈ L1(Ω),

⟨A(υ), Tk(υ − u)⟩+
∫
Ω

(Ψ(x, υ,∇υ) + Φ(x,∇υ))Tk(υ − u)dx

≤
∫
Ω

fTk(υ − u)dx, ∀u ∈ Kψ ∩ L∞(Ω), ∀k > 0.

Lemma 3.1 [3]Assume that (H1) and (H2) are fulfilled. For any sequence (υn) weakly convergent to u
in W 1,pi

0 (Ω, w) such that ∫
Ω

[a (x, υn,∇υn)− a (x, υn,∇υ)] · [∇υn −∇υ] dx→ 0

we have υn → υ strongly in W 1,pi
0 (Ω, w).

4. Proof of Theorem 3.1

4.1. Step 1: A priori estimates.

Let Ωn be a sequence of compact subsets of Ω such that Ωn is increasing to Ω as n → ∞. Let us
define

Ψn(x, s, ξ) =
Ψ(x, s, ξ)

1 + 1
n |Ψ(x, s, ξ)|

χΩn
and Φn(x, ξ) =

Φ(x, ξ)

1 + 1
n |Φ(x, ξ)|

χΩn

where χΩn
is the characteristic function of Ωn.

Consider the sequence of approximate problems

υn ∈ Kψ, Ψ (x, υn,∇υn) ∈ L1(Ω), Φn (x,∇υn) ∈ L1(Ω),
Ψ (x, υn,∇υn) υn ∈ L1(Ω), Φn (x,∇υn) υn ∈ L1(Ω),

⟨A (υn) , υn − u⟩+
∫
Ω

(Ψ (x, υn,∇υn) + Φn (x,∇υn)) (υn − u) dx

≤
∫
Ω

fn (υn − u) dx, ∀v ∈ Kψ ∩ L∞(Ω),

(4.1)
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where (fn) is a sequence of smooth functions which converges strongly to f in L1(Ω) with ∥fn∥L1(Ω) ≤
Cf .

Ψn(x, s, ξ) =
Ψ(x, s, ξ)

1 + 1
n |Ψ(x, s, ξ)|

and Φn(x, ξ) =
Φ(x, ξ)

1 + 1
n |Φ(x, ξ)|

Note that Ψn(x, s, ξ) and Φn(x, ξ) are satisfying the following conditions

|Ψn(x, s, ξ)| ≤ n and |Φn(x, ξ)| ≤ n

We define the operator Ψn :W 1,pi
0 (Ω, w) →W−1,p′i (Ω, w∗) by

⟨Ψnυ, u⟩ =
∫
Ω

(Ψ(x, υ,∇υ) + Φn(x,∇υ))udx.

Thanks to the classical result of Theorem 8.2 of [22] and by using the following lemma which we can be
proved by the same way as Lemma 4.2 of [22], the problem (4.1) has at least one solution υn.

Lemma 4.1 The operator Bn = A + Ψn from Kψ into W−1,p′i (Ω, w∗) is pseudomonotone. Moreover,
Bn is coercive in the following sense

⟨Bnu, u− u0⟩
∥u∥

→ +∞ if ∥u∥ → +∞, u ∈ Kψ, where u0 ∈ Kψ

Taking u ∈ Kψ and choosing h ≥ ∥ψ+∥∞ so as ũ = Th (υn − Tk (υn − u)) ∈ Kψ ∩L∞(Ω). Using the test
function ũ in (4.1) and letting h→ +∞, we obtain

⟨A (υn) , Tk (υn − u)⟩+
∫
Ω

[Ψ (x, υn,∇υn) + Φn (x,∇υn)]Tk (υn − u) dx+

≤
∫
Ω

fnTk (υn − u) dx, for all u ∈ Kψ and for all k > 0.

(4.2)

For k ≥ κ+ ∥ψ+∥∞, where ρ is defined in (3.9), taking u = ψ+as a test function in (4.1) we get

〈
A (υn) , Tk

(
υn − ψ+

)〉
+

∫
Ω

[Ψ (x, υn,∇υn) + Φn (x,∇υn)]Tk
(
υn − ψ+

)
dx

≤
∫
Ω

fnTk
(
υn − ψ+

) (4.3)

which implies by using (3.12) and Young’s inequality∫
Ω

a (x, υn,∇υn) · ∇Tk
(
υn − ψ+

)
dx+

∫
Ω

Ψ (x, υn,∇υn)Tk
(
υn − ψ+

)
dx

≤ kCf + k

N∑
i=1

∫
Ω

Φ(x)w
1
p′

i (x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi−1

dx

≤ kCf + C(k, pi, N, β)

∫
Ω

|Φ(x)|pidx+
β

k

N∑
i=1

∫
Ω

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi dx
≤ Ck +

β

k

N∑
i=1

∫
{|υn−ψ+|≤k}

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi dx+
β

k

N∑
i=1

∫
{|υn−ψ+|>k}

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi dx,
where Ck is a constant not depending on n and may be different at each occurrence. Using (3.11) together
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with the fact that |υn| ≥ k − ∥ψ+∥∞ ≥ κ on the set {|υn − ψ+| > k}, then we have

β

k

N∑
i=1

∫
{|υn−ψ+|>k}

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi dx ≤ 1

k

∫
{|υn−ψ+|>k}

|Ψ (x, υn,∇υn)| dx

=
1

k2

∫
{|υn−ψ+|>k}

Ψ (x, υn,∇υn)Tk
(
υn − ψ+

)
dx

≤
∫
Ω

Ψ (x, υn,∇υn)Tk
(
υn − ψ+

)
dx.

Hence, we have∫
Ω

a (x, υn,∇υn) · ∇Tk
(
υn − ψ+

)
dx ≤ Ck +

β

k

N∑
i=1

∫
{|υn−ψ+|≤k}

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi dx.
This implies that∫

{|υn−ψ+|≤k}
a (x, υn,∇υn) · ∇υndx ≤Ck +

β

k

N∑
i=1

∫
{|υn−ψ+|≤k}

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi dx
+

∫
{|υn−ψ+|≤k}

∣∣a (x, υn,∇υn) · ∇ψ+
∣∣ dx.

By using Young’s inequality we obtain for a positive constant λ∫
{|υn−ψ+|≤k}

a (x, υn,∇υn) · ∇υndx ≤Ck +
β

k

N∑
i=1

∫
{|υn−ψ+|≤k}

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi dx
+

N∑
i=1

∫
{|υn−ψ+|≤k}

λp
′
i

p′i
|ai (x, υn,∇υn)|p

′
i w

1−p′i
i (x)dx

+

N∑
i=1

∫
{|υn−ψ+|≤k}

1

pλpi
wi(x)

∣∣∣∣∂ψ+

∂xi

∣∣∣∣pi dx.
By virtue of (3.4), we get ∫

{|υn−ψ+|≤k}
a (x, υn,∇υn) · ∇υndx

≤Ck +
β

k

N∑
i=1

∫
{|υn−ψ+|≤k}

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi dx
+
λp

′
i

p′i
α
p′i
1 N

∫
Ω

δp
′
i(x)dx+

λp
′
i

p′i
α
p′i
1 N

∫
{|υn−ψ+|≤k}

σ(x) |υn|qi dx

+
λp

′
i

p′i
α
p′i
1 N

N∑
i=1

∫
{|υn−ψ+|≤k}

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi dx
≤Ck +

β

k

N∑
i=1

∫
{|υn−ψ+|≤k}

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi dx
+
λp

′
i

p′i
α
p′i
1 N

∫
{|υn|≤k+∥ψ+∥∞}

σ(x) |υn|qi dx

+
λp

′
i

p′i
α
p′i
1 N

N∑
i=1

∫
{|υn−ψ+|≤k}

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi dx
≤Ck +

(
β

k
+
λp

′
i

p′i
α
p′i
1 N

)
N∑
i=1

∫
{|υn−ψ+|≤k}

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi dx.
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Using the coercivity condition (3.6) we obtain

α2

N∑
i=1

∫
{|υn−ψ+|≤k}

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi dx
≤ Ck +

(
β

k
+
λp

′
i

p′i
α
p′i
1 N

)
N∑
i=1

∫
{|υn−ψ+|≤k}

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi dx.
Choosing λ > 0 small enough such that α2 >

β
k + λp′i

p′i
α
p′i
1 N for k > β

α2
, then

N∑
i=1

∫
{|υn−ψ+|≤k}

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi dx ≤ C1. (4.4)

On the other hand, from (4.3) we have∫
Ω

Ψ (x, υn,∇υn)Tk
(
υn − ψ+

)
dx ≤kCf + k

∫
Ω

|Φn (x,∇υn)| dx

−
∫
{|υn−ψ+|≤k}

a (x, υn,∇υn) · ∇
(
υn − ψ+

)
dx

which implies by using (3.12), (3.6) and Young’s inequality, that∫
Ω

Ψ (x, υn,∇υn)Tk
(
υn − ψ+

)
dx

≤ kCf + k

N∑
i=1

∫
Ω

Φ(x)w
1
p′
i
i (x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi−1

dx+

∫
{|υn−ψ+|≤k}

a (x, υn,∇υn) · ∇ψ+dx

−
∫
{|υn−ψ+|≤k}

a (x, υn,∇υn) · ∇υndx

≤ kCf + C(k, pi, N, β, λ)

∫
Ω

|Φ(x)|pidx+ λβ

N∑
i=1

∫
Ω

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi dx
+

∫
{|υn−ψ+|≤k}

∣∣a (x, υn,∇υn) · ∇ψ+
∣∣ dx.

(4.5)

In view of (4.4), the last term of the right-hand side of (4.5) is uniformly bounded in n, then∫
Ω

Ψ (x, υn,∇υn)Tk
(
υn − ψ+

)
dx ≤Ck + λβ

N∑
i=1

∫
{|υn−ψ+|≤k}

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi dx
+ λβ

N∑
i=1

∫
{|υn−ψ+|>k}

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi dx.
By using (3.11) we have for k > κ+ ∥ψ+∥∞

kβ

N∑
i=1

∫
{|υn−ψ+|>k}

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi dx ≤ k

∫
Ω

|Ψ (x, υn,∇υn)| dx

≤
∫
Ω

Ψ (x, υn,∇υn)Tk
(
υn − ψ+

)
dx.

Therefore, we obtain

(k − λ)β

N∑
i=1

∫
{|υn−ψ+|>k}

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi dx ≤ Ck + λβ

N∑
i=1

∫
{|υn−ψ+|≤k}

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi dx
≤ Ck + λβC1.
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Consequently

∥|υn∥|X ≤ C (4.6)

where C is a constant not depending on n. The boundedness of the sequence (υn) in X with (3.3)
implies the existence of a function u in W 1,pi

0 (Ω, w) and a therefore subsequence, still denoted by (υn),
such that

υn ⇁ υ weakly in W 1,pi
0 (Ω, w), strongly in Lqi(Ω, σ) and a.e. in Ω. (4.7)

4.2. Step 2: Almost everywhere convergence of the gradients.

For k ≥ ∥ψ+∥and θ ≥
(
b(k)
2α2

)2
let φ(s) = seθs

2

. It is well known that for all s ∈ R one has

φ′(s)− b(k)

α2
|φ(s)| ≥ 1

2
(4.8)

where k is a fixed real number which will be used as a level of truncation. Let η = e−4θk2 and
zn = Tk (υn)− Tk(υ). Using vn = υn − ηφ (zn) as a test function in (4.1) to get

⟨A (υn) , T3k (ηφ (zn))⟩+
∫
Ω

Ψ (x, υn,∇υn)T3k (ηφ (zn)) dx+

∫
Ω

Φn (x,∇υn)T3k (ηφ (zn)) dx

≤
∫
Ω

fnT3k (ηφ (zn)) dx.

We have |ηφ (zn)| ≤ |zn| ≤ 2k < 3k, so

⟨A (υn) , φ (zn)⟩+
∫
Ω

Ψ (x, υn,∇υn)φ (zn) dx+

∫
Ω

Φn (x,∇υn)φ (zn) dx

≤
∫
Ω

fnφ (zn) dx.

(4.9)

Since φ (zn) ⇀ 0 weakly in L∞(Ω) and fn → f strongly in L1(Ω), the right-hand side of (4.9)
converges to zero when n tends to ∞. As for the last term of the left-hand side of (4.9) we have∫

Ω

|Φn (x,∇υn)φ (zn)| dx ≤
∫
Ω

|Φ(x)φ (zn)|
N∑
i=1

w
1
p′
i
i (x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi−1

dx

≤ ∥hφ (zn)∥Lpi (Ω) ∥| υn∥
pi−1
X .

The Lebesgue dominated convergence theorem easily implies

Φ(x)φ (zn) → 0 strongly in Lpi(Ω)

and from (4.6) we conclude that∫
Ω

|Φn (x,∇υn)φ (zn)| dx→ 0, as n→ ∞.

By using the fact that Ψ (x, υn,∇υn)φ (zn) ≥ 0 on the subset {x ∈ Ω : |υn| > k}, we can write (4.9) as
follows

⟨A (υn) , φ (zn)⟩+
∫
{|υn|≤k}

Ψ (x, υn,∇υn)φ (zn) dx ≤ ε1(n) (4.10)

where εi(n), (i = 1, 2, . . .), denote various sequences of real numbers which converge to zero when n
tends to ∞. On the one hand
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⟨A (υn) , φ (zn)⟩ =
∫
{|υn|≤k}

a (x, υn,∇υn) · (∇Tk (υn)−∇Tk(υ))φ′ (zn) dx

+

∫
{|υn|>k}

a (x, υn,∇υn) · (∇Tk (υn)−∇Tk(υ))φ′ (zn) dx

=

∫
Ω

a (x, Tk (υn) ,∇Tk (υn)) · (∇Tk (υn)−∇Tk(υ))φ′ (zn) dx

−
∫
{|υn|>k}

a (x, υn,∇υn) · ∇Tk(υ)φ′ (zn) dx

=

∫
Ω

[a (x, Tk (υn) ,∇Tk (υn))− a (x, Tk (υn) ,∇Tk(υ))]

· [∇Tk (υn)−∇Tk(υ)]φ′ (zn) dx

+

∫
Ω

a (x, Tk (υn) ,∇Tk(υ)) · (∇Tk (υn)−∇Tk(υ))φ′ (zn) dx

−
∫
{|υn|>k}

a (x, υn,∇υn) · ∇Tk(υ)φ′ (zn) dx.

Concerning the second term of the right-hand side of the above equality, by using (4.7) and Lemma
2.4, we have Tk (υn)⇀ Tk(υ) weakly in W 1,pi

0 (Ω, w). Thus

∇Tk (υn)⇀ ∇Tk(υ) weakly in ΠNi=1L
pi (Ω, wi) . (4.11)

Moreover, by the growth condition (3.4) we can show the equi-integrability of the sequence
(a (x, Tk (υn) ,∇Tk(υ))φ′ (zn))n. Then, from (4.7) we have

a (x, Tk (υn) ,∇Tk(υ))φ′ (zn) → a (x, Tk(υ),∇Tk(υ)) a.e. in Ω.

Therefore by using Vitali’s theorem one has

a (x, Tk (υn) ,∇Tk(υ))φ′ (zn) → a (x, Tk(υ),∇Tk(υ)) strongly in ΠNi=1L
p′i (Ω, w∗

i ) . (4.12)

Since (4.11) and (4.12) we deduce that∫
Ω

a (x, Tk (υn) ,∇Tk(υ)) · (∇Tk (υn)−∇Tk(υ))φ′ (zn) dx→ 0 when n→ ∞.

Thanks to (3.2), (4.6) and (4.7), the sequence (a (x, υn,∇υn)φ′ (zn))n is bounded in ΠNi=1L
p′i (Ω, w∗

i ).
Then, since ∇Tk(υ)χ{|υn|>k} → 0 strongly in ΠNi=1L

pi (Ω, wi), we have

∫
{|υn|>k}

a (x, υn,∇υn) · ∇Tk(υ)φ′ (zn) dx→ 0 when n→ ∞.

Consequently we can write

⟨A (υn) , φ (zn)⟩ =
∫
Ω

[a (x, Tk (υn) ,∇Tk (υn))− a (x, Tk (υn) ,∇Tk(υ))]

· [∇Tk (υn)−∇Tk(υ)]φ′ (zn) dx+ ε2(n).

(4.13)

By using (3.6) and (3.10), the second term in the left hand-side of (4.10), yields
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∫
{|υn|≤k}

Ψ (x, υn,∇υn)φ (zn) dx

∣∣∣∣∣
≤
∫
{|υn|≤k}

b(k)

(
N∑
i=1

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi + |c(x)|

)
|φ (zn)| dx

≤ b(k)

∫
Ω

|c(x)| |φ (zn)| dx+ b(k)

∫
{|υn|≤k}

N∑
i=1

wi(x)

∣∣∣∣∂υn∂xi

∣∣∣∣pi |φ (zn)| dx

≤ ε3(n) + b(k)

∫
Ω

N∑
i=1

wi(x)

∣∣∣∣∂Tk (υn)∂xi

∣∣∣∣pi |φ (zn)| dx

≤ ε3(n) +
b(k)

α2

∫
Ω

a (x, Tk (υn) ,∇Tk (υn)) · ∇Tk (υn) |φ (zn)| dx

= ε3(n) +
b(k)

α2

∫
Ω

[a (x, Tk (υn) ,∇Tk (υn))− a (x, Tk (υn) ,∇Tk(υ))]

· [∇Tk (υn)−∇Tk(υ)] |φ (zn)| dx

+
b(k)

α2

∫
Ω

a (x, Tk (υn) ,∇Tk (υn)) · ∇Tk(υ) |φ (zn)| dx

+
b(k)

α2

∫
Ω

a (x, Tk (υn) ,∇Tk(υ)) · (∇Tk (υn)−∇Tk(υ)) |φ (zn)| dx.

For the last term we have∣∣∣∣∫
Ω

a (x, Tk (υn) ,∇Tk(υ)) · (∇Tk (υn)−∇Tk(υ))
∣∣∣∣φ (zn) |dx|

≤ φ(2k)

∫
Ω

|a (x, Tk (υn) ,∇Tk(υ))| |∇Tk (υn)−∇Tk(υ)| dx.

As in (4.12), we use (3.4), (4.7) and Vitali’s theorem to obtain

a (x, Tk (υn) ,∇Tk(υ)) → a (x, Tk(υ),∇Tk(υ)) strongly in ΠNi=1L
p′i (Ω, w∗

i ) .

By using (4.11) we get∫
Ω

a (x, Tk (υn) ,∇Tk(υ)) · (∇Tk (υn)−∇Tk(υ)) |φ (zn)| dx→ 0 as n→ 0.

In addition, the sequence (a (x, Tk (υn) ,∇Tk (υn)))n converges weakly in ΠNi=1L
p′i (Ω, w∗

i ) to a function
lk thanks to (3.4) and (4.6). Thus∫

Ω

a (x, Tk (υn) ,∇Tk (υn)) · ∇Tk(υ) |φ (zn)| dx

=

∫
Ω

(a (x, Tk (υn) ,∇Tk (υn))− lk) · ∇Tk(υ) |φ (zn)| dx+

∫
Ω

lk · ∇Tk(υ) |φ (zn)| dx.

By using φ (zn) → 0 weakly in L∞(Ω), we deduce that∫
Ω

a (x, Tk (υn) ,∇Tk (υn)) · ∇Tk(υ) |φ (zn)| dx→ 0 as n→ ∞.

∣∣∣∣∣
∫
{|υn|≤k}

Ψ (x, υn,∇υn)φ (zn) dx

∣∣∣∣∣
≤ ε4(n) +

b(k)

α2

∫
Ω

[a (x, Tk (υn) ,∇Tk (υn))− a (x, Tk (υn) ,∇Tk(υ))]

· [∇Tk (υn)−∇Tk(υ)] |φ (zn)| dx
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which with (4.10) and (4.13) give∫
Ω

[a (x, Tk (υn) ,∇Tk (υn))− a (x, Tk (υn) ,∇Tk(υ))] · [∇Tk (υn)−∇Tk(υ)](
φ′ (zn)−

b(k)

α2
|φ (zn)|

)
dx ≤ ε5(n).

Using (3.5) and (4.8)to obtain

0 ≤ 1

2

∫
Ω

[a (x, Tk (υn) ,∇Tk (υn))− a (x, Tk (υn) ,∇Tk(υ))] · [∇Tk (υn)−∇Tk(υ)] dx ≤ ε5(n).

Then∫
Ω

[a (x, Tk (υn) ,∇Tk (υn))− a (x, Tk (υn) ,∇Tk(υ))] · [∇Tk (υn)−∇Tk(υ)] dx→ 0 as n→ ∞.

By virtue of Lemma 3.1 and the fact that Tk (υn)⇀ Tk(υ) weakly in W 1,pi
0 (Ω, w), we conclude that

Tk (υn) → Tk(υ) strongly in W 1,pi
0 (Ω, w) for any fixed k ≥

∥∥ψ+
∥∥ . (4.14)

So that

∇Tk (υn) → ∇Tk(υ) strongly in

N∏
i=1

Lpii (Ω, wi) .

As in [11], we deduce that there exists a subsequence still denoted by υn such that

∇υn → ∇υ a.e. in Ω. (4.15)

4.3. Step 3: Equi-integrability of the non-linearities Ψ (x, υn,∇υn) + Φn (x,∇υn).

By using Vitali’s theorem we will show that

Ψ (x, υn,∇υn) + Φn (x,∇υn) → Ψ(x, υ,∇υ) + Φ(x,∇υ) strongly in L1(Ω). (4.16)

Thanks to (4.7) and (4.15) we have

Ψ (x, υn,∇υn) + Φn (x,∇υn) → Ψ(x, υ,∇υ) + Φ(x,∇υ) a.e. in Ω,

so it suffices to prove that Ψ (x, υn,∇υn) + Φn (x,∇υn) is uniformly equi-integrable in Ω. For any
measurable subset E of Ω and any m > 0 we have∫

E

|Ψ (x, υn,∇υn) + Φn (x,∇υn)| dx

=

∫
E∩{|υn|≤m}

|Ψ (x, υn,∇υn) + Φn (x,∇υn)| dx

+

∫
E∩{|υn|>m}

|Ψ (x, υn,∇υn) + Φn (x,∇υn)| dx

≤
∫
E

b(m)

(
c(x) +

N∑
i=1

wi(x)

∣∣∣∣∂Tm (υn)

∂xi

∣∣∣∣pi
)
dx

+

(∫
E

hpii (x)dx

) 1
pi

N∑
i=1

(∫
E

wi(x)

∣∣∣∣∂Tm (υn)

∂xi

∣∣∣∣pi dx)
1
p′
i

+

∫
E∩{|υn|>m}

|Ψ (x, υn,∇υn) + Φn (x,∇υn)| dx.

(4.17)
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In view of (4.14) for any ε > 0 there exists µ(ε,m) > 0 such that for all E satisfying |E| < µ(ε,m)
we have ∫

E

b(m)

(
c(x) +

N∑
i=1

wi(x)

∣∣∣∣∂Tm (υn)

∂xi

∣∣∣∣pi
)
dx

+

(∫
E

hpii (x)dx

) 1
pi

N∑
i=1

(∫
E

wi(x)

∣∣∣∣∂Tm (υn)

∂xi

∣∣∣∣pi
i

dx

) 1
p′
i

<
ε

2
∀n.

(4.18)

Now, for m ≥ 2 + ∥ψ+∥∞, we define a function ϕm satisfying for all s ∈ R
ϕm(s) = 0 if |s| ≤ m− 1,

ϕ′m(s) = 1 if m− 1 ≤ |s| ≤ m,

ϕm(s) = s
|s| if |s| ≥ m.

Note that υn − ϕm (υn) ∈ Kψ, then by using it as test function in (4.2) we get

⟨A (υn) , Tk (ϕm (υn))⟩+
∫
Ω

(Ψ (x, υn,∇υn) + Φn (x,∇υn))Tk (ϕm (υn)) dx

≤
∫
Ω

fnTk (ϕm (υn)) dx

which implies, for k ≥ 1∫
Ω

a (x, υn,∇υn) · ∇υnϕ′m (υn) dx+

∫
Ω

(Ψ (x, υn,∇υn) + Φn (x,∇υn))ϕm (υn) dx

≤
∫
Ω

fnϕm (υn) dx.

Since (3.6) and by using the fact that ϕm (υn) and υn have the same sign we conclude that∫
{|υn|>m}

|Ψ (x, υn,∇υn)| dx ≤
∫
{|υn|>m−1}

|Φn (x,∇υn)| dx+

∫
{|υn|>m−1}

|fn| dx.

The right-hand side of the above inequality converges to 0 uniformly in n when m tends to ∞ by using
(3.12), Hölder’s inequality, fn → f strongly in L1(Ω) and the fact that |{|υn| > m}| → 0 uniformly in n
when m→ ∞. Hence there exists m(ε) > 1 such that∫

{|υn|>m}
|Ψ (x, υn,∇υn)| dx ≤ ε

2
∀n. (4.19)

Finally from (4.17), (4.18) and (4.19) we have∫
E

|Ψ (x, υn,∇υn) + Φn (x,∇υn)| dx < ε ∀n,

if |E| < µ(ε) for some µ(ε) > 0, which gives the uniform equi-integrability in Ω of Ψ (x, υn,∇υn) +
Φn (x,∇υn).

4.4. Step 4: Passage to the limit.

We can write (4.2) as follows

∫
Ω

a (x, υn,∇υn) · ∇Tk (υn − u) dx+

∫
Ω

(Ψ (x, υn,∇υn) + Φn (x,∇υn))Tk (υn − u) dx

≤
∫
Ω

fnTk (υn − u) dx.

(4.20)
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for all u ∈ Kψ ∩ L∞(Ω) and all k > 0. From (3.4) and (4.6) we have a (x, υn,∇υn) is bounded in

ΠNi=1L
p′i (Ω, w∗

i ) and since (4.7) and (4.15) we have a (x, υn,∇υn) → a(x, υ,∇υ) a.e. in Ω. Therefore by
Lemma 2.3 we obtain

a (x, υn,∇υn) → a(x, υ,∇υ) weakly in ΠNi=1L
p′i (Ω, w∗

i ) .

Let E be a measurable subset in Ω and for i = 1, . . . , N we have∫
E

w
1
pi
i (x)

∣∣∣∣∂Tk (υn − u)

∂xi

∣∣∣∣ dx =

∫
E

w
1
pi
i (x)

∣∣∣∣∂ (υn − u)

∂xi

∣∣∣∣χ{|υn−u|≤k}dx

≤
∫
E

w
1
pi
i (x)

(∣∣∣∣∂υn∂xi

∣∣∣∣+ ∣∣∣∣ ∂u∂xi
∣∣∣∣)χ{|υn|≤k+∥u∥∞}dx

≤
∫
E

w
1
pi
i (x)

∣∣∣∣ ∂u∂xi
∣∣∣∣ dx+

∫
E

w
1
pi
i (x)

∣∣∣∣∂Tk+∥u∥∞ (υn)

∂xi

∣∣∣∣ dx.
By using (4.7), (4.14) and Vitali’s theorem we get∇Tk (υn − u) → ∇Tk(υ−u) strongly in ΠNi=1L

pi (Ω, wi).
So that ∫

Ω

a (x, υn,∇υn) · ∇Tk (υn − u) dx→
∫
Ω

a(x, υ,∇υ) · ∇Tk(υ − u)dx as n→ ∞.

Finally we use (4.16) and the fact that fn → f strongly in L1(Ω) for passing to the limit in (4.20)
and this complete the proof of Theorem (3.1).
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