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Sliding Contact Problem with Wear for Thermoviscoelastic Material

N. Bensebaa∗ and N. Lebri

abstract: We study a quasistatic sliding contact problem with wear between a viscoelastic with long
memory and a rigid moving foundation. We model the wear with a version of Archard’s law. Thermal effects
is taken into account. We establish a variational formulation of the model and we prove the existence and
uniqueness of the weak solution. The proofs are based on the nonlinear equations involving the monotone
operators, the classical result of nonlinear first order evolution inequalities, and the fixed-point arguments.
We also establish the dependent results with respect to certain data.
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1. Introduction

Problems related to thermoelastic contact arise naturally in many situations, especially those involving
industrial processes when two or more materials may come into contact or may lose contact as a result of
thermoelastic expansion or contraction. Such thermoelastic phenomena can be divided into three parts:
static, quasistatic and dynamic.

The quasistatic case with various boundary conditions has been widely studied by [14, 15]. A qua-
sistatic contact problem for viscoelastic material involving the thermal effects was studied in [2, 3, 4, 5].

Contact problems using viscoelastic with long memory have been studied in [1, 11, 8] and contact
problems for viscoelastic material with long memory and with electric effects was studied in [10, 12, 13].
There are various models of contact with thermoviscoelastic and thermo-elastic-viscoplastic materials
studied, associated with a large number of the boundary conditions, in this work, we are interested of the
contact with one of the boundary conditions which is the wear, it is one of the processes that reduces the
lifetime of modern machine elements. It represents the unwanted removal of materials from surfaces of
contacting bodies occurring in relative motion. Wear arises when a hard rough surface digs into it, and
its asperities plough a series of grooves.

The aim of this paper is to make a coupling of a thermo-viscoelastic problem with long memory
and a sliding contact problem with wear. The studied problem is in process quasistatic and we model
the material behavior with a thermo-viscoelastic constitutive law with long memory and we assume the
contact is maintained during the movement and it is a sliding contact with wear which is modeled by a
version of Archard’s law. We drive a variational formulation and prove the existence and uniqueness of
the weak solution, and finally we study the dependence of the solution with respect to the data.

The paper is structed as follows. In section 2 we present notation and somme preliminaires. The
model is described in section 3 where the variational formulaion is given. In section 4, we presente our
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existence and uniqueness result and the proof is based on the nonlinear equation involving the monotone
operator, on classical result of nonlinear first order evolution inequalities and the fixed point arguments.
In section 5, we study the dependence of the solution with respect to certain data.

2. Notation and Preliminaries

In this section we present some notation which we shall use in the study of a sliding contact problem
and preliminary material.

We denote by Sd the space of second order symmetric tensor on Rd. We recall that the inner products
and the corresponding norms on Rd and Sd are given by

u.v = uivi, ∥v∥ = (v.v)
1
2 ∀u, v ∈ Rd,

σ.τ = σijτij , ∥τ∥ = (τ.τ)
1
2 ∀σ, τ ∈ Sd

Here and everyhere in this paper the indices i, j run between 1 to d, the summation over repeated
indices is used and the index which follows a comma represents the partial derivative. We use the classical
notation for Lp and Sobolev spaces associated to Ω and Γ. We use the following spaces :

H = L2 (Ω)
d
=

{
v = (vi) / vi ∈ L2 (Ω)

}
,

H =
{
σ = (σij) / σij = σji ∈ L2 (Ω)

}
,

H1 = {u = (ui) / ε(u) ∈ H} ,
H1 = {σ ∈ H / Divσ ∈ H} ,

where, the spaces H, H, H1 and H1 are real Hilbert spaces endowed with the following canonical
inner products

(u, v)H =

∫
Ω

u.vdx, (σ, τ)H =

∫
Ω

σ.τdx,

(u, v)H1
= (u, v)H + (ε(u), ε(v))H , (σ, τ)H1

= (σ, τ)H + (Divσ,Divτ)H ,

and the associated norms ∥.∥H , ∥.∥H , ∥.∥H1
and ∥.∥H1

, respectively. Here and below we use the
notation

ε (v) = (εij (v)) , εij (v) =
1

2
(vi,j + vj,i) ∀v ∈ H1 (Ω)

d
,

Divτ = (τij,j) ∀τ ∈ H1.

For every element v ∈ H1 we also write v for the trace of v on Γ and we denote by vν and vτ the
normal and tangential components of v on Γ given by vν = v.ν, vτ = v − vνν. We also denote by σνand
στ the normal and the tangential traces of a function σ ∈ H1, and we recall that when σ is a regular
function then σν = (σν).ν, στ = σν − σνν.

Let T > 0. For every real Banach space X we use the notation C(0, T ;X) and C1(0, T ;X) for the
space of continuous and continuously differentiable functions from [0, T ] to X, respectively; C(0, T ;X) is
a real Banach space with the norm ∥f∥C(0,T ;X) = max

t∈[0,T ]
∥f(t)∥X , while C1(0, T ;X) is a real Banach space

with the norm ∥f∥C1(0,T ;X) = max
t∈[0,T ]

∥f(t)∥X + max
t∈[0,T ]

∥∥∥ .

f(t)
∥∥∥
X
. Finally, for k ∈ N and p ∈ [1,∞] , we

use the standard notation for the Lebesgue spaces LP (0, T ;X) and for the Sobolev spaces W k,p(0, T ;X).
Moreover, if X1 and X2 are real Hilbert spaces then X1×X2 denotes the product Hilbert space endowed
with the canonical inner product (., .)X1×X2

.
Let X be a real Hilbert space, and let A : X → X and B : X → X be given nonlinear operators, let

f : [0, T ] → X be a continuous function and let u0 be the initial data. we have the following nonlinear
equation: find a function u : [0, T ] → X such that

A
.
u(t) +Gu(t) = fη(t) (2.1)

u(0) = u0. (2.2)
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We have the following existence and uniqueness result, can be found in [18] .

Lemma 2.1 Let X be a real Hilbert space and assume that A : X → X is a strongly monotone Lipschitz
continous operator and B : X → X is a Lipschitz continuous operator. Then, for each f ∈ C(0, T ;X)
and u0 ∈ X there exists a unique solution u ∈ C1([0, T ] ;X) which satisfies (2.1)− (2.2).

3. Mechanical and Variational Formulations

We consider a thermo-viscoelastic body which ocuppies a bounded domain Ω ⊂ Rd (d = 2.3) with
a Lipschitz continous boundary Γ that is divided into three disjoint measurable parts Γ1,Γ2 and Γ3,
such that meas Γ1 > 0 . Let T > 0 and let [0, T ] be time interval of interest.The body is clamped on
Γ1 × (0, T ), so the displacement field vanishes there. A surface tractions of density f2 act on Γ2 × (0, T ),
and a body force of density f0 acts in Ω × (0, T ). The contact between the body and the moving rigid
foundation, over the contact surface Γ3, is a sliding contact with wear and is maintained during the
movement. Moreover the process is quasistatic, i.e. the intertial terms are negleted in the equation of
motion. We use a thermo-viscoelastic constitutive law with long memory given by

σ = Aε
( .
u
)
+ Gε (u) +

∫ t

0

M (t− s) ε (u (s)) ds−Mθ. (3.1)

where σ denotes the stress tensor, u represents the displacement field,
.
u is the velocity, ε (u) is the

small strain tensor, and M is relaxation fourth order tenseur. Here A and G are nonlinear operators
describing the purely viscous and the elastic properties of the material, respectively. θ is the temperature
field and M = (mij)

d
i,j=1 is the thermal expension tensor. We use dots for derivatives with respect to

the time variable t. The constitutive law (3.1) became thermo-viscoelastic constitutive law when M = 0
and its given by

σ = Aε
( .
u
)
+ Gε (u)−Mθ.

The evolution of the temperature field θ is governed by the heat equation (see [2]), obtained from the
conservation of energy which has the following differential equation

.

θ − div(K∇θ) = q −M∇ .
u,

where K = (kij) represents the thermal conductivity tensor, div(K∇θ) = (kijθ,i),i and q represents
the density of volume heat sources.

The associated temperature boundary condition on Γ3 is given by

kijθ,inj = −ke (θ − θF ) on Γ3 × (0, T ),

where θF is the temperature of the foundation, ke is the heat exchange coefficient between the body
and the obstacle.

Thus, the classical formulation of the mechanical problem corresponding to the quasistatic contact of
a viscoelastic material with a long memory, taking into account the heat generation is as follows.

Problème P . Find a displacement field u : Ω× [0, T ] → Rd, a stress field σ : Ω× [0, T ] → Sd and a
temperature field θ : Ω× [0, T ] → R such that

σ = Aε
( .
u
)
+ G (ε (u)) +

∫ t

0

M (t− s) ε (u) ds−Mθ (3.2)

Divσ + f0 = 0 in Ω× (0, T ) , (3.3)
.

θ − div(K∇θ) = q −M∇ .
u in Ω× (0, T ) , (3.4)

u = 0 on Γ1 × (0, T ) , (3.5)

σν = f2 on Γ2 × (0, T ) , (3.6)
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−σν = β
∣∣ .uν

∣∣ on Γ3 × (0, T ) , (3.7)

uτ = 0 on Γ3 × (0, T ) , (3.8)

kijθ,inj = −ke (θ − θF ) on Γ3 × (0, T ) , (3.9)

θ = 0 on (Γ1 ∪ Γ2)× (0, T ) , (3.10)

u (0) = u0 and θ (0) = θ0 in Ω. (3.11)

We now provide some comments on equations and conditions (3.2)− (3.11).
First, (3.2) represents the thermo-viscoelastic constitutive law with long memory. (3.3) represents

the equilibrium equations for the stress field. (3.4) represents the evolution differential equation for the
temperature. (3.5) and (3.6) represent the displacement and traction boundary conditions, respectively.
Conditions (3.7) and (3.8) are the sliding contact conditions with the wear. Condition (3.9) represents
the temperature boundary condition. (3.10) means that the temperature vanishes on (Γ1 ∪ Γ2)× (0, T ) .
Denoting by u0, θ0 the given initial displacement field and initial temperature field, respectively. To
simplify the notation, we do not indicate explicitely the dependence of various functions on the variables
x ∈ Ω ∪ Γ and t ∈ [0, T ] . To obtain a variational formulation of the problem (3.2) − (3.11), we need
additional notations. Let us consider the closed subspace of H1 defined by

V =
{
v ∈ H1 (Ω)

d
/ v = 0 on Γ1, vτ = 0 on Γ3

}
,

and
E =

{
γ ∈ H1 (Ω) / γ = 0 on Γ1 ∪ Γ2

}
.

denote the closed subspace of H1 (Ω) .
Since meas (Γ1) ≻ 0 , the following Korn’s inequality holds:

∥ε (v)∥H ⩾ Ck ∥v∥H1
∀v ∈ V, (3.12)

where Ck > 0 is a constant which depends only on Ω and Γ1. On the space V, we consider the inner
product and the associated norm given by

(u, v)V = (ε (u) , ε (v))H , ∥v∥V = ∥ε(v)∥H ∀u, v ∈ V. (3.13)

It follows from Korn’s inequality that ∥.∥H1
and ∥.∥V are equivalent norms on V . Therefore (V, ∥.∥V )

is a real Hilbert space. Moreover, by the Sobolev trace theorem and (3.13), there exists a constant C0 > 0
depending only on the domain Ω , Γ1and Γ3 such that

∥v∥L2(Γ3)
d ⩽ C0 ∥v∥V ∀v ∈ V. (3.14)

In the study of the mechanical problem (3.2) − (3.11), we assume that the viscosity operator A
: Ω× Sd → Sd satisfies

(a) There exists a constant LA > 0 such that
∥A (x, ε1)−A (x, ε2)∥ ⩽ LA ∥ε1 − ε2∥ ∀ε1, ε2 ∈ Sd, a.e.x ∈ Ω,
(b) There exists a constant mA > 0 such that

(A (x, ε1)−A (x, ε2)) . (ε1 − ε2) ⩾ mA ∥ε1 − ε2∥2 , ∀ε1, ε2 ∈ Sd, a.e.x ∈ Ω,
(c) x 7→ A (x, ε) is Lebesgue measurable on Ω ε ∈ Sd,
(d) x 7→ A (x, 0) ∈ H.

(3.15)

The elasticity operator G : Ω× Sd → Sd satisfies
(a) There exists a constant LG > 0 such that
∥G (x, ε1)− G (x, ε2)∥ ⩽ LG ∥ε1 − ε2∥
∀ε1, ε2 ∈ Sd, a .e. x ∈ Ω.
(b) The mapping x → G (x, ε) is Lebesgue measurable on Ω, for any ε ∈ Sd .
(c) The mapping x → G (x, 0) ∈ H.

(3.16)
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The relaxation operator satisfies
M ∈ C (0, T,H∞) . (3.17)

Where H∞ is the space of fourth order tensor fields

H∞ = {ζ = (ζijkl) /ζijkl = ζjikl = ζklij ∈ L∞ (Ω) 1 ≤ i, j, k, l ≤ d},

which is a real Banach space with the norm

∥ζ∥H∞
= max

1≤i,j,k,l≤d
∥ζijkl∥L∞(Ω)

and, moreover,
∥ζτ∥H ⩽ d ∥ζ∥H∞

∥τ∥H ∀ζ ∈ H∞, τ ∈ H

The densities of body forces and surface tractions satisfy

f0 ∈ C (0, T ;H) , f2 ∈ C
(
0, T ;L2(Γ2)

d
)
, (3.18)

The function β has the following properties

β ∈ L∞(Γ3) β(x) ⩾ β∗ > 0 a.e. on Γ3. (3.19)

The thermal tensors and the heat source density satisfy
M = (mij), mij = mji ∈ L∞(Ω).
K = (kij), kij = kji ∈ L∞(Ω), kijζiζi ⩾ ckζiζi,

for some ck > 0, for all (ζi) ∈ Rd.
q ∈ L2(0, T ;L2(Ω)).

(3.20)

Finally, the boundary and initial data verify

u0 ∈ V, θ0 ∈ E,
θF ∈ L2(0, T ;L2(Γ3)), ke ∈ L∞(Ω, R+).

(3.21)

We define the functions f : [0, T ] → V and q : [0, T ] → W by

(f(t), v) =

∫
Ω

f0(t).vdx+

∫
Γ3

f2(t).vda. ∀v ∈ V,∀t ∈ [0, T ] , (3.22)

Next, we denote by j : V × V → R the functional defined by

j(u, v) =

∫
Γ3

β |uν | .vνda ∀u, v ∈ V. (3.23)

We note that condition (3.18) implies

f ∈ C (0, T ;V ) . (3.24)

Using standard arguments, we obtain the variational formulation of the mechanical problem (3.2) −
(3.11).

Problem PV . Find a displacement field u : [0, T ] → V and a temperature field θ : [0, T ] → E such
that for all t ∈ [0, T ] ,(

Aε
( .
u(t)

)
, ε(v)

)
H + (Gε (u(t)) , ε(v))H +

(∫ t

0
M (t− s) ε (u(t)) ds, ε(v)

)
H

− (Mθ (t) , ε(v))H + j
( .
u(t), v

)
= (f(t), v)V .

(3.25)

.

θ(t) +Kθ(t) = R
.
u(t) +Q(t) in E′ (3.26)

u(0) = u0, θ(0) = θ0, (3.27)
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where K : E → E′, R : V → E′ and Q : [0, T ] → E′ are given by

(Kτ, ω)E′×E =

d∑
i,j=1

∫
Ω

kij
∂τ

∂xj

∂ω

∂xi
dx+

∫
Γ3

keτωda,

(Rv, ω)E′×E = −
∫
Ω

mij
∂vi
∂xj

ωdx,

(Q(t), ω)E′×E =

∫
Γ3

keθF (t)ωda+

∫
Ω

q(t)ωdx,

for all v ∈ V, τ, ω ∈ E.

4. Existence and Uniqueness Result

Now, we propose our existence and uniqueness result.

Theorem 4.1 Assume that (3.15)−(3.21) hold. Then, if ∥β∥L∞(Γ3)
< mA

C2
0

the Problem PV has a unique

solution which satisfies

u ∈ C1 ([0, T ] , V ) , (4.1)

θ ∈ W 1,2(0, T ;E′) ∩ L2(0, T ;E) ∩ C(0, T ;L2(Ω)). (4.2)

The functions u and θ which satisfy (3.25) − (3.27) are called a weak solution of the contact prolem
P . We conclude that, under the assumptions (3.15)− (3.21),the mechanical problem (3.2)− (3.11) has a
unique weak solution satisfying (4.1)− (4.2). The regularity of the weak solution is given by (4.1)− (4.2)
and in term of stresses,

σ ∈ C (0, T ;H1) . (4.3)

Indeed, it follows from (3.25) that Divσ (t)+f0 = 0 for all t ∈ [0, T ] and therefore the regularity (4.1)
and (4.2) of u and θ, combined with (3.15)− (3.21) implies (4.3).

The proof of Theorem 4.1 is carried out in several steps that we prove in what follows, everywhere
in this section we suppose that assumptions of Theorem 4.1 hold, and we consider that C is a generic
positive constant which is independent of time and whose value may change from one occurrence to
another.

Let η ∈ C (0, T ;H) be given, in the first step we consider the following variational problem.
Problem PVη. Find a displacement field uη : [0, T ] → V such that(

Aε
( .
uη(t)

)
, ε(v)

)
H + (Gε (uη(t)) , ε(v))H + (η (t) , ε(v))H
+ j

( .
uη(t), v

)
=

(
f(t), v − .

uη

)
V
.

(4.4)

uη(0) = u0. (4.5)

We have the following result for the problem.

Lemma 4.1 There exists β0 depending only on Ω,Γ1,Γ3 and A such that if ∥β∥L∞(Γ3)
< β0, the problem

PVη has a unique solution uη ∈ C1 ([0, T ] , V ) .

Proof: We define the operators A : V → V , G : V → V and the function fη : [0, T ] → V by

(Au, v)V = (Aε (u) , ε(v))H + j (u, v) (4.6)

(Gu, v)V = (Gε (u) , ε(v))H , (4.7)

(fη, v)V = (f(t), v)V − (η, ε(v))H . (4.8)

for all u, v ∈ V et t ∈ [0, T ] .
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We use (4.6) and (3.15)(a) to find that

∥Au1 −Au2∥ ⩽
(
LA + C2

0 ∥β∥L∞(Γ3)

)
∥u1 − u2∥V , (4.9)

which shows that A is Lipschitz continous.
It follows from (4.6) and (3.15) (b) that

(Au1 −Au2, u1 − u2)V ⩾
(
mA − C2

0 ∥β∥L∞(Γ3)

)
∥u1 − u2∥2V , (4.10)

which shows that A is a strongly monotone operator on V , if ∥β∥L∞(Γ3)
< mA

C2
0
.

From (3.16)(a) and (4.7), we have

∥Gu1 −Gu2∥ ⩽ LG ∥u1 − u2∥V (4.11)

i.e, that G is a Lipschitz continuous operator on V
From (4.9) and (4.10) A is a strongly monotone and Lipschitz continous operator then from (4.11)

G is a Lipschitz continous operator.We use (3.18), we find that the fonction f defined by (3.22) satisfies
f ∈ C ([0, T ] , V ) and keeping in mind that η ∈ C ([0, T ] ,H), we deduce by (4.8) that fη ∈ C ([0, T ] , V ) ,
and u0 ∈ V and it follows from Theorem 2.1 that there exists a unique function uη ∈ C1 ([0, T ] , V ) such
that

A
.
uη(t) +Guη(t) = fη(t) (4.12)

uη(0) = u0. (4.13)

We use (4.6), (4.7), (4.12) and (4.13) to see that uη is the unique solution to PVη. 2

Let uη : [0, T ] → V be the fonction defined by

u =

∫ t

0

vη(s)ds+ u0, ∀t ∈ [0, T ] . (4.14)

In the second step, let η ∈ C ([0, T ] ,H) , we use the displacement field uη obtained in lemma 4.1 and
we consider the following variational problem.

Problem PVθ. Find the temperature field θη : [0, T ] → E. such that

.

θη (t) +Kθη (t) = R
.
uη(t) +Q (t) , (4.15)

θη (0) = θ0. (4.16)

We have the following result.

Lemma 4.2 PVθ has a unique solution θη which satisfies the regularity (4.2). Moreover, there exists
C > 0, such that

∥θ1(t)− θ2(t)∥2L2(Ω) ⩽ C

∫ t

0

∥∥ .
u1(s)−

.
u2(s)

∥∥2
V
ds. (4.17)

.

Proof: The proof of Lemma 4.2 is done using a classical result on first order evolution equation given
in [17], as in [5] .

We denote θηi = θi and
.
uηi =

.
uifor i = 1, 2, we use (4.15) to get( .

θ1(t) −
.

θ2(t), θ1(t)− θ2(t)
)
E′×E

+ (Kθ1(t)−Kθ2(t), θ1(t)− θ2(t))E′×E

=
(
R

.
u1(t)−R

.
u2(t), θ2(t)− θ2(t)

)
E′×E

,
(4.18)

We integrate (4.18) with respect to time and we use the coercivity of K and the Lipschitz continuity
of R : V → E′ to deduce that (4.17) is satisfies. 2
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Finally, we consider the operator Λ : C (0, T ;H) → C (0, T ;H) defined by

Λη(t) =

∫ t

0

M (t− s) ε (uη (s)) ds−Mθη(t). (4.19)

Here, for every η ∈ C (0, T ;H) , uη and θη represent the displacement field and the temperature field
which obtained in Lemma 4.1 and Lemma 4.2 respectively. We have the following result.

Lemma 4.3 The operateur Λ has a unique fixed point η∗ ∈ C (0, T ;H) such that Λη∗ = η∗.

Proof: Let now η1, η2 ∈ C (0, T ;H). We use the notation uηi
= ui,

.
uηi

=
.

vηi
= vi and θη1

= θi for

i = 1, 2. Using (3.17), (3.13), (3.20) and (4.19) to deduce that

∥Λη1(t)− Λη2(t)∥2H ⩽ C
(∫ t

0
∥u1(s)− u2(s)∥2V ds+ ∥θ1(t)− θ2(t)∥2E

)
(4.20)

since

ui(t) =

∫ t

0

vi(s)ds+ u0 ∀t ∈ [0, T ] ,

we have

∥u1(t)− u2(t)∥2V ⩽ C

∫ t

0

∥v1(s)− v2(s)∥2V ds. (4.21)

Moreover, from (4.4) we obtain

(Aε (v1)−Aε (v2) , ε(v1)− ε (v2))H + (Gε (u1)− Gε (u2) , ε(v1)− ε (v2))H
+(η1 − η2, ε(v1)− ε (v2))H = j(v2, v1 − v2)− j (v1, v1 − v2) .

We use the previous equality, the assumptions (3.15) (a), (3.16) (a), (3.25) and (3.14) to find that

∥v1 − v2∥2V ⩽ C
(
∥u1 − u2∥2V + ∥η1 − η2∥2H

)
.

Integrating this inequality with respect to time, we find∫ t

0

∥v1 (s)− v2 (s)∥2V ds ⩽ C

∫ t

0

(
∥u1 (s)− u2 (s)∥2V + ∥η1 (s)− η2 (s)∥2H

)
ds ∀t ∈ [0, T ] . (4.22)

Next, we use (4.21), to deduce

∥u1(t)− u2(t)∥2V ⩽ C

∫ t

0

∥u1 (s)− u2 (s)∥2V + C

∫ t

0

∥η1 (s)− η2 (s)∥2H ds ∀t ∈ [0, T ] . (4.23)

Then, we apply Gronwall’s inequality to the previous inequality yields

∥u1(t)− u2(t)∥2V ⩽ C

∫ t

0

∥η1 (s)− η2 (s)∥2H ds ∀t ∈ [0, T ] .

Now, it follows from (4.22) that∫ t

0

∥v1 (s)− v2 (s)∥2V ds ⩽ C

∫ t

0

∥η1 (s)− η2 (s)∥2H ds ∀t ∈ [0, T ] . (4.24)

and from (4.17) and (4.24) we have

∥θ1(t)− θ2(t)∥2L2(Ω) ⩽
∫ t

0

∥η1 (s)− η2 (s)∥2H ds. (4.25)
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We now conclude from (4.21), (4.24) and (4.25) that

∥Λη1(t)− Λη2(t)∥2H ⩽ C

∫ t

0

∥η1(s)− η2(s)∥2H ds

Reiterating this inequality m times leads to

∥Λmη1 − Λmη2∥2C(0,T ;H) ⩽
CmTm

m!
∥η1 − η2∥2C(0,T ;H) .

For m sufficiently large, Λm is a contraction on the Banach space C (0, T ;H) , and so Λ has a unique
fixed point. 2

Now, we have all the ingredients needs to prove Theorem 4.1.

Proof: Existence.Let η∗ ∈ C (0, T ;H) be the fixed point of Λ defined by (4.18), and let uη∗
.

and θη∗the
solutions of the problems PVη and PVθ respectively for η = η∗ and denote

u = uη∗ ,
.
u =

.
uη∗ , θ = θη∗ , (4.26)

Let σ : [0, T ] → H defined by

σ(t) = Aε
( .
u(t)

)
+ Gε (u(t)) +

∫ t

0

M (t− s) ε (u(t)) ds−Mθ(t), (4.27)

We prove that (u, θ) satisfies (3.25) − (3.27) and the regularity (4.1) − (4.2). Indeed, we write (4.4)
for η = η∗ and use (4.26) to obtain (3.25). Indeed, we write (4.4) for η = η∗ and we use (4.26) to find(

Aε
( .
u(t)

)
, ε(v)

)
H + (Gε (u(t)) , ε(v))H + (η∗ (t) , ε(v))H
+ j

( .
u(t), v

)
=

(
f(t), v − .

u
)
V
.

(4.28)

Equality Λη∗ = η∗ combined with (4.18) show that

η∗ =

∫ t

0

M (t− s) ε (u) ds−Mθ. (4.29)

We substitute (4.29) in (4.28) to conclude that (3.25) is satisfied.

Now, we write (4.15) for η = η∗ and use (4.26) to find that (3.26) is also satisfies. Next, (3.27) and
the regularities (4.1)− (4.2) follow from Lemmas 4.1 and 4.2, since (u, θ) satisfies (4.1)− (4.2), it follows
from (4.27) that

σ ∈ C (0, T ;H) , (4.30)

we choose v = ±φ ∈ C∞
0 (Ω)

d
in (3.25), we use (4.27) and (3.22) to obtain

Divσ (t) = −f0 (t) ∀t ∈ [0, T ] ,

then, we use (3.18) and (4.30) to find

σ ∈ C (0, T ;H1) .

Uinqueness. The uniqueness of the solution is a consequence of the uniqueness of the fixed point of
the operator Λ defined by (4.18) and the unique solvability of the problems PVη and PVθ . 2
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5. Convergence Results

In this section we study the dependence of the solution to problem PV when we introduce the
perturbation of certain data. We suppose that the assumptions (3.15) − (3.21) satisfay. Moreover, we
assume that ∥β∥L∞(Γ3)

< β0, where β0 = mA
C2

0
. Let (u, θ) the solution of PV which obtained by the

Theorem 4.1, for every ρ > 0, let Mρ and fρ the perturbations of M and f , respectively, which satisfay
(3.17) and (3.24).

Under these assumptions, we consider the following variational problem.
Problem PVρ. Find a displacement field uρ : [0, T ] → V and a temperature fild θρ : [0, T ] → E such

thatfor all t ∈ [0, T ] ,(
Aε

( .
uρ(t)

)
, ε(v)

)
H + (Gε (uρ(t)) , ε(v))H +

(∫ t

0
Mρ (t− s) ε (uρ(t)) ds, ε(v)

)
H

− (Mθρ (t) , ε(v))H + j
( .
uρ(t), v

)
= (fρ(t), v)V .

(5.1)

.

θρ(t) +Kθρ(t) = R
.
uρ(t) +Q(t), ∀φ, ϕ ∈ W, (5.2)

uρ(0) = u0, θρ(0) = θ0. (5.3)

Assume that

∥β∥L∞(Γ3)
<

mA

C2
0

.

We deduce from Theorem 4.1 that for each ρ > 0, the problem PVρ has a unique solution (uρ, θρ)
satisfying uρ ∈ C1 ([0, T ] , V ) and θ ∈ W 1,2(0, T ;E′) ∩ L2(0, T ;E) ∩ C(0, T ;L2(Ω)).

Let consider Mρ, M and fρ , f satisfy the following assumptions

Mρ → M in C (0, T,H∞) as ρ → 0, (5.4)

fρ → f in C (0, T, V ) as ρ → 0. (5.5)

We have the following convergence result.

Theorem 5.1 Assume that (5.4)− (5.5) hold. Then the solution (uρ, θρ) of the problem PVρ converges
to the solution (u, θ) of problem PV.

uρ → u in C1(0, T ;V ) as ρ → 0, (5.6)

θρ → θ in C(0, T ;L2 (Ω)) as ρ → 0. (5.7)

.

Proof: Let ρ > 0 and t ∈ [0, T ] ,we use v =
.
uρ(t)−

.
u(t) in (5.1) and v =

.
u(t)− .

uρ(t) in (3.25), then we
additional the tow inequalities, we get(

Aε
( .
uρ(t)

)
−Aε

( .
u(t)

)
, ε(

.
uρ(t))− ε

( .
u(t)

))
H +

(
Gε (uρ(t))− Gε (u(t)) , ε( .uρ(t))− ε

( .
u(t)

))
H

+
(∫ t

0
(Mρ (t− s) ε (uρ(t))−M (t− s) ε (u(t))) ds, ε(

.
uρ(t))− ε

( .
u(t)

))
H

−
(
Mθρ(t)−Mθ(t), ε(

.
uρ(t))− ε

( .
u(t)

))
H − j

( .
u(t),

.
uρ(t)−

.
u(t)

)
+ j

( .
uρ(t),

.
uρ(t)−

.
u(t)

)
=

(
fρ(t)− f (t) ,

.
uρ(t)−

.
u(t)

)
.

(5.8)

Moreover, from (3.15), it follows that for a.e. t ∈ [0, T ](
Aε

( .
uρ(t)

)
−Aε

( .
u(t)

)
, ε(

.
uρ(t))− ε

( .
u(t)

))
H ⩾ mA

∥∥ .
uρ(t)−

.
u(t)

∥∥2
V
. (5.9)

Using (3.16), to obtain

−
(
Gε (uρ(t))− Gε (u(t)) , ε( .uρ(t))− ε

( .
u(t)

))
H ⩽ LG ∥uρ(t)− u(t)∥V

∥∥ .
uρ(t)−

.
u(t)

∥∥
V
, (5.10)
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Now, we write (∫ t

0
(Mρ (t− s) ε (uρ)−M (t− s) ε (u)) ds, ε(

.
uρ(t))− ε

( .
u(t)

))
H

=
(∫ t

0
Mρ (t− s) (ε (uρ)− ε (u)) ds, ε(

.
uρ(t))− ε

( .
u(t)

))
H

+
(∫ t

0
(Mρ (t− s)−M (t− s)) ε (u) ds, ε(

.
uρ(t))− ε

( .
u(t)

))
H
.

Then, we obtain(∫ t

0
(Mρ (t− s) ε (uρ(t))−M (t− s) ε (u(t))) ds, ε(

.
uρ(t))− ε

( .
u(t)

))
H

⩽

max
s∈[0,T ]

∥Mρ (s)∥H∞

(∫ t

0
∥uρ (s)− u (s)∥V ds

)∥∥ .
uρ(t)−

.
u(t)

∥∥
V

+ max
s∈[0,T ]

∥Mρ (s)−M (s)∥H∞

(∫ t

0
∥u (s)∥V ds

)∥∥ .
uρ(t)−

.
u(t)

∥∥
V
.

(5.11)

We use the definition of j, we find

j
( .
u,

.
uρ −

.
u
)
− j

( .
uρ,

.
uρ −

.
u
)

=
∫
Γ3

β
∣∣ .uν

∣∣ ( .
uρν − .

uν

)
da−

∫
Γ3

β
∣∣ .uρν

∣∣ ( .
uρν − .

uν

)
da

=
∫
Γ3

β
(∣∣ .uν

∣∣− ∣∣ .uρν

∣∣) ( .
uρν − .

uν

)
da

⩽ C2
0 ∥β∥L∞(Γ3)

∥∥ .
uρ −

.
u
∥∥2
V

(5.12)

Finally, we note that (
fρ(t)− f (t) ,

.
uρ(t)−

.
u(t)

)
⩽ δ (ρ)

∥∥ .
uρ(t)−

.
u(t)

∥∥
V
, (5.13)

where
δ (ρ) = max

t∈[0,T ]
∥fρ (t)− f (t)∥V (5.14)

Substituting (5.9) , (5.10) , (5.11) , (5.12) and (5.13) in (5.8) , we obtain(
mA − C2

0 ∥β∥L∞(Γ3)

)∥∥ .
uρ(t)−

.
u(t)

∥∥
V

⩽ LG ∥uρ(t)− u(t)∥V

+ max
s∈[0,T ]

∥Mρ (s)∥H∞

(∫ t

0

∥uρ (s)− u (s)∥V ds

)
+ max

s∈[0,T ]
∥Mρ (s)−M (s)∥H∞

(∫ t

0

∥u (s)∥V ds

)
+c ∥θρ(t)− θ(t)∥L2(Ω) + δ (ρ) .

From (3.26) , (5, 2) and (3, 20) , we have

∥θρ(t)− θ(t)∥2L2(Ω) ⩽ C

∫ t

0

∥∥ .
uρ(s)−

.
u(s)

∥∥2
V
ds. (5.15)

Then(
mA − C2

0 ∥β∥L∞(Γ3)

)∥∥ .
uρ(t)−

.
u(t)

∥∥
V

⩽ d

(
∥uρ(t)− u(t)∥V +

∫ t

0

∥uρ (s)− u (s)∥V ds

)
+ max

s∈[0,T ]
∥Mρ (s)−M (s)∥H∞

(∫ t

0

∥u (s)∥V ds

)
+C

∫ t

0

∥∥ .
uρ(s)−

.
u(s)

∥∥
V
ds+ δ (ρ) .

We use the notation

ζ (ρ) = max
s∈[0,T ]

∥Mρ (s)−M (s)∥H∞

∫ T

0

∥u (s)∥V ds. (5.16)
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So ∥∥ .
uρ(t)−

.
u(t)

∥∥
V
⩽ ζ(ρ)

mA−C2
0∥β∥L∞(Γ3)

+ δ(ρ)
mA−C2

0∥β∥L∞(Γ3)

+ C
mA−C2

0∥β∥L∞(Γ3)

∫ t

0

∥∥ .
uρ(s)−

.
u(s)

∥∥
V
ds,

this inequality implies that∥∥ .
uρ −

.
u
∥∥
V

⩽
1

mA − C2
0 ∥β∥L∞(Γ3)

(ζ (ρ) + δ (ρ))

+
C

mA − C2
0 ∥β∥L∞(Γ3)

∫ t

0

∥∥ .
uρ(s)−

.
u(s)

∥∥
V
ds.

Using a Gronwall inequality, we find∥∥ .
uρ −

.
u
∥∥
V
⩽ c (ζ (ρ) + δ (ρ)) . (5.17)

We integrate (5.17) over [0, t], using (4.14), (3.27) and (5.3) we get

∥uρ − u∥V ⩽ c

∫ t

0

∥∥ .
uρ(s)−

.
u(s)

∥∥
V
ds ⩽ c (ζ (ρ) + δ (ρ)) . (5.18)

The assumptions (5.5) , (5.4) and the definitions (5.14) , (5.16) imply

ζ (ρ) → 0, δ (ρ) → 0 as ρ → 0. (5.19)

We result from (5.18) and (5.19) that (5.6) is satisfied.
We conclude that (5.7) is a consequence of (5.18), (5.15) and (5.19). 2
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