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On Skew Cyclic Reversible DNA Codes Over F4[v]/⟨v4 − v⟩

Joël Kabore∗ and Mohammed Elhassani Charkani

abstract: In this paper, we study a specific class of skew cyclic codes over the ring F4[v]/⟨v4 − v⟩ which
is suitable for describing DNA codes over this ring. Using the Gray map between F4[v]/⟨v4 − v⟩ and F4

4 (or
equivalently DNA 4-bases), we describe reversible DNA codes and reversible-complement DNA codes over this
ring.
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1. Introduction

In recent years, numerous connections have been established between coding theory and biology,
particularly in the study of genetics through DNA molecules. This intersection has drawn significant
attention leading to the emergence of DNA coding as a vibrant research area within coding theory. DNA
computing has become a subject of growing interest.
DNA is a molecule composed of two strands, each being a finite sequence made up of nucleotides: A(for
Adenine), G(for Guanine), T (for Thymine), and C(for Cytosine). These strands are paired through the
Watson-Crick complement where A pairs with T and G pairs with C. In genetics, a DNA molecule is
represented as a pair of complementary strands twisted into a double helix. The process in which a strand
binds with its Watson-Crick complement to form this structure is known as hybridization.
A nonempty subset of Dn, where D is the set of nucleotides, is called DNA code of length n. It must
satisfy several biological and combinatorial constraints. These criteria ensure stability, reliability and
biological applications.
Adelman was the pioneer of DNA computing, having initiated this field in 1994 by using the Watson-Crick
Complement to fix an NP-complete problem [3]. Since then, the study of DNA codes have been extended
over various algebraic structures [2,3,4,8,9,10,15,16]. Much work on skew cyclic codes over finite rings
have been done, see for example [7,13,17] for chain rings and [1,6,12,14] for over rings.
Abualrub et al. investigate the structure of θ- skew cyclic codes and their duals over the ring F2[v]/⟨v2−v⟩
in [1]. Bhardwaj et al. further explore skew constacyclic codes within a broader class of non-chain rings
in [6]. In [11], Gursoy et al. employ skew cyclic codes over finite fields to construct DNA codes. Several
methods for constructing DNA codes using skew cyclic codes over F4 + vF4 are provided in [5,15]. This
structural understanding enables us to effectively study skew cyclic codes over F4[v]/⟨v4 − v⟩ and to
characterize DNA codes.
This study is structured as follows. Section 2 provides basic properties related to codes and DNA codes.
Section 3 is dedicated to constructing skew cyclic codes over F4[v]/⟨v4−v⟩, adapted for DNA codes study.
Section 4 focuses on the reversibility of DNA codes over F4[v]/⟨v4 − v⟩.
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2. Background

In this paper, we denote the ring F4[v]
⟨v4−v⟩ by R4, and F4 is the finite field {0, 1, ϖ,ϖ2}, with ϖ2 = ϖ+1.

The ring R4 is a finite principal ring with maximal ideals: ⟨v⟩, ⟨v − 1⟩, ⟨v −ϖ⟩, ⟨v −ϖ2⟩. Let

η0 = v3 + 1, η1 = v3 + v2 + v, η2 = v3 +ϖv2 +ϖ2v, η3 = v3 +ϖ2v2 +ϖv.

It is easy to see that η2i = ηi, ηiηj = 0 and
3∑

i=0

ηi = 1, where 0 ≤ i ̸= j ≤ 4. Then any element

λ = λ0 + λ1v + λ2v
2 + λ3v

3 of R4 can be uniquely represented as (see [14]):

λ = λ0η0 + (λ0 + λ1 + λ2 + λ3)η1 + (λ0 +ϖλ1 +ϖ2λ2 + λ3)η2 + (λ0 +ϖ2λ1 +ϖλ2 + λ3)η3.

Note that an element λ = λ0η0 + λ1η1 + λ2η2 + λ3η3 is a unit if and only if λi ̸= 0, ∀ i ∈ {0, 1, 2, 3}.
We defined the Gray map on R4 by Ψ : R4 −→ F4

4, where

Ψ(λ0η0 + λ1η1 + λ2η2 + λ3η3) = (λ0, λ1, λ2, λ3).

Any R4-submodule of Rn
4 is called linear code of length n over R4. Let λ = (λ1, λ2, · · · , λn) be an

element of Rn
4 and wH be the function defined by wH(λ) := |{i | λi ̸= 0}|. Hamming distance between

two codewords λ, β is defined as dH(λ, β) = wH(λ−β). Using the Gray map Ψ, it is convenient to endowed
F4n
4 with the Hamming distance andRn

4 with the well-known Lee distance defined as dL(λ, β) = wL(λ−β),
where wL(λ) = wH(Ψ(λ)). It is easy to verify the following result.

Lemma 2.1 The Gray map Ψ : (Rn
4 , dL) −→ (F4n

4 , dH) is a distance-preserving map.

Let R4[y, θ] :=
{
λ0 + λ1y + . . .+ λn−1y

n−1 | λi ∈ R4, n ∈ N
}
be the skew polynomial ring defined over

R4, where θ is an automorphism over R4. We recall that the addition in R4[y, θ] is the usual addition
of polynomials and the multiplication is defined by (λyi)(βyj) = λθi(β)yi+j . A linear code C of length
n over R4 such that τθ(λ) = (θ(λn−1), θ(λ0), · · · , θ(λn−2)) ∈ C whenever λ = (λ0, λ1, · · · , λn−1) ∈ C is
called θ-skew cyclic code of length n over R4. By identifying the codeword (λ0, λ1, · · · , λn−1) with the
polynomial λ0 + λ1y+ · · ·+ λn−1y

n−1, we can consider a θ-skew cyclic code of length n over R4 as a left
submodule of the R4[y, θ]-module Rn := R4[y, θ]/⟨ yn − 1, ⟩, where the multiplication is defined as

g(y) (h(y) + ⟨ yn − 1 ⟩) = g(y)h(y) + ⟨ yn − 1 ⟩.

A code C of length 4n over F4 is called a 4-quasi-cyclic code if

τ4(u) = (u
(n−1)
0 , u

(n−1)
1 , u

(n−1)
2 , u

(n−1)
3 , u

(0)
0 , u

(0)
1 , u

(0)
2 , u

(0)
3 , · · · , u(n−2)

0 , u
(n−2)
1 , u

(n−2)
2 , u

(n−2)
3 ) ∈ C

whenever

u = (u
(0)
0 , u

(0)
1 , u

(0)
2 , u

(0)
3 , u

(1)
0 , u

(1)
1 , u

(1)
2 , u

(1)
3 , · · · , u(n−1)

0 , u
(n−1)
1 , u

(n−1)
2 , u

(n−1)
3 ) ∈ C, ∀ u ∈ C.

In the sequel, we consider the automorphism θ defined on R4 by

θ(λ0η0 + λ1η1 + λ2η2 + λ3η3) = λ3η0 + λ2η1 + λ1η2 + λ0η3.

In [14], this automorphism corresponds to ΘId,τ , where τ is the permutation (0 3)(1 2). The following
result shows the connection between skew cyclic codes over R4 and 4-quasi-cyclic codes over F4.

Theorem 2.1 Let C ⊂ Rn
4 . If C is a skew cyclic code, then Ψ(C)( ⊆ F4n

4 ) is similar to a 4-quasi-cyclic
code.

Proof: Suppose that u = (u
(0)
0 η0+u

(0)
1 η1+u

(0)
2 η2+u

(0)
3 η3, u
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(1)
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0 η0+

u
(n−1)
1 η1 + u

(n−1)
2 η2 + u

(n−1)
3 η3) ∈ C. We have

τ4(Ψ(u)) = τ4((u
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0 , u
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1 , u
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2 , u
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1 , u

(1)
2 , u

(1)
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= (u
(n−1)
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and

Ψ(τθ(u)) = Ψ(θ(u
(n−1)
0 η0 + u

(n−1)
1 η1 + u

(n−1)
2 η2 + u

(n−1)
3 η3), θ(u

(0)
0 η0 + u

(0)
1 η1 + u

(0)
2 η2 + u

(0)
3 η3),

· · · , θ(u(n−2)
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(n−2)
3 η3))

= Ψ(u
(n−1)
3 η0 + u
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(n−1)
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2 η1 + u

(n−2)
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2

We can associate F4 and nucleotides set D by using the one-to-one map µ defined by µ(0) = A, µ(1) =
T, µ(ϖ) = C, µ(ϖ2) = G. It follows that 0 = 1, 1 = 0, ϖ = ϖ2, ϖ2 = ϖ. This map naturally extends
to R4 by

µ(λ0η0 + λ1η1 + λ2η2 + λ3η3) = µ(λ0)η0 + µ(λ1)η1 + µ(λ2)η2 + µ(λ3)η3.

A one-to-one map Φ between R4 and D4 = {AAAA, TTTT,GGGG,CCCC, · · · } is defined by

Φ : R4 → D4

λ0η0 + λ1η1 + λ2η2 + λ3η3 7→ (µ(λ0), µ(λ1), µ(λ2), µ(λ3)).

Definition 2.1 1. A code C is called reversible code if λr = (λn−1, λn−2, ..., λ0) ∈ C whenever λ =
(λ0, λ1, ..., λn−1) ∈ C for all λ ∈ C; λr is called the reverse of λ.

2. A code C is called complement code if λc = (λ0, λ1, ..., λn−1) ∈ C whenever λ = (λ0, λ1, ..., λn−1) ∈ C
for all λ ∈ C; λc is called the complement of λ.

3. A code C is called reversible-complement if λrc = (λn−1, λn−2, ..., λ0) ∈ C whenever
λ = (λ0, λ1, ..., λn−1) ∈ C for all λ ∈ C; λrc is called the reverse-complement of λ.

Example 2.1 Let C be a code of length 3 over R4 and λ = (ϖη0+η1+ϖ2η2, η1+ϖ2η3, ϖη0+ϖ2η1+η2+
η3) be a codeword. The codeword λ corresponds to the DNA codeword Φ(λ) = (CTGA,ATAG,CGTT ).
The reverse of λ is given by λr = (ϖη0+ϖ2η1+η2+η3, η1+ϖ2η3, ϖη0+η1+ϖ2η2) and this corresponds
to the DNA codeword Φ(λr) = (CGTT,ATAG,CTGA). However Φ(λr) is not the reverse of Φ(λ) which
is given by

Φ(λ)r = (TTGC,GATA,AGTC)
= Φ(η0 + η1 +ϖ2η2 +ϖη3, ϖ

2η0 + η2, ϖ
2η1 + η2 +ϖη3)

= Φ((θ(λ))r).

The above example shows that the automorphism θ is a suitable tool to characterize the reversibility of
DNA codes since Φ(λ)r = Φ((θ(λ))r).

3. Skew Cyclic Codes with a Particular Automorphism

In the sequel, we simply designate a θ-skew cyclic code by skew cyclic code and denote it by C. Note
that an element λ = λ0η0 + λ1η1 + λ2η2 + λ3η3 ∈ R4 is a unit if and only if λi ̸= 0, for all i ∈ {0, 1, 2, 3}.
This implies that λ is not a unit if and only if λ can be represented as λi1ηi1 + λi2ηi2 + λi3ηi3 , where
λi1 , λi2 , λi3 ∈ F4 and i1, i2, i3 ∈ {0, 1, 2, 3}.

Remark 3.1 The lemma below is given in [6, Lemma 3] in an incorrect form.

Lemma 3.1 Let g(y) = λty
t + λt−1y

t−1 + · · · + λ0 ∈ C, where t is the minimal degree in C and λt =
λi1ηi1 + λi2ηi2 + λi3ηi3 with λi1 , λi2 , λi3 ∈ F4 \ {0}. Then all coefficients of g are represented as βi1ηi1 +
βi2ηi2 + βi3ηi3 .

Proof: Let g(y) = λty
t + λt−1y

t−1 + · · · + λ0, where λt = λi1ηi1 + λi2ηi2 + λi3ηi3 . If ηi4 is an other
idempotent that does not appear in the representation of λt, then ηi4λt = 0. It follows that deg(ηi4g(y)) <
t. Then, according to the minimality of deg(g), we obtain ηi4g(y) = 0. 2
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Theorem 3.1 Let g(y) = λty
t + λt−1y

t−1 + · · ·+ λ0 ∈ C, where t is the minimal degree in C and λt is a
unit. Then C = ⟨g⟩ and g is a right divisor of yn − 1.

Proof: Let h(y) be a polynomial in C. Using the left division algorithm, there exist two polynomials
q1(y), r1(y) ∈ R4[y, θ] such that h(y) = q1(y)g(y) + r1(y), where deg r1 < deg g.
The fact that C is a left submodule of Rn ensures that r1(y) = h(y) − q1(y)g(y) ∈ C. Since t = deg(g is
minimal, we obtain r1(y) = 0.
Likewise, using the left division algorithm, it is easy to deduce that g is a right divisor of yn − 1. 2

The following result is similar to [1, Lemma 3].

Lemma 3.2 Let g(y) = λty
t + λt−1y

t−1 + · · · + λ0 ∈ C, where t is the minimal degree in C and λt =
λi1ηi1 + λi2ηi2 + λi3ηi3 with λi1 , λi2 , λi3 ∈ F4 \ {0}. Let f ∈ R4[y, θ] such that deg f > deg g. Then there
exist two polynomials q1(y), r1(y) ∈ R4[y, θ] such that f(y) = q1(y)g(y)+r1(y), where deg r1(y) ≤ deg g(y)
or r1(y) is a polynomial with a unit leading coefficient that satisfies deg r1(y) ≤ deg f(y).

Proof: Suppose f = ϖ is a constant term, then g = λi1ηi1 + λi2ηi2 + λi3ηi3 . We denote the other
idempotent by ηi4 .

• If f is unit then f = 0g+ f

• If f is not a unit, then f = βj1ηj1 or f = βj1ηj1 + βj2ηj2 or f = βj1ηj1 + βj2ηj2 + βj3ηj3 .
Case 1: f = βj1ηj1 .
Subcase 1: If f = βi1ηi1 , then f = (βi1λ

−1
i1

ηi1)g. It is similar for indices i2; i3.

Subcase 2: If f = βi4ηi4 , then f = βi4(λ
−1
i1

ηi1 + λ−1
i2

ηi2 + λ−1
i3

ηi3)g+ βi4 .
Case 2: f = βj1ηj1 + βj2ηj2 .
Subcase 1: If f = βi1ηi1 + βi2ηi2 , then f = (βi1λ

−1
i1

ηi1 + βi2λ
−1
i2

ηi2)g. It is similar for the couple of
indices (i1, i3); (i2, i3).
Subcase 2: If f = βi1ηi1 + βi4ηi4 , then f = (βi1λ

−1
i1

ηi1)g + βi4ηi4 . But from Case 1, we have

βi4ηi4 = qg+βi4 , where q = βi4(λ
−1
i1

ηi1 +λ−1
i2

ηi2 +λ−1
i3

ηi3). It follows that f = (βi1λ
−1
i1

ηi1 +q)g+βi4 .
It is similar for the pairs (i2, i4); (i3, i4).
Case 3: f = βj1ηj1 + βj2ηj2 + βj3ηj3 .
Subcase 1: If f = βi1ηi1 + βi2ηi2 + βi3ηi3 , then f = (βi1λ

−1
i1

ηi1 + βi2λ
−1
i2

ηi2 + βi3λ
−1
i3

ηi3)g.

Subcase 2: If f = βi1ηi1 + βi2ηi2 + βi4ηi4 , then f = (βi1λ
−1
i1

ηi1 + βi2λ
−1
i2

ηi2)g+ βi4ηi4 . From Case

1, βi4ηi4 = qg+βi4 , this implies that f = (βi1λ
−1
i1

ηi1 +βi2λ
−1
i2

ηi2 + q)g+βi4 . It is similar for triplets
(i1, i3, i4); (i2, i3, i4).

The proof is completed using induction on the degree of f. 2

Theorem 3.2 Let C be a skew cyclic code of length n over R4 which does not contain any polynomial
with a unit leading coefficient. Suppose that g is a polynomial in C of minimal degree whose its leading
coefficient is represented as λi1ηi1 +λi2ηi2 +λi3ηi3 , where λi1 , λi2 , λi3 are non zero elements in F4. Then
C = ⟨g(y)⟩.
Moreover, g(y) = ηi1g0(y)+ ηi2g1(y)+ ηi3g2(y), where g0(y), g1(y), g2(y) are divisors of yn − 1 in F4[y].

Proof: Without loss of generality, let us consider that the leading coefficient of g is represented as
λ0η0+λ1η1+λ1η2, where λ0, λ1, λ2 are non zero elements in F4. Let h(y) ∈ C, from Lemma 3.2, there exist
two polynomials q1(y), r1(y) ∈ R4[y, θ] such that h(y) = q1(y)g(y) + r1(y), where deg r1(y) ≤ deg g(y)
or r1(y) is a polynomial with a unit leading coefficient that satisfies deg r1(y) ≤ deg h(y). Since C does
not contain any polynomial with a unit leading coefficient, then r1(y) = 0, by minimality of degree of g.
Hence C = ⟨g(y)⟩. Using Lemma 3.1, we find that g(y) can be represented as g(y) = η0g0 + η1g1 + η2g2,
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where g0, g1, g2 ∈ F4[y]. Using the division algorithm over F4[y], there exist q2(y), r2(y) ∈ F4[y] such
that yn − 1 = q2(y)g0(y) + r2(y), where deg r2(y) < deg g0(y). We have

(η0 + η3)(y
n − 1) = (η0 + η3)q2(y)g0(y) + (η0 + η3)r2(y)

= q2(y)(η0 + η3)g0(y) + (η0 + η3)r2(y)
= q2(y)η0g0(y) + q2(y)η3g0(y) + (η0 + η3)r2(y)
= q2(y)η0g(y) + q2(y)η3g0(y) + (η0 + η3)r2(y).

Since q2(y)η1g(y) = q2(y)η1g1(y) and q2(y)η2g(y) = q2(y)η2g2(y) ∈ C, then

q2(y)η1g1(y) + q2(y)η2g2(y) + q2(y)η0g0(y) + q2(y)η3g0(y) + (η0 + η3)r2(y) ∈ C.

Since deg(g1) = deg(g2) = deg(g0) and deg(r2(y)) < deg(g0(y)), then the leading coefficient of
q2(y)η1g1(y)+ q2(y)η2g2(y)+ q2(y)η0g0(y)+ q2(y)η3g0(y)+ (η0+ η3)r2(y) is a unit. Moreover, C does not
contain any polynomial with a unit leading coefficient, then q2(y)η1g1(y)+ q2(y)η2g2(y)+ q2(y)η0g0(y)+
q2(y)η3g0(y) + (η0 + η3)r2(y) = 0. We get r2(y) = 0. Thus g0 divides yn − 1. It is the same case for g1
and g2. 2

Theorem 3.3 [6, Theorem 7] Suppose that C contains some polynomials with a unit leading coefficient
such that none of them is of minimal degree. Let g(y) be a polynomial in C of minimal degree with a
non-unit leading coefficient and f(y) be a polynomial of minimal degree among polynomials in C with a
unit leading coefficient. Then C = ⟨g(y), f(y)⟩.

4. Skew Cyclic DNA Codes

In this section, we focus on the properties of skew DNA cyclic codes over R4.

Definition 4.1 [11, Definition 4] Let θ be an automorphism of R4.

1. A palindromic polynomial g(y) = λ0 + λ1y + · · · + λty
t of degree t over R4 is a polynomial that

satisfies λj = λt−j ∀ j ∈ {0, 1 · · · , t}.

2. A θ-palindromic polynomial g(y) = λ0 + λ1y + · · · + λty
t of degree t over R4 is a polynomial that

satisfies λj = θ(λt−j) ∀ j ∈ {0, 1 · · · , t}.

If λ is a codeword, we easyly find that Ψ(λ)r = Ψ(θ(λ)r).

Definition 4.2 A linear code C over R4 is said to be a reversible DNA code if Ψ(λ)r ∈ Ψ(C) for all
λ ∈ C. It is said to be a reversible-complement DNA code if Ψ(λ)rc ∈ Ψ(C) ∀ λ ∈ C.

Theorem 4.1 Let g(y) = λ0+λ1y+ · · ·+λt−1y
t−1+λty

t be a right divisor of yn−1 in R4[y, θ]. Suppose
that λt is a unit and n, t are even. Then the skew cyclic code C = ⟨g(y)⟩ of length n is a reversible DNA
code if and only if g(y) is a palindromic polynomial.

Proof: Suppose that g is a palindromic polynomial, then g(y) = λ0 + λ1y + · · ·+ λ1y
t−1 + λ0y

t. For a
codeword λ, we have (Ψ(λ))r = Ψ((θ(λ))r). Therefore

(Ψ(

l∑
j=0

γjx
jg(y)))r = Ψ(

l∑
j=0

θ(γj)x
l−jg(y)) (4.1)

where l = n− t− 1 and γj ∈ R4. The result is clear since C is skew cyclic.
Reciprocally, assume that C is a reversible DNA code of length n. Since λt is a unit, we can consider
that g is monic. Let g(y) = λ0 + λ1y + · · ·+ λt−1y

t−1 + yt. Furthermore, as g divides yn − 1, then λ0 is
a unit. We have

gr(y) = yn−t−1 + θ(λt−1)y
n−t + · · ·+ θ(λ1)y

n−2 + θ(λ0)y
n−1 ∈ C
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and
yt+1gr(y) = 1 + λt−1y + · · ·+ λ1y

t−1 + λ0y
t ∈ C.

Then

g(y)− λ−1
0 xt+1gr(y) = (λ0 − λ−1

0 ) + (λ1 − λ−1
0 λt−1)y + · · ·+ (λt−1 − λ−1

0 λ1)y
t−1 ∈ C.

Since deg(g) is minimal, we get g(y)− λ−1
0 yt+1gr(y) = 0. That is to say

(λ0 − λ−1
0 ) = (λ1 − λ−1

0 λt−1) = · · · = 0.

Therefore λ0 = 1, λj = λt−j for all j ∈ {0, 1, · · · , t}. 2

Theorem 4.2 Let g(y) = λ0+λ1y+ · · ·+λt−1y
t−1+λty

t be a right divisor of yn−1 in R4[y, θ]. Suppose
that λt is a unit, n is even and t is odd. Then the skew cyclic code C = ⟨g(y)⟩ of length n is a reversible
DNA code if and only if there exists a θ-palindromic polynomial h such that C = ⟨h(y)⟩.

Proof: Suppose that g is a θ-palindromic polynomial. As λt is a unit, we can assume that g is monic
and g(y) = 1 + λ1y + · · ·+ θ(λ1)y

t−1 + yt. For a codeword λ, we have (Ψ(λ))r = Ψ((θ(λ))r). Therefore

(Ψ(

l∑
j=0

γjx
jg(y)))r = Ψ(

l∑
j=0

θ(γj)x
l−jg(y)) (4.2)

where l = n− t− 1 and λj ∈ R4. We conclude by using the fact that C is skew cyclic.
Reciprocally, assume that C is a reversible DNA code of length n. Since λt is a unit, we can consider
that g is monic. Let g(y) = λ0 + λ1y + · · ·+ λt−1y

t−1 + yt. Furthermore, as g divides yn − 1, then λ0 is
a unit. We have

gr(y) = yn−t−1 + θ(λt−1)y
n−t + · · ·+ θ(λ1)y

n−2 + θ(λ0)y
n−1 ∈ C

and
yt+1gr(y) = 1 + θ(λt−1)y + · · ·+ θ(λ1)y

t−1 + θ(λ0)y
t ∈ C.

Then

g(y)− θ(λ−1
0 )yt+1gr(y) = (λ0 − θ(λ−1

0 )) + (λ1 − θ(λ−1
0 )θ(λt−1))y + · · ·+ (λt−1 − θ(λ−1

0 )θ(λ1))y
t−1 ∈ C.

Since deg(g) is minimal, we get g(y)− θ(λ−1
0 )yt+1gr(y) = 0. That is to say

(λ0 − θ(λ−1
0 )) = (λ1 − θ(λ−1

0 )θ(λt−1)) = · · · = 0.

Since λ0 = θ(λ−1
0 ), we have λ2

0 = θ(λ0).

Then g(y) =

t−1
2∑

j=0

(λjy
j + λ0θ(λj)y

t−j) and λ0g(y) =

t−1
2∑

j=0

(λ0λjy
j + θ(λ0aj)y

t−j) ∈ C. The result follows

by the fact that C = ⟨g(y)⟩ = ⟨λ0g(y)⟩. 2

Theorem 4.3 Let g(y) = ηi0g0 + ηi1g1 + ηi2g2 be a polynomial of degree t, where g0(y), g1(y), g2(y) are
of the same degree t and divide yn − 1 in F4[y]. Suppose n and t are even. Then the skew cyclic code
C = ⟨g(y)⟩ of length n is a reversible DNA code if and only if g(y) is a palindromic polynomial.

Proof: Suppose that g(y) is a palindromic polynomial, then g(y) = λ0 + λ1y + · · ·+ λ1y
t−1 + λ0y

t. For
a codeword λ, we have (Ψ(λ))r = Ψ((θ(λ))r). Therefore

(Ψ(

l∑
j=0

γjx
jg(y)))r = Ψ(

l∑
j=0

θ(γj)y
l−jg(y)),
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where l = n− t− 1 and γj ∈ R4. We conclude by using the fact that C is skew cyclic.
Reciprocally, assume that C = ⟨g(y)⟩ is a reversible skew cyclic code of length n. Without loss of
generality, suppose that g(y) = η0g0+η1g1+η2g2. Since g0(y), g1(y), g2(y) divide y

n−1 in F4[y], we can
assume that g = λ0+λ1y+ · · ·+λt−1y

t−1+λty
t, where λ0 = η0b0+ η1b1+ η2b2; λt = η0a0+ η1a1+ η2a2

and b0, b1, b2, a0, a1, a2 are non zero elements of F4. We have

gr(y) = θ(λt)y
n−t−1 + θ(λt−1)y

n−t + · · ·+ θ(λ1)y
n−2 + θ(λ0)y

n−1 ∈ C

and
yt+1gr(y) = λt + λt−1y + · · ·+ λ1y

t−1 + λ0y
t ∈ C.

Let λ̃0 = η0b
−1
0 + η1b

−1
1 + η2b

−1
2 and λ̃t = η0a

−1
0 + η1a

−1
1 + η2a

−1
2 . We get

λ̃tg− λ̃0y
t+1gr(y) = (λ̃tλ0 − λ̃0λt) + (λ̃tλ1 − λ̃0λt−1)y + · · ·+ (λ̃tλt−1 − λ̃0λ1)y

t−1 ∈ C.

According to the minimality of deg(g), we obtain λ̃tg− λ̃0x
t+1gr(y) = 0. Therefore

(λ̃tλ0 − λ̃0λt) = (λ̃tλ1 − λ̃0λt−1) = · · · = 0.

We have

λ̃tλ0 − λ̃0λt = (η0a
−1
0 b0 + η1a

−1
1 b1 + η2a

−1
2 b2)− (η0a0b

−1
0 + η1a1b

−1
1 + η2a2b

−1
2 )

= η0(a
−1
0 b0 − a0b

−1
0 ) + η1(a

−1
1 b1 − a1b

−1
1 ) + η2(a

−1
2 b2 − a2b

−1
2 ).

Then λ̃tg − λ̃0x
t+1gr(y) = 0 implies that (a−1

0 b0 − a0b
−1
0 ) = (a−1

1 b1 − a1b
−1
1 ) = (a−1

2 b2 − a2b
−1
2 ) = 0.

Then a2i = b2i . Therefore ai = bi, ∀ i ∈ {0, 1, 2} and λ0 = λt.
From Lemma 3.1, we deduce that λj = λt−j for all j ∈ {0, 1, · · · , t}. 2

Theorem 4.4 Let g(y) = ηi0g0 + ηi1g1 + ηi2g2 be a polynomial of degree t, where g0(y), g1(y), g2(y) are
of the same degree t and divide yn − 1 in F4[y]. If n is odd or (n is even and t is odd). Then the skew
cyclic code C = ⟨g(y)⟩ of length n cannot be a reversible DNA code.

Proof: Assume that g(y) = η0g0 + η1g1 + η2g2. Since g0(y), g1(y), g2(y) divide yn − 1 in F4[y], we can
assume that g(y) = λ0+λ1y+· · ·+λt−1y

t−1+λty
t, where λ0 = η0b0+η1b1+η2b2; λt = η0a0+η1a1+η2a2

and b0, b1, b2, a0, a1, a2 are non zero elements of F4. We have

gr(y) = θ(λt)y
n−t−1 + θ(λt−1)y

n−t + · · ·+ θ(λ1)y
n−2 + θ(λ0)y

n−1 ∈ C,

and
yt+1gr(y) = θ(λt) + θ(λt−1)y + · · ·+ θ(λ1)y

t−1 + θ(λ0)y
t ∈ C.

Therefore

g(y) + η3y
t+1gr(y) = (η0a0 + η1a1 + η2a2 + η3a0)y

t + (λt−1 + η3θ(λ1))y
t−1 + · · ·+ (λ0 + η3θ(λt)) ∈ C.

Since a0, a1, a2 are units in F4, then the leading coefficient of g(y) + η3y
t+1gr(y) is a unit, which is a

contradiction. 2

If λ = (λ0, λ1, · · · , λn−1) is an element of a skew cyclic code of odd length n over R4, then it is easy
to see that (λn−1, λ0, · · · , λn−2) is also a codeword. Hence it is a cyclic code.

Theorem 4.5 Assume that C is generated by a right divisor g of yn − 1 in R4[y, θ] and n is odd.

(a) Suppose that g is palindromic or θ-palindromic. Then C is a reversible DNA code.

(b) Suppose that C is a reversible DNA code. Then there exists a monic polynomial h(y) ∈ R4[y] that
is both palindromic and θ-palindromic such that C = ⟨h(y)⟩.
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Proof: We can assume that g is monic. Let g(y) = λ0 + λ1y+ · · ·+ λt−1y
t−1 + yt, where t is odd. Since

the length of C is odd, we get

gθ(y) := yng(y) = θ(λ0) + θ(λ1)y + · · ·+ θ(λt−1)y
t−1 + yt ∈ C.

(a) Assume that g is palindromic, then

(Ψ(

l∑
j=0

γjy
jg(y)))r = Ψ(

l∑
j=0

θ(γj)y
l−jg(y)),

where l = n− t− 1 and γj ∈ R4.

Assume that g is θ-palindromic, then

(Ψ(

l∑
j=0

γjx
jg(y)))r = Ψ(

l∑
j=0

θ(γj)x
l−jgθ(y)),

where l = n− t− 1 and γj ∈ R4. Since C is a skew cyclic code, the result follows.

(b) Now suppose that C is a reversible DNA code. We have

gr(y) = yn−t−1 + θ(λt−1)y
n−t + · · ·+ θ(λ1)y

n−2 + θ(λ0)y
n−1 ∈ C

and
yt+1gr(y) = 1 + θ(λt−1)y + · · ·+ θ(λ1)y

t−1 + θ(λ0)y
t ∈ C.

From Theorem 4.2, we know that there exists a θ-palindromic polynomial h(y) = λ0g(y) = β0 +
β1y + · · · + θ(β1)y

t−1 + θ(β0)y
t ∈ R4[y, θ] such that C = ⟨h(y)⟩, where β0 = λ2

0 = θ(λ0). As n is
odd, we obtain

hθ(y) = θ(β0) + θ(β1)y + · · ·+ β1y
t−1 + β0y

t ∈ C.

Therefore, according to the minimality of deg(h), we get

θ(β−1
0 )h(y)−β−1

0 hθ(y) = (θ(β−1
0 )β0 −β−1

0 θ(β0))+ (θ(β−1
0 )β1 −β−1

0 θ(β1))y+ · · ·+(θ(β−1
0 )θ(β1)−β−1

0 β1)y
t−1 = 0.

Then

(θ(β−1
0 )β0 − β−1

0 θ(β0)) = (θ(β−1
0 )β1 − β−1

0 θ(β1)) = · · · = (θ(β−1
0 )θ(β1)− β−1

0 β1) = 0.

We deduce that θ(β−1
0 )β0 − β−1

0 θ(β0) = 0, hence θ(β−1
0 )β0 = 1. Therefore β0 = θ(β0). Since

β0 = λ2
0 = θ(λ0), we get β0 = 1. It follows that βj = θ(βj) for all j ∈ {1, · · · t}.

If t is even, the approach is similar to the case where t is odd. 2

Recall that a standard DNA molecule is made up of two strands. For hybridization to occur, one
strand must meet its corresponding reverse-complement strand. Therefore, it is important to characterize
reversible-complement codes.

Proposition 4.1 Assume that C is generated by a right divisor g of yn − 1 in R4[y, θ].

(a) Suppose that n and the degree of g are both even. Then C is a reversible-complement DNA code if
and only if g is a palindromic polynomial and 1 + y + · · ·+ yn−1 ∈ C.

(b) Suppose that n is even and the degree of g is odd. Then C is a reversible-complement DNA code if
and only if C there exists a θ-palindromic polynomial h such that C = ⟨h(y)⟩ and 1+y+· · ·+yn−1 ∈ C.

(c) Suppose n is odd. Then C is a reversible-complement DNA code if and only if there exists a monic
polynomial h(y) ∈ R4[y] that is both palindromic and θ-palindromic such that C = ⟨h(y)⟩ and
1 + y + · · ·+ yn−1 ∈ C.
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Proof: Using the Watson-Crick complement and the correspondence Φ betweenR4 andD4, we easily find
that β+β = 1, ∀ β ∈ R4. Let l(y) = β0+β1y+· · ·+βn−1y

n−1 ∈ C, since C is skew cyclic, it is a complement
code if and only if l(y)+ lc(y) = (β0+β0)+(β1+β1)y+ · · ·+(βn−1+βn−1)y

n−1 = 1+y+ · · ·+yn−1 ∈ C.
We conclude by considering Theorems 4.1, 4.2 and 4.5. 2

Proposition 4.2 Let g(y) = ηi0g0 + ηi1g1 + ηi2g2 ∈ R[y, θ], where g0(y), g1(y), g2(y) are of the same
degree and divide yn − 1 in F4[y]. Then C = ⟨g(y)⟩ cannot be a complement DNA code.

Proof: Suppose C is a complement code, then as in the above proof, we have 1 + y + · · · + yn−1 ∈ C.
Since C = ⟨g(y)⟩ cannot contain monic polynomials, the result follows. 2

5. Conclusion

In this work, we explore the structure of skew cyclic codes over R4 with respect to the automorphism
θ defined on R4 by θ(λ0η0 + λ1η1 + λ2η2 + λ3η3) = λ3η0 + λ2η1 + λ1η2 + λ0η3. We establish a divisibility
relation for particular polynomials in R4[y] and we derive generators polynomials of skew cyclic codes.
This enables to characterize skew reversible DNA codes using palindromic and θ-palindromic polynomials.
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