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On Skew Cyclic Reversible DNA Codes Over F,[v]/(v* —v)

Joél Kabore™ and Mohammed Elhassani Charkani

ABSTRACT: In this paper, we study a specific class of skew cyclic codes over the ring F4[v]/{v* — v) which
is suitable for describing DNA codes over this ring. Using the Gray map between F4[v]/(v? — v) and F} (or
equivalently DNA 4-bases), we describe reversible DNA codes and reversible-complement DNA codes over this
ring.
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1. Introduction

In recent years, numerous connections have been established between coding theory and biology,
particularly in the study of genetics through DNA molecules. This intersection has drawn significant
attention leading to the emergence of DNA coding as a vibrant research area within coding theory. DNA
computing has become a subject of growing interest.

DNA is a molecule composed of two strands, each being a finite sequence made up of nucleotides: A(for
Adenine), G(for Guanine), T'(for Thymine), and C(for Cytosine). These strands are paired through the
Watson-Crick complement where A pairs with 7" and G pairs with C. In genetics, a DNA molecule is
represented as a pair of complementary strands twisted into a double helix. The process in which a strand
binds with its Watson-Crick complement to form this structure is known as hybridization.

A nonempty subset of D", where ® is the set of nucleotides, is called DNA code of length n. It must
satisfy several biological and combinatorial constraints. These criteria ensure stability, reliability and
biological applications.

Adelman was the pioneer of DNA computing, having initiated this field in 1994 by using the Watson-Crick
Complement to fix an NP-complete problem [3]. Since then, the study of DNA codes have been extended
over various algebraic structures [2,3,4,8,9,10,15,16]. Much work on skew cyclic codes over finite rings
have been done, see for example [7,13,17] for chain rings and [1,6,12,14] for over rings.

Abualrub et al. investigate the structure of §- skew cyclic codes and their duals over the ring F[v]/(v% —v)
in [1]. Bhardwaj et al. further explore skew constacyclic codes within a broader class of non-chain rings
in [6]. In [11], Gursoy et al. employ skew cyclic codes over finite fields to construct DNA codes. Several
methods for constructing DNA codes using skew cyclic codes over Fy + vFy4 are provided in [5,15]. This
structural understanding enables us to effectively study skew cyclic codes over Fy[v]/(v? — v) and to
characterize DNA codes.

This study is structured as follows. Section 2 provides basic properties related to codes and DNA codes.
Section 3 is dedicated to constructing skew cyclic codes over Fy[v]/(v* —v), adapted for DNA codes study.
Section 4 focuses on the reversibility of DNA codes over Fy[v]/(v* — v).
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2. Background

In this paper, we denote the ring <5:E)1];) by Ry, and F4 is the finite field {0, 1, @, @?}, with w? = w+1.
The ring Ry is a finite principal ring with maximal ideals: (v), (v —1), (v — @), (v —w@?). Let

nO:v3+1, n1:v3+f02+v, nQ:v3+wv2+w2v, 773:1)3+w2112+wv.

3

It is easy to see that n? = n;, mm; = 0 and Y. 7 = 1, where 0 < i # j < 4. Then any element
i=0

A= Ao+ Ao+ Av? 4+ A303 of Ry can be uniquely represented as (see [14]):

A= Xomo + ()\0 + A1+ Ao+ /\3)771 + (/\0 + w1 + w2/\2 + )\3)772 + ()\0 + w2>\1 + g + /\3)773.

Note that an element A = A\gng + A\111 + Aane + Asns is a unit if and only if A\; #0, Vi€ {0,1,2,3}.
We defined the Gray map on R4 by ¥ : Ry — F}, where

U (Aono + A+ Aamz + Asnz) = (Ao, A1, Az, Ag).

Any PRy-submodule of R7} is called linear code of length n over $Ry. Let A = (A, A\, -+, A,) be an
element of MY and wy be the function defined by wg(A) := [{i | \; # 0}|. Hamming distance between
two codewords A, 3 is defined as dy (A, 8) = wy (A—p). Using the Gray map U, it is convenient to endowed
F$" with the Hamming distance and SR} with the well-known Lee distance defined as dr, (A, 8) = wr (A—23),
where wr,(A) = wy (P(A)). It is easy to verify the following result.

Lemma 2.1 The Gray map ¥ : (R}, dr) — (F{",dy) is a distance-preserving map.

Let Ryly, 0] == {Ao+ Ay + ...+ Au1y™ 1 | s € Ry, n € N} be the skew polynomial ring defined over
Ry, where 0 is an automorphism over Ry. We recall that the addition in 934y, 0] is the usual addition
of polynomials and the multiplication is defined by (A\y*)(By’) = X0 (B)y**7. A linear code € of length
n over Ry such that 79(A) = (O(An=1),0(No), - ,0(An—2)) € € whenever A = (Mg, A1, -, Ap1) € C s
called 6-skew cyclic code of length n over R4. By identifying the codeword (Ao, A1, ,Ap—1) with the
polynomial Mg+ Ay + -+ -+ A\_1y™ L, we can consider a #-skew cyclic code of length n over fR, as a left
submodule of the R4y, 8]-module R,, := Ryly, 0]/(y™ — 1,), where the multiplication is defined as

9(y) (h(y) +(y" = 1)) =a(¥)b(y) + (y" —1).

A code € of length 4n over Fy is called a 4-quasi-cyclic code if

7—4(u) = (ugn71)7 ugnil)v U'gnil)a ulgnil)a ugo)a ugma U’éO)7 ug)): T uén72)7 ugn72)7 ug’b*m’ U’énim) ec
whenever
u= (uéo), ugo),uéo),ugo),uél), ugl), ugl),ugl), e ,uén_l),ugn_l),uén_l), ugn_l)) ee, Vuecd.

In the sequel, we consider the automorphism 6 defined on 9R4 by
6(Xomo + A1+ A2ma + Agmz) = Agnio + A2 + Az + Aons.

In [14], this automorphism corresponds to O;q -, where 7 is the permutation (0 3)(1 2). The following
result shows the connection between skew cyclic codes over Ry and 4-quasi-cyclic codes over F.

Theorem 2.1 Let ¢ C RY. If € is a skew cyclic code, then W(€)( C Fi") is similar to a 4-quasi-cyclic
code.

Proof: Suppose that u = (u(()o)no —|—u§0)771 +u§0)n2+ué0)7737 u(()l)no—l—ugl)m —l—uél)ng—i—ug)ng, . ,uénil)no—l—

uyzfl)?71 + ugnfl),,h + ugnil)'r]?)) € ¢. We have

74(U(u)) = 7'4((u80),u50),uéo),uéo),uél),u(l),u(l) ugl) e ,11(7L71),1L(17%1),1L2

0
(n=1) _(n—1) (n—1) 0) , (0) (n=2)  (n—2)  (n=2) (n—2)
(ug

n—1 n—1

’ ( ),u( )

U WYy Wl {0 L U U u )
s U1 s 49 » U3 y 4o U1 H U2 H U3 » 20 » 1 ’ 2 3
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and
U(re(u)) = \II(H(U((Jnil)UO + Ugnil)nl + uénil)ﬁz + U:(),nil)m), 9(“(()0)770 + Ugo)m + Uéo)m + uéo)ns),
S 00ug" o +u" P+ a4 ul" P ng))
= W(ul" Vo +ud Vi ud" Vne +ulVns, ulno + w0+ u”ns + uf s,
. ,’u,én72)770 + uéniQ)Th + u§"72)772 + u(()niz)ng,)
= (ui(in_l)ﬂ uén—l)’ ugn_l)v uén—l)7 ui(iO)v uéO)v u§0)7 UE)O)ﬂ T 7u:())n—2)’ ugn_2)7 ugn_2)v u((Jn_2))‘

d

We can associate Fy and nucleotides set © by using the one-to-one map p defined by u(0) = A, u(1) =
T, u(w) = C, p(w?) = G. Tt follows that 0 =1, T =0, @ = w?, @w? = w. This map naturally extends
to 9{4 by
#Aotio + At + Aenz + Asiiz) = pu(Ao)no + p(An)im + p(A2)ine + p(As)ins.

A one-to-one map ® between Ry and Dy = {AAAA, TTTT,GGGG,CCCC,---} is defined by

D 9%4 — @4
Aomo + A1+ Aamz + Azmz = ((Xo), (A1), 1(A2), (A3))-

Definition 2.1 1. A code € is called reversible code if A" = (Ap—1, An—2,..., Ag) € € whenever A =
(Ao, A1y ey An—1) € € for all X € €; A" is called the reverse of \.

2. A code € is called complement code if \> = (Ao, A1, .oy An_1) € € whenever A = (Ao, A1, .., An_1) € €
for all X € €; X¢ is called the complement of A.

3. A code € is called reversible-complement if AX¢ = (An_1,An_2,.., o) € € whenever
A= (Ao, A1,y An—1) € C for all A € €; A" is called the reverse-complement of \.

Example 2.1 Let € be a code of length 3 over Ry and A = (wno+m —|—w2772, it —|—w2773, wno—i—w2771 +n2+
n3) be a codeword. The codeword A corresponds to the DNA codeword ®(\) = (CTGA, ATAG,CGTT).
The reverse of X is given by X" = (wng +w>n1 +n2 +13, N1 +0°N3, WNo + 11 +@212) and this corresponds
to the DNA codeword ®(\") = (CGTT, ATAG,CTGA). However ®(A\") is not the reverse of ®(\) which
s given by
d(\)" = (TTGC,GATA, AGTC)
= ®(no + M + @ N2 + wnz, @0 + 12, @ + 172 + @N3)
— ((BV)").

The above example shows that the automorphism 6 is a suitable tool to characterize the reversibility of
DNA codes since ®(\)" = ®((6(N))").

3. Skew Cyclic Codes with a Particular Automorphism

In the sequel, we simply designate a #-skew cyclic code by skew cyclic code and denote it by €. Note
that an element A = Agng + A\1m1 + Aane + Agn3 € Ry is a unit if and only if A; # 0, for all ¢ € {0,1,2,3}.
This implies that A is not a unit if and only if A can be represented as A;;7:, + Ai,Niy + Nigis, Where
)\iu)‘igv/\ig € F4 and iq,1i9,i3 € {0, 1,2, 3}

Remark 3.1 The lemma below is given in [0, Lemma 3] in an incorrect form.

Lemma 3.1 Let g(y) = Myt + M1yt + -+ Xg € €, where t is the minimal degree in € and \; =
Niy My F NiaMiy + NiaMis With Aiy, Niyy iy € Fa \ {0}. Then all coefficients of g are represented as i, mi, +
6i277i2 + ﬂisnis'

Proof: Let g(y) = Myl + M1yt + -+ + Ao, where Ny = X\iymi, + NiuMiy + NigMis- If 7y, is an other
idempotent that does not appear in the representation of \;, then n;, \; = 0. It follows that deg(n;,g(y)) <
t. Then, according to the minimality of deg(g), we obtain 7;,g(y) = 0. O
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Theorem 3.1 Let g(y) = Myt +Ne_1y' ™1+ + Xg € €, where t is the minimal degree in € and \; is a
unit. Then € = (g) and g is a right divisor of y™ — 1.

Proof: Let h(y) be a polynomial in €. Using the left division algorithm, there exist two polynomials
q1(y), r1(y) € Ruly, 0] such that h(y) = q1(y)g(y) + 71(y), where degry < degg.

The fact that € is a left submodule of R, ensures that r1(y) = h(y) — ¢1(y)g(y) € €. Since t = deg(g is
minimal, we obtain r(y) = 0.

Likewise, using the left division algorithm, it is easy to deduce that g is a right divisor of y™ — 1. O

The following result is similar to [1, Lemma 3].

Lemma 3.2 Let g(y) = Myt + N1y~ 4+ -+ Ao € €, where t is the minimal degree in € and \; =
Ai Wiy + NigMiy + XigMis With Ay, Aiyy Aiy € Fy \ {0}, Let § € Ryly, 0] such that degf > degg. Then there
exist two polynomials 1 (y), m1(y) € Raly, 0] such that f(y) = q1(y)g(y)+r1(y), where degri(y) < degg(y)
or r1(y) is a polynomial with a unit leading coefficient that satisfies degry (y) < degf(y).

Proof: Suppose f = w is a constant term, then g = A;;n;, + XiyMi, + Aiz7i,. We denote the other
idempotent by 7, .

o If f is unit then §f = 0g + f

o If § is not a unit, then f = f5;,n;, or f = 8,0, + Bj,n5, or f = B m5, + Bjanjz + Bistjs-
Case 1: f = f3;,1,.
Subcase 1: If § = §;,7;,, then § = (ﬁil)\;lml)g. It is similar for indices i9; i3.
Subcase 2: If f = ﬁiﬂliu then f = Biz;(/\i_llnh + Ai_zlnlé + /\1_317%3)9 + ﬁm'
Case 2: | = 15, + Bjx7j,-
Subcase 1: If f = 8;,mi, + Bi,Mi,, then f = (51‘1)\1'_11772'1 + Bi, )\;21771-2)9. It is similar for the couple of
indices (i1,13); (i2,13).
Subcase 2: If f = 8;,m:, + Bi,Mi,, then | = (ﬂilx\;lml)g + Bi,ni,- But from Case 1, we have
Bi,nis = q9+ Bi,, where ¢ = ﬁu()\;lml —1—)\;21772-2 —1—)\;’1771-3). It follows that f = (61-1)\;11771-1 +q)g+5i,-
It is similar for the pairs (ia,14); (i3, 74).
Case 3: | = 5,1, + BjaNj> + BjsNis- X ) X
Subcase 1: If f = 8;, i, + Bi, iy + Biatis, then § = (8, A niy + Bin Ay, Min + Bis A, 1) 8-
Subcase 2: If f = ﬁhnil + 5i277i2 + ﬁi477i47 then f = (ﬂh )‘;11771'1 + ﬂi2)‘;2177i2)g + 5i4ni4' From Case
1, Bi,mi, = q8+ Bi,, this implies that f = (8;, A7, 'mi, + Bi, A, ' niy + @)@+ Bi,. 1t is similar for triplets
(i1, 13, 14); (i2, i3, 14).

The proof is completed using induction on the degree of f. O

Theorem 3.2 Let € be a skew cyclic code of length n over Ry which does not contain any polynomial
with a unit leading coefficient. Suppose that g is a polynomial in € of minimal degree whose its leading
coefficient is represented as \i;Mi, + XiyNiy + NigMis, Where Niy, Niy, Niy are non zero elements in Fy. Then
¢ = (aly)).

Moreover, g(y) = 1i,90(y) +1i291(y) + 115 92(y), where go(y), g1(y), g2(y) are divisors of y" —1 in F4ly].

Proof: Without loss of generality, let us consider that the leading coefficient of g is represented as
AoMo+A1m1 +A172, where Ao, A1, A2 are non zero elements in Fy. Let h(y) € €, from Lemma 3.2, there exist
two polynomials g1 (y), r1(y) € Raly, 0] such that h(y) = q1(y)a(y) + r1(y), where degri(y) < degg(y)
or 71(y) is a polynomial with a unit leading coefficient that satisfies degr;(y) < degh(y). Since € does
not contain any polynomial with a unit leading coefficient, then r;(y) = 0, by minimality of degree of g.
Hence € = (g(y)). Using Lemma 3.1, we find that g(y) can be represented as g(y) = 1ogo + 1191 + 1292,
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where go, 91,92 € Fyfy]. Using the division algorithm over Fy4[y], there exist ¢a2(y), r2(y) € Faly] such
that y" — 1= g2(y)go(y) + r2(y), where degr2(y) < deggo(y). We have

(Mo +m3)(y™ —1) = (no+n3)a2(y)g0(y) + (0 + n3)7r2(y)
= q2(y) (o + 13)g0(y) + (M0 + n3)r2(y)
= q2(¥)1090(y) + a2(y)n390(y) + (N0 + n3)72(y)
= q2(y)n08(y) + a2(¥)n390(y) + (no + n3)r2(y).

Since g2(y)mo(y) = q2(y)mgi(y) and g2(y)n20(y) = g2(y)n292(y) € &, then
©WMma1(y) + a2(¥)n292(y) + a2(¥)n0go(y) + a2(y)n390(y) + (no + n3)72(y) € €.

Since deg(g1) = deg(ge) = deg(go) and deg(ra(y)) < deg(go(y)), then the leading coefficient of
a2(y)m a1 (y) + a2(y)n292(y) + a2(y)n090 (y) + a2(y)1390(y) + (0 + n3)r2(y) is a unit. Moreover, € does not
contain any polynomial with a unit leading coefficient, then g2(y)n191(v) + q2(y)n292(y) + q2(¥) 1090 (y) +
q2(¥)n3go(y) + (no + n3)r2(y) = 0. We get 72(y) = 0. Thus go divides y™ — 1. It is the same case for ¢g;
and gs. O

Theorem 3.3 [6, Theorem 7] Suppose that € contains some polynomials with a unit leading coefficient
such that none of them is of minimal degree. Let g(y) be a polynomial in € of minimal degree with a
non-unit leading coefficient and f(y) be a polynomial of minimal degree among polynomials in € with a
unit leading coefficient. Then € = (g(y), {(y))-

4. Skew Cyclic DNA Codes

In this section, we focus on the properties of skew DNA cyclic codes over 9y.
Definition 4.1 [11, Definition 4] Let 0 be an automorphism of Ry.

1. A palindromic polynomial g(y) = Ao + Ay + -+ + A\y® of degree t over Ry is a polynomial that
satisfies \j = \—; V j € {0,1--- ,t}.

2. A O-palindromic polynomial g(y) = Xo + My + - + My of degree t over Ry is a polynomial that
satisfies \j = 0(\—;) V j € {0,1--- ,t}.

If X\ is a codeword, we easyly find that W(\)" = W((A)").

Definition 4.2 A linear code € over Ry is said to be a reversible DNA code if U(A\)" € ¥(€) for all
A€ €. It is said to be a reversible-complement DNA code if U(A\)™¢ € ¥(€) V A € €.

Theorem 4.1 Let g(y) = Mo +Ay+-+ 19 "L+ Nyt be a right divisor of y™ —1 in Raly, 0]. Suppose
that A\¢ is a unit and n, t are even. Then the skew cyclic code € = (g(y)) of length n is a reversible DNA
code if and only if g(y) is a palindromic polynomial.

Proof: Suppose that g is a palindromic polynomial, then g(y) = Ao + Ay + -+ + A1yt~ 1 + Aoy’ For a
codeword A\, we have (U(\))” = U(((A))"). Therefore

l 1
V(O yalaw) = 0(v;)x 7 gy)) (4.1)
=0

=0

where [ =n —t — 1 and v; € Ry. The result is clear since € is skew cyclic.

Reciprocally, assume that € is a reversible DNA code of length n. Since A; is a unit, we can consider
that g is monic. Let g(y) = Ao + A1y + - -- + A\_1y' 1 + y'. Furthermore, as g divides y™ — 1, then ) is
a unit. We have

g7 (y) =y O N )y T A Y TR+ 0Ny e €
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and
Y (y) =1 H Ay Ay eyt € €
Then
8(y) = A0 () = o = A0 ) + (= Ag M)y o (v = AT Ay T e e

Since deg(g) is minimal, we get g(y) — Ay 'y 'g"(y) = 0. That is to say

o= =1 = A" Am1) =+ =0.
Therefore A\g =1, A; = \—; for all j € {0,1,---,t}. O
Theorem 4.2 Let g(y) = Mo+ A\y+-+ X191+ Myt be a right divisor of y™ —1 in R4y, 0]. Suppose

that A\; is a unit, n is even and t is odd. Then the skew cyclic code € = (g(y)) of length n is a reversible
DNA code if and only if there exists a 8-palindromic polynomial b such that € = (h(y)).

Proof: Suppose that g is a f-palindromic polynomial. As ); is a unit, we can assume that g is monic
and g(y) = 1+ Ay + -+ +0(\1)y' "t + 4. For a codeword A, we have (¥(\))" = ¥((#(A\))"). Therefore

l l
\I’(Z valaw)" =¥ 0(v;)x a(y)) (4.2)

Jj=0

where [ =n —t —1 and A\; € Ry. We conclude by using the fact that € is skew cyclic.

Reciprocally, assume that € is a reversible DNA code of length n. Since \; is a unit, we can consider
that g is monic. Let g(y) = Ao + Ay + -+ + A\_1y' 1 + y!. Furthermore, as g divides y™ — 1, then ) is
a unit. We have

and

Then
8(y) — 00 Y " () = (o — 0(A)) + (A = A HOe—1))y + -+ + (Aem1 — (A O(A))y' " € €.
Since deg(g) is minimal, we get g(y) — 0(\; ")y 1" (y) = 0. That is to say
(Mo =00 1) = (A1 =0\ H)O(Ae-1) = -+~ = 0.
Since A\g = 0(A\y '), we have A2 = 0()\).

t—1 t—1

Then g(y) = 22: (Ajy7 + Xo0(Xj)yt™7) and Aog(y) = 22: (AoAjy? + 0(Xoa;)y'™7) € €. The result follows
i=0 i=0
by the fact that € = (g(y)) = (Mog(v)). O

Theorem 4.3 Let g(y) = ni,90 + i, 91 + Ni, g2 be a polynomial of degree t, where go(y), 91(y), 92(y) are
of the same degree t and divide y™ — 1 in Fyly]. Suppose n and t are even. Then the skew cyclic code
¢ = (g(y)) of length n is a reversible DNA code if and only if g(y) is a palindromic polynomial.

Proof: Suppose that g(y) is a palindromic polynomial, then g(y) = Ao + Ay + -+ + Ay~ + Aoyt. For
a codeword A, we have (¥(A))" = ¥((6(A))"). Therefore

l 1
VY yalaw) =00y ay)),
7=0 7=0
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where l =n —t —1 and v; € R4. We conclude by using the fact that € is skew cyclic.
Reciprocally, assume that € = (g(y)) is a reversible skew cyclic code of length n. Without loss of

generality, suppose that g(y) = nogo+ 1191 +1292- Since go(y), 91(y), g2(y) divide y™ — 1 in F4[y], we can
assume that g = Ao+ Ay + -+ Xe—1y' 1+ My’ where Ag = nobo + m1b1 +72bo; Ae = noao +m a1 +n2az
and by, by, ba, ag, a1, as are non zero elements of Fy. We have

g (y) =0y T O )Y T OA)Y T+ Oy e €

and
yt+1gr(y) =X\ + )\t_ly + -+ /\1yt71 + )\oyt e c.

Let Ao = by +mby ! +m2by b and Ay = noag ! + mar +meayt. We get
Mg = Aoy (y) = (Mo — Mode) + edi = Aoy +-- + (WA = dod)y' e €@
According to the minimality of deg(g), we obtain g — S\Ox”lgr(y) = 0. Therefore
(Aedo — AoAe) = (M1 — Agh—1) = -+ = 0.
We have

;\t/\O — 5\0)\15 = (noaalbo + 771&1_1()1 + 7720,2_11)2) — (noaobal + 771a1b1_1 + 772a2b2_1)
= no(aalbo — aobal) + nl(aflbl — albfl) + ng(aglbg — agbgl).

Then Ag — Aoz't'g"(y) = 0 implies that (ag by — aoby ') = (ay*by — a1by') = (ay 'by — agby ') = 0.
Then a? = b?. Therefore a; = b;, Vi € {0,1,2} and X9 = A;.
From Lemma 3.1, we deduce that A\; = A\,_; for all j € {0,1,--- ,¢}. O

Theorem 4.4 Let g(y) = 0i,90 + i, 91 + Ni, g2 be a polynomial of degree t, where go(y), 91(v), 92(y) are
of the same degree t and divide y™ — 1 in Fyly]. If n is odd or (n is even and t is odd). Then the skew
cyclic code € = (g(y)) of length n cannot be a reversible DNA code.

Proof: Assume that g(y) = flogo + 11191 + 7292 Since go(y), g1(y), ga(y) divide y* — 1 in Faly], we can
assume that g(y) = Ao+ A1y+- -+ X1y " + Myt where g = nobo +n1b1 +12b2; Ay = moag+mar +1n2a2
and bg, by, ba, ag, a1, as are non zero elements of Fy. We have

gr<y) = Q(At)yn—t—l =+ 9()\t71)yn—t + .4+ 9()‘1)?/”_2 + 9()\0>yn_1 c @,

and
Y (y) = 00 +0(—1)y + -+ 0y T+ 0Ny’ € €.
Therefore
9(y) +my" 9" (y) = (noao +mar + n2as +13a0)y" + Ae—1 +130(M))y T+ -+ (Ao +130(N)) € €.

Since ag, a1, as are units in Fy, then the leading coefficient of g(y) + n3y™tg"(y) is a unit, which is a
contradiction. O

If A= (Mo, A1, , An—1) is an element of a skew cyclic code of odd length n over Ry, then it is easy
to see that (A,—1, Ao, -+, An—2) is also a codeword. Hence it is a cyclic code.

Theorem 4.5 Assume that € is generated by a right divisor g of y™ — 1 in R4y, 0] and n is odd.
(a) Suppose that g is palindromic or -palindromic. Then € is a reversible DNA code.

(b) Suppose that € is a reversible DNA code. Then there exists a monic polynomial h(y) € Ryly] that
is both palindromic and 6-palindromic such that € = (h(y)).
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Proof: We can assume that g is monic. Let g(y) = Ao+ Ay + -+ \_1y' "1 + 4!, where ¢ is odd. Since
the length of € is odd, we get

go(y) =y a(y) =0(Xo) + O M)y + -+ 01yt +yl e €

(a) Assume that g is palindromic, then

l l
(O vvs@)" =T 0(v)y' ay)),
=0 =0
where I =n —1t —1 and v; € Ry.

Assume that g is #-palindromic, then

1 !
(T vaigw)" =T 0(v)2 (),
§=0 §=0
where [ =n —t — 1 and v, € 9R4. Since € is a skew cyclic code, the result follows.
(b) Now suppose that € is a reversible DNA code. We have
g () =y T O )Y T 0y T+ 0Ny e €
and
t+1 TN t—1 t
y e (y) =1+ 0Ny + -+ 0(A)y T +0(ho)y" € C
From Theorem 4.2, we know that there exists a #-palindromic polynomial h(y) = Aog(y) = Bo +
Bry + -+ 0(B1)y "t + 0(Bo)yt € Raly, 0] such that € = (h(y)), where By = A2 = 0(\g). As n is
odd, we obtain
bo(y) = 0(Bo) +0(B1)y + -+ Biy' " + Boy’ € €.
Therefore, according to the minimality of deg(h), we get
0By 1 )b(y) = By he(y) = (855 )Bo — By 10(Bo)) + (8(By )1 — By 1 0(BL)y + -+ (B85 1)O(B1) — By ' Br)y' ™! = 0.
Then

(0(B5")Bo = B 10(Bo)) = (885 1)1 — By 10(B1)) = -+~ = (0(B5 1 )8(B1) — By ' B1) = 0.

We deduce that 0(3;")B0 — By '0(80) = 0, hence 6(8;')By = 1. Therefore By = 6(By). Since
Bo = A =0(X\o), we get By = 1. It follows that 8; = 6(8;) for all j € {1,---t}.

If ¢ is even, the approach is similar to the case where ¢ is odd. O

Recall that a standard DNA molecule is made up of two strands. For hybridization to occur, one
strand must meet its corresponding reverse-complement strand. Therefore, it is important to characterize
reversible-complement codes.

Proposition 4.1 Assume that € is generated by a right divisor g of y™ — 1 in Ryly, 0].

(a) Suppose that n and the degree of g are both even. Then € is a reversible-complement DNA code if
and only if g is a palindromic polynomial and 1 +y+ ---+y"~ ! € €.

(b) Suppose that n is even and the degree of g is odd. Then € is a reversible-complement DNA code if
and only if € there exists a 0-palindromic polynomial b such that € = (h(y)) and 1+y+---+y"~1 € €.

(¢) Suppose n is odd. Then € is a reversible-complement DNA code if and only if there exists a monic
polynomial h(y) € Ruly] that is both palindromic and O-palindromic such that € = (h(y)) and
l+y+---+yltec.
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Proof: Using the Watson-Crick complement and the correspondence ® between R4 and D4, we easily find
that B+8 =1, V B8 € Ry. Let [(y) = Bo+B1y+--+Bn_1y" " € €, since € is skew cyclic, it is a complement
code if and only if [(y) +1°(y) = (Bo+Bo) + (B1+B1)y+- -+ (Bu—1 +Bu—1)y" " = 1+y+---+y""h €€
We conclude by considering Theorems 4.1, 4.2 and 4.5. O

Proposition 4.2 Let g(y) = 7i,90 + 1,91 + Mi,92 € Ry, 0], where go(y), g1(y), g2(y) are of the same
degree and divide y™ — 1 in F4ly]. Then € = (g(y)) cannot be a complement DNA code.

Proof: Suppose ¢ is a complement code, then as in the above proof, we have 1 +y + --- +y" "1 € €.
Since € = (g(y)) cannot contain monic polynomials, the result follows. O

5. Conclusion

In this work, we explore the structure of skew cyclic codes over R4 with respect to the automorphism
6 defined on Ry by O(Aono + 171 + Aana + Asns) = Asno + Aamr + Ain2 + Aons. We establish a divisibility
relation for particular polynomials in 24[y] and we derive generators polynomials of skew cyclic codes.
This enables to characterize skew reversible DNA codes using palindromic and #-palindromic polynomials.
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