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ABSTRACT: This study introduces the concept of a topological groupoid and some topological *-algebras
are investigated, like the convolution topological *-algebras associated with locally compact groupoids, and in
particular, étale groupoids.
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1. Introduction

Groupoids provide a general framework that captures notions of symmetry and dynamics beyond the
setting of groups. The notion of groupoids originated with Brandt in 1927. It is most elegantly defined
as a small category with inverses.Algebraically, a groupoid can be regarded as a set with a partially
defined multiplication that exhibits group-like properties whenever applicable. Although every group is
a groupoid, there is a wide variety of groupoids that are not groups.

These notes aim to provide a brief overview of some key topics in the area of topological *-algebras
associated with groupoids. The first section begins with a quick overview of groupoids in the algebraic
sense, offering illustrative examples, and introducing topological groupoids and locally compact groupoids.

In order to investigate the topological *-algebras derived from groupoids, one usually requires a *-algebra
structure on C.(G), the space of continuous complex-valued functions with compact support. This
involves defining the convolution product, which combines functions through integration with respect to
a collection of measures known as the Haar system, denoted by {\,, u € G(O)}, where G(©) is the unit
space of the groupoid G.

Unlike the group case, the existence of a Haar system in groupoids is not guaranteed, and even when it
exists, it need not to be unique. In fact, Seda In [5] shows that if the range map is not open, then a
groupoid cannot possess a Haar system.
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2 R. EL HARTI AND A. TANZITE

When G is an étale groupoid, the Haar system is simply a collection of counting measures. Consequently,
the construction of the topological *-algebra of an étale groupoid is almost analogous to the discrete group
case, Further discussions on these insights will be provided in the subsequent sections of this paper.

2. Preliminaries

2.1. Groupoids (Algebraically)

A groupoid is a mathematical structure that generalizes the concept of a group. There are many
definitions of groupoids in mathematics since they are a very flexible and powerful mathematical tool
with many applications, but in this section, we will focus on the definition of groupoid as given by Renault
in his book "A Groupoid Approach to C*-Algebras” [1].

A groupoid is a set G endowed with a partial operation

[ElRe!

(9.h) — gh (21)

where G®) is a subset of G x G called the set of composable pairs. (The key point is that the product of
an arbitrary pair of elements may not be defined, and the product gh is only defined for pairs (g, h) € G?),
and equipped with an inverse map

G—G

_ (2.2)
g—g

1

such that the following conditions hold for any g, h, k € G:

(i) If (g,h) € GP and (h, k) € G, then (gh, k) € G® and (g, hk) € G?.
Furthermore, (gh)k = g(hk). (written as ghk).

(i) (¢7)t=g forall ged.
(iii) For all g € G, (g,¢97 ") € G® | and if (k,g) € G?, then (kg)g~' = k.
(iv) Forallg € G, (g7, 9) € G? | and if (¢,h) € G2, then g~ (gh) = h.

From (iii) and (iv), we conclude that a unit in a groupoid G is any element that can be written both as
gg~ ! and g 'g, for some g € G. The set of all units is called the unit space and denoted by

GV ={g7'g: GeGt={g9 ' : g€ G} (2.3)
={9eG :g=9"=gg}.
For g € G, the source and range maps are respectively defined as

s(9)=9""g9, r(9)=g9"

Remark 2.1 Since in the groupoid not all pairs (g,h) € G x G are composable, a pair (g,h) belongs to
G®@) if and only if s(g) = (). Thus, for a groupoid G, the set of composable pairs is given by

G®) = {(g,h) € G x G| s(g) = (W)} (2.5)

(Readers seeking alternative treatments and complete proofs for certain statements in this section are
encouraged to consult references such as [2,4], [12], Remark 8.1.5.)

Example 2.1 (Groups.) Let G be a group with identity element e. Then G is a groupoid with
G? =G x G and GO = {e}. In fact, a groupoid is a group if and only if its unit space is a singleton.
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Example 2.2 Let X be a set and G =X x X. G is a groupoid with

G ={((z,9)(y,2)) | x,y,2 € X}
and the operations defined by

(€,9)(y,2) = (x,2) and (z,9)7" = (y,2).
Moreover, r(z,y) = (z,z) and s(z,y) = (y,y).
Example 2.3 (Equivalence Relations.) Let X be a set and R C X x X an equivalence relation on X.
Define

RP = {((z,9), (4,2)) : (,9), (v, 2) € R},

which means that (z,y),(y',2) are composable if and only if y =1vy'. Then, for all (z,y),(y,z) € R we
define the product as

(1‘, y)(ya Z) = (CL’, Z)
and the inverse as
(z,9)"" = (y,2)

Moreover, for all (z,y), (y,z) € R, we have

r(z,y) = (z,9)(z,y) "' = (z,9)(y,2) = (z,2)

s(z,y) = (¥,9)

RO = {(z,2)| 2 € X}
Example 2.4 (Transformation groupoids.) Let T be a group acting (on the right) on a set X by bijection.
Consider the set G = X x I' and define
G® = {((z,9), (1) | g;h €T, w € X, and y=xg}.

Then the product and the inverse are given by

(z,9)(xg,h) = (x,gh),  (z,9)"" = (zg,97"),
forx e X and g,h € G. We note

r(z,9) =(@,9)(z,9)7" = (z,9)(xg,97") = (,¢),
s(z,9) =(zg,¢),

forz in X, g in G and G = X x {e} = X.

2.2. Topological groupoids

A topological groupoid consists of a groupoid G and a topology compatible with the groupoid struc-
ture. That is, the multiplication and the inverse maps defined in (2.1) and (2.2) are both continuous.
(Here, G carries the topology induced from G x G.)

Remark 2.2 Let G be a topological groupoids, we have:

« The topology of G(© is induced by the open sets of G that contain G(©).
e GO is closed if and only if G is Hausdorff.
Now, let’s revisit our earlier examples and equip them with a topology, turning them into topological
groupoids.
Example 2.5
e Groups: If G is a topological group, it is a topological groupoid.
e Discrete groupoids: Every groupoid is a topological groupoid with the discrete topology.

o Equivalence relations: If X is a Hausdorff space and R is an equivalence relation on X, then R is
a topological groupoid with the subspace topology from X x X.

o Transformation groupoids: Let I be a Hausdorff group acting continuously on a Hausdorff space X .
Then T' x X with the product topology is a topological groupoid.
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3. Locally Compact Groupoids and theirs Topological *- Algebras

We only consider topological groupoids whose topology is locally compact and Hausdorff. We denote
by C.(G) the algebra of continuous complex valued functions with compact support on G.
For developing an algebraic theory of functions on locally compact groupoids, one needs an analogue of
Haar measure on locally compact groups. We adopt the definition given by Renault in [1].

We denote by G*for u € G the set G* = r~'({u}) = {g € G : r(g9) = u} and G, the set G, =
s ({u}) ={g€ G : s(g) =u}.

Definition 3.1 A (left) Haar system on a locally compact Hausdor(f groupoid G is a family of positive
Radon measures, A = {\",u € GV}, such that:

(i) For allu € G, supp(\*) = G¥
(ii) For all f € C.(G),
¢ —c,

w— A(f) () = /G f(z) dX¥(z)

s continuous.

(i) For all f € C.(G) and all z € G,

/ £(y) AN (y) = / f(ay) dX@ ().
G G

These measures are not Haar measures in the strict sense of the term, but they capture similar properties
and provide a measure-theoretic framework for the groupoid. It follows from (ii) that A(f) also belongs
to C.(G®). And we deduce form (iii) of Definition (3.1) that

| taav®e = [ fmave), (3.1)
Gr(=z) Gs(x)

Remark 3.1 Let G be locally compact Hausdorff groupoid with Haar system A = {\“},cqw . Then the
map

A Cl(GQ) — C (GO,
f—A(f)

s continuous.

Remark 3.2 Let {\“},cqo is a left Haar system on locally compact Hausdorff groupoid G. Since
(G")™! = G, then, for each u € GO, we can associate to \* the measure A\, = (A\*)™', with

[ 1@ i = [ 1) axa),
We will call { A\, }yeqo a right Haar system on G.

We shall work only with left Haar system.

Example 3.1 If T is a locally compact Hausdorff group acting continuously on a locally compact Haus-
dorff space X, then G = X x T' admits a distinguished (left) Haar system {e, x A: x € X}, where X is a
Haar measure on I' and ¢, is the Dirac measure at . For f € C.(X xT'). Moreover,

() () = /G F(.9) dN(g) for all f € Cu(X x T),

with (x,e) = u € GO,
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Example 3.2 Let X be a locally compact and Hausdorff space. Consider the groupoid in Example 2.2.
Let 11 be a positive Radon measure on X with full support (i.e., supp(p) = X ). Then {e, x p |z € X} is
a Haar system on X x X (as a trivial groupoid), where €, is the unit point mass at x. Moreover,

() () = /X F(a.y) dA(y)  for all f € Co(X x X)),

with (z,z) =u € GO,

Unlike the case of locally compact group, Haar system on groupoid need not exist (due to Anton Deit-
mar [3], who shows that a locally compact groupoid does not necessarily have Haar system). On the
other hand, a locally compact groupoid can have a several Haar systems.

One known criterion is that a Haar system can only exist if the range map is open. [Corollary to Lemma
2 in [6], see also [7]].

Remark 3.3 It may be confusing not to define a measure on all of G. However, if u is a measure on
GO then we will obtain a measure v on G, induced by u, given by v = o\, and we have

v = [ [ rmavedut for feci@.

3.1. The convolution topological *-algebra C.(G)

In the remaining sections of this paper, we will assume that G is a groupoid equipped with a Haar
system A = {\* ,u € GO},
For f,g € C.(G), the convolution is defined by

0@ = [ e @ = [ fanglt) i) 32)
and the involution by :
[r(x) = fla1). (3.3)
Proposition 3.1 Let G be a locally compact groupoid. Then C.(G) is a topological x-algebra under the
convolution multiplication defined in (3.2) and the involution given in (3.3).

Proof: Let f,g € C.(G). We prove that f x g € C.(G). Indeed, if (f * g)(z) # 0, then there exists yo
such that f(zyo) # 0 and g(z) # 0. This implies that supp(f * g) is a subset of (supp(f))(supp(g))-
Now, we prove that f % g is continuous. Thanks to Tietze extension theorem, we extend the function
(z,y) — F(x,y) = f(zy)g(y™") on G? to a bounded continuous function k on G x G. Let h € C.(G)
such that h(y) = 1, if k(z,y) # 0. Then, we have

E(z,y)h(y) = F(z,y) for all(z,y) € G,
Define a complex-valued function H by
H:GxG"—cC
(@) Hizow) = [ Kop) X ).
e’
We have f * g = H|(g s(x))- Hence, it suffices to show that H is continuous. Let x¢ € G, we shall show
that H is continuous at xzg. Let K = C x s(C,) where C is a compact neighborhood of xg. Then, for
(z,u) € K, we have
|, w) = H (o, w0)| = | / ko, y) dA (y) — / F(wo,) N ()
< [19) = ko) @ 0) + | [ K a3t~ [ b0, ax (o)

< suplb(z, 1) — Kz, )| [ i +| [ samaro - o)
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By uniform continuity of k and the definition of the Haar system in (ii), we have the continuity of H on
K. It Follows that the map « — H(z, s(x)) is continuous on C. Since

H(z,s(z)) = /k(x y) dX*@) /f zy)g(y™) dX@ (y),

we obtain that F' is continuous at xg.
For the associativity, let f,g,h € C.(G), x € G. Then, by using (3.2) we have

frigen@ = [ o) e @)

[ e [ g ey )
Gs(=@) Gsly™4)

— [ Ha @) [ gl e Oe), ) =) = sta)
Gs(@) Gs(@)

:/ h(zfl)d)\s(m)(z)/ fzy)g(y™'2) dX*)(y), (Fubini’s Theorem)
Gs(@) Gs(@)

= [ ) [ e )
Gs(@) G#(2)

= [ hEhae@E) [ (@) e ), () e =y () € GP)
Gs@) Gs(@2)

= / [ glzz)h(z71) drs@)(2)
Gs@)
= (f*g) * h(z).

Notice that f* is also continuous with compact support supp(f*) = (supp(f))~!. Hence, the algebra is
stable under the involution.

We prove that for all f,g € C.(G), we have g* x f* = (f * g)*. Using (3.2), (3.1) and the fact that
s(z) = r(z~1) for all z € G, we have

g* * f*(:r) = /Gr(m) g* (y)f* (y’lx) d)\r($)(y)
= /GT(m) g* ($($71y))md>\r(m) (y)

[ s @)

GT(T)

:/ L FWelytam ) dATET (y)
Gr(z )

= (fxg)"(z).

Also,
=) = f((aH7) = fa).
So the map f +— f* is an involution on C.(G).
Now we claim that the convolution product * is continuous. Define the function
H :C:(G) x Ce(G) — Cc(G),
(f,9) — f*g,

with C.(G) equipped with the inductive limit topology. Suppose that f,—f and g,—g, hence, there
exist compact sets K and K’ such that, eventually, supp(f,) C K and supp(g,) C K’. Then, there exist
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N such that for n > N we have supp(f, * g,) C KK’ (compact). Also,
IF*9(@) = fnx gnl@)l < / |Fan)a™) = falzy)gn(y™ )] dX*@ (y)
KK’

< / ) — Fulay)llgly™)] dN°@ () / Falen)llg™) = galy D) ) (y).
KK’

Therefore, f, * g, converges uniformly to f * g on KK'. O

Example 3.3 IfT" is a locally compact Hausdorff group acting continuously on a locally compact Haus-
dorff space X, and let {e, X A\, x € X} be Haar system on X xT' (as mentioned in example 3.1). let The
convolution be given by f,g € C.(X x T)

frg(z /f 2. 7)(:7)) 9y, 7)) dlezy x N)(y,7")
:/f(aw’)g(fcw’,v’_l)dA(V')
:/f(mﬂ’)g(m’m”l’r) dA(v"),

and the involution by : f*(x,v) = f(ay.y~1).

Example 3.4 Recall from Example 3.2 that the convolution in G = X x X is giving by

frglx /f z,9)(y,2)) 9((y,2) ") d(ea x M) (y, 2)

and the involution by f*(x,y) = f(y,x).

3.2. The normed *-algebra (C.(G),*, ||.|l1)

We seek to enrich the previously discussed convolution algebra by introducing a norm on C.(G),
closely related, to the L'-norm in the locally compact group case. The algebra C.(G) is equipped with
the following norms

I£ee = swp [ A, Il = swp [l A ) (3.4)

u€G(0) u€G0)

and

£l = max{[| ]Iz, [ £]]1.s}-

Considering the maximum of the norms (I, r) and (I, d) norms, ensures that the involution is isometric

on C.(G).

Remark 3.4 Before proceeding further in the discussion, it is necessary to introduce the inductive limit
topology on C.(G). Let G be a locally compact and Hausdorff groupoid. Consider the set KC, consisting
of all compact subsets of G. For any K € K, let Cx(G) to be a subset of C.(G) consisting of function
with compact support contained in K. It is a normed algebra with the supremum norm. The collection
(Ce(@),Ck(G) : K € K), with the order on IC, defined by inclusion, is an inductive system (in the sense
of Definition 5.1 in Chapter IV of [8]).

Proposition 3.2 Let G be a locally compact groupoid. Then,
(1) The (Ce(G), ||fll1,r) is a normed algebra, whereas (Ce(G), ||f|l1) is a normed *-algebra.
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(ii) The I-norm on C.(G) defines a topology coarser than the inductive limit topology.
(@ii) The involution is isometric with respect to the I-norm.
Before proceeding with the proof of the Proposition 3.2, it is necessary to employ the following Lemma.

Lemma 3.1 Let {\,},cqo be a Haar system on a locally compact Hausdorff groupoid G. If K is a
compact subset of G, then there is an M > 0 such that

N(K)<M  forallue GO

Proof: Let f € C.(G) such that supp(f) = K and U be an open subset of G such that K C U C G.
By using Urysohn’s Lemma for locally compact Hausdorff spaces [see [15], 2.12]. Then there exists
h € Cf (G) with h =1 on K and vanishes outside U. We have

A(h) () = / h(7) dX"(7)

= [ 2o+ [ i)
K U/K
> [ X = w().

Hence, we have \*(K) < A(h)(u), for all u € G(®), which implies (by using the continuity in Remark 3.3)
that sup A*(K) < sup |[A(h)(w)] = [|A(h)|lec = M. O
ueGO) ueG)

Proof: of Proposition 3.2.

(i) To establish the norms || f||7,» and || f||1,s as actual norms, we need to verify certain properties. Let
us focus on the (I, r)-norm.
Given f € C.(G), let K be a compact set such that supp(f) C K. By using the previous Lemma,
there exist M > O0m such that \*(K) < M for all u € G(*). Then

0= sup [ 1IN G) < [l

ueG )

(Similarly, for ||f|lr.s < ||fllcc, by choosing K symmetric, i.e., K = K~! ). This implies that
Il £ll7 < oo. If f # 0, there exists u € G(©) such that the restriction of | f| to G* is non-zero. Therefore
I£llr.» >0 for f # 0. Additional properties required for || f||7,» as a norm are satisfied trivially.

Next, in order to show that C.(G) is a normed algebra, we need to prove that for all f, g € C.(G),

If = gllr < [l fllzllgll-
Let f,g € C.(G). Then, we have

/If*g )] Az //G( F@)] 90y~ )] AN @ () AN (z)
- / £ W)l / l9(y™12) | dA" () AN ()
Gr(z)

- / )| / 2)] A" () AN (y)
Gr(z)

ueGo

<suwp [ @) dx'(@) sup [ (5wl aN W)

ueGo veGO
<Ifllzr llgllz,r-
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(ii) Now, let us prove that the I-norm on C.(G) defines a topology coarser than the inductive limit
topology. By Proposition 5.7 in Chapter IV in [8], f is continuous in the inductive limit topology
if and only if its restriction to Ck (G) is continuous, for an arbitrary K € K. We have a diagram

\/

Then, it suffices to show that Ids is continuous (i.e., there exists C' > 0 such that ||f||; < C| fllx
for f € Cx(G) and K is an arbitrary compact).

Suppose that {f,} is a sequence in C.(G) such that f, converges to 0 in C.(G). By the continuity
of the map f +— A(f) [see Remark 3.1], we obtain A(|f,]) — 0 in C.(G(®). On other hand, we
have

T’L’I’Ld

lallzr = sup / fuldhe = sup A(lful) =0

ueG©) ueG®

3.3. The C*algebra C*(G)

We now outline the construction of the full and the reduced C*-algebras associated with a locally
compact groupoid. To this end, we first rcall the necessary definitions.

Definition 3.2 Let L : C.(G) — B(H) be a *-homomorphism.

(i) L is said to be non-degenerate if the linear span of
{L(NE: [ eCelG), €M}
is dense in H.

(ii) We say that L is continuous in the inductive limit topology, if, whenever f; — f in the inductive
limit topology on C.(G) and &, € H, we have

(L{f)€,m) — (LS, m)-

(iii) L is called bounded, if

LA < fllr, for all f € Ce(G).
A *-representation L : C.(G) — B(H) of C.(GQ) is a *-homomorphism from the topological *-algebra
C.(G@) into B(H) for some Hilbert space H, that is countinuous with respect to the inductive limit
topology.

Example 3.5 Consider a special class of representations of C.(G) that play a role analogous to the
reqular representation of a group. Let u be any Radon measure on G°). Define v = pro\. Then, we have

o(f) = /G /G F(0) dd(y) duu)  for | € Co(G).

Set H = L*(G,v™!) such that for f € C.(G) and h € H we have

/G(U)/f - d)\ du /G(O)/f d)\ d/i( )
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and define Indy : C.(G) — B(H) for f € C.(G) and h € H by

Indu(f / f(n V) dAT D () = f % h(7). (3.5)
Then, Indp is bounded. It suffice to show that : (see [11],p.17 for the proof)
|(Indp(£)Em] < [ FIlzlIEllInll2-

Hence, Indp is a non-degenerate representation of C.(G). Particularly, if p = 0, the point mass measure
at x € GO let us denote Indd, = 7, such that

mo : Ce(G) — B(L*(Gy)),
fr—=m(f),

Proposition 3.3 Let L: CC(G) — B(H) be a representation of C.(G). Then, L is continuous in the
inductive limit topology.

Proof: Suppose that f; — f in the inductive limit topology. By using ((ii)) in Proposition 3.2, we have
Ilfi = fllr — 0. And as L is representation which means that L is I-bounded. Hence,

(L(f)gm) = (L(HEmI < NL(fi = HIIEMmIE < W[fi = FllllEllinll for all §,n € H.
O

Remark 3.5 The representations of C.(G) are precisely the *~homomorphisms that exhibit continuity in
the inductive limit topology. This observation strongly supports the claim that I-bounded representations
are the most appropriate ones to consider. [See Disintegration Theorem [11] in Section 8.1.]

Definition 3.3 Consider a Haar system A = {\* : u € GO} on a locally compact Hausdorff groupoid
G. For every f € C.(G), define the full norm of f as

1f Il = sup{||L(f)|| : L is a *-representation of C.(G)}.
The full C*-algebra C*(G) of G is the completion of C.(G) with respect to the full norm
[ fllewn = sup [Z(F)] (3.6)

The reduced C*-algebra C;(G) is the completion of C.(G) with respect to the norm
1fllr = sup [[mu(f)]l (3.7)
u€G0)

4. Etale Groupoids and theirs Topological *-Algebras
4.1. Etale groupoids

In this section, we study the topological *-algebra of étale groupoids. Etale groupoids are the analogs
of discrete groups in the groupoid setting. The Haar system on an étale groupoid G is given by the
counting measure, which simplifies the general formulas for multiplication and involution.

Definition 4.1 A topological groupoid G is étale, if the associated source and range maps s,r : G — GO
are local homeomorphisms, i.e., for every point g € G, there exists an open neighborhood U C G of g,
such that r(U) and s(U) are open in G and

rlg: U —=r(U) sly U — s(U)

are homeomorphism.
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Example 4.1 Let us get back to our previous examples.
o (Etale Groups). A topological group G is étale if and only if it is discrete.

o (Etale Equivalence Relations). Recall Example (2.3). If R = {(z,x) : & € X}, then it is étale as
for any (z,z) € R .

e (transformation groupoid) Recall Example (2.4). Then, G x X is étale if and only if the acting
group G is discrete.

Definition 4.2 A subset U of an étale groupoid G is called a bisection, if the source and range map are
one-to-one, when restricted to U.

The topology of an étale groupoid has a basis consisting of open bisections. If U is an open bisection in
G, then we have r : U — r(U) and s : U — s(U) are both homeomorphisms onto open subsets of G(©).

Proposition 4.1 If U and V are bisections, then
o« U t={u"t : ueU} is a bisection.

« UV ={w : yeU veV, (uv)cG?} is a bisection.
Example 4.2 (Bisection.) In ezample (2.3), we have X = G°). Then
B={(z,z) |z € GV}
is a bisection.
Lemma 4.1 [12, Section 8.4] Let G be an étale groupoid. Then we have
(i) GO is an open subset of G.
(i) The fibers G* = r=1({u}) and G, = s~ ({u}) are discrete in the relative topology.

(iii) If a Haar system exists, it is essentially the counting measure system.

Proof:

(i) Suppose that G is an étale groupoid. Let u € G(®) and let V be an open neighborhood ( a bisection)
of u in G. Then 7|y is injective. Now, U =: V Ur(V) is an open neighborhood of u in G(®) and
U =7r"YU) is open in G. Hence, G is open in G.

(ii) If g € G*, then there exists an open bisection U such that g € U. Since r is one-to-one on U, the
singleton set {z} = GNU is open in G*.

(iii) Let {A\y}yeqo be a Haar system for G. Since the fiber G* is the support of the measure A* and is
discrete by part ((i)), every element v in G(9) has positive measure \*.
Let g(z) := M(xgo )(x), where xgw denotes the characteristic function of G(°). By the continuity
condition of the Haar system, ¢ is continuous and positive. Again, since the measure \* is supported
by the fiber G* for each unit u, we have for v € G(©),

g(u) = / XG0y d\* = / X @G o) d\* = / XG(O))\u = )\M(Gu)
G GO Nsupp(Aw) u

Replacing A\, by ——, we can assume that A%(u) = 1 for all u € G©) . Then, by invariance,

g(u)

AY(z) =1 for any x € G¥.

We conclude from (iii) that étale groupoids have properties analogous to those of discrete groups.

Similar to the preceding section, we adopt straightforward procedures guided by the contributions of
Sims [12] and Putnam [13].
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4.2. The convolution topological *-algebra C.(G)

In the remaining sections of this paper, we assume that G be a locally compact Hausdorff étale
groupoid. We denote by C.(G) the set of compactly supported continuous complex-valued functions on

G.

Lemma 4.2 Let G be a locally compact and Hausdorff étale groupoid. Then we have

Cc(QG) := span{f € C.(G) supp(f) CU, U is a bisection }

Proof: Let f € C.(G). Then there exist open bisections {U;}ics, such that supp(f) € U, Us-
By compactness of supp(f), there is a finite subcover {Uy,---,U,} such that supp(f) C U;_, U; for
suitable U; € G. As G is locally compact Hausdorff, there exists a continuous partition of unity
{hi]ie{1,...,n}} on J, U; subordinate to the U;, ie., for every i € {1,...,n}, h; is a continu-
ous function on G with values in [0, 1], and supp(h;) C U; such that > h;(y) =1 for all v € supp(f)
(see [14], Theorem 2.13). Then, the point-wise product f; := f - h; is continuous with compact support,
because supp(f;) C supp(f). It follows that f = >""" | fi with supp(f;) C U;, and supp(f;) is a bisection.

O

Another lemma, that will be used in the upcoming, is the following.

Lemma 4.3 [13, Lemma 3.3.1] Let G be an étale groupoid. If U and V are open bisections, then the
restriction of the product map P to U x V. NG is a homeomorphism to its image.

For f,g € C.(G) and for z € G, the convolution is defined by

(fxg)@)= > fl)gB)= Y fl@)gla " z) (4.1)

ap=z a€Gr(@)

and the involution by

@) = flz=h). (4.2)

Proposition 4.2 Let G be a locally compact Hausdorff and étale groupoid. Then C.(G) is a topological
* -algebra under the convolution multiplication (4.1), and the involution (4.2).

Proof: We first show that these operations are well defined and belong to C.(G). For a fixed z € G,
consider

{(a, ) € G? | af =z and f(a)g(B) # 0}

If o = z, then o € G"®) and g € G y(z)- Since these sets are discrete (Lemma (ii)), their intersections
with supp(f) and supp(g) are finite. It follows that the sum defining (f * g)(z) is finite.

We now prove that fxg € C.(G). By Lemma (4.2), it suffices to check the case when supp(f and supp(g)
are contained in open bisections U and V. To see that f * g has compact support, note that

supp(f * g) € supp(f)supp(g) C UV,

and the product UV is compact whenever U and V' are compact.
To establish continuity, let © = a8 € UV. Then, for every v € U,n € V such that z = 5 it follows that

) =r@) =r(@) __ [y=a
s(n) = s(x) = s(B) n=_p
As an immediate consequence, we obtain

(f+9)@) =Y f(Man) = f(@)g(B), veU, neV.

yn==



GROUPOIDS AND THEIR TOPOLOGICAL *- ALGEBRAS 13

Define
F:G®=C,  F(y,n) = f()g(n)
Clearly, F is continuous and supported in G®) N (U x V). Moreover,
(fxg)oP=F — fxrg=FoP™
where p : G — @G is the multiplication map. By Lemma (4.3), the restriction of P U x V is a
homeomorphism. Therefore, f * g is continuous.
For the associativity, let f,g,h € C.(G) and « € G. Then

((fxg)xh)(x) = > (f*g)(a) h(B)

af=zx

> (Z f(7)9(5)) h(B)

afi=zr \yé=a

= > > f(Mg(d)h(B)

af=rydi=«a
> FMg@)n(B)
yéB=z
= (f *(g*h))(z).
Now we show that ¢* * f* = (f x g)*. For x € G,
(9" * [ @) = > g" () f*(B)
af=x
= 3 @ FET)
af=x

> (B Nyl

af=x

= > fBHglah

B-la—l=g—1
S fel) (B =nv a7t =0
yn=x=1
=(fxg)(z")
= (f=9)"(2).
Finally, we claim that the convolution product * is continuous. Define the function
H: (C.(G) x Co(G),II(Tina X Tind)) — (Ce(G), Tind),
(f.9) — fxy,

with C.(G) equipped with the inductive limit topology. Let II(Tinq X Tina) be the topology generated by
the product topology Ting X Tinga. Suppose that f,—f and g,—g. Hence, there exist open bisections K
and K’ such that, eventually, supp(f,) C K and supp(n) C K’. Then, supp f, * g, C KK'. Also, for
r=aff € KK’, we have

fo 5 gn(@) = Fxg@)] = | D fa¥gn(m) = Y f(¥)g(n)

yn== yn==

B) — fla)g(B)
— fa(@)g(B)| + | fn(a)g(B) — fa)g(B)]
< [fn(@)l1gn(B) = g(B) + [fn(e) = f(@)[19(B)]
(

<l fnlloc l9n(B) = g(B)] + | fn(@) = F(@) ]9l co-
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Since ||gn — 9lloos | fn — flleo converge uniformly to zero on compact sets, the above expression tends to
zero uniformly. Therefore f,, * g, converges uniformly to f * g on KK'. a

Example 4.3 If G is discrete group, then Co(G) = CG, the product is a * b(g) = Y, a(h)b(h™'g),
and the involution a*(g) = a(g™?).

Example 4.4 (equivalence relation): Recall Example (2.3) with étale topology. For f,g € C.(G) and for
all (z,y) € R the convolution product is given by (using (4.1))

(f*9)(x,y) =Y flx,2)9(z )

z€x]

and the involution is defined by
fH(@y) = [y, @)

Lemma 4.4 Let G be a locally compact, Hausdorff and étale groupoid. Let f € C.(G) and U be a
bisection such that supp(f) C U. Then

(i) C.(GY) C C.(G) is a commutative *-subalgebra.

* CFG(U)
(ii) {f O and e have 157 % Flloo = I1f % F¥lloo = [ lloo

f*f*eC(G")

Proof:

(i) By part ((i)) of Lemma 4.1 and Remark 2.2, G(Oz is open and closed in G. Hence, every function
g€ CC(G( )) can be identified with the function f on G as follows

= {f(m), if z € GO

0, otherwise

To show commutativity, let g, ¢’ € C.(G®). Then

supp(g * ') C supp(g) - supp(g’) < (G
This is a bisection because r and s are homeomorphisms on G(©). So, we see that g * ¢'(z) =
g(x) - ¢'(z) for x = 22 € G and the commutativity follows.

(i) We have supp(f* * f) C supp(f*) - supp(f) = supp(f)~! - supp(f) = s(supp(f)) and

17 flloo = sup |f"* f(z)| = sup [|f* * f(ax)]

zeG(®) zeG(0)

= sup [f*(z) f(z)|

zeG(0)

= sup f(z71) f(x)

zeG(0)

= sup |f(@))?=fl%

zeG(0)
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4.3. The normed *-algebras (C.(G),*,|.||1)

The "I-norm" on C.(G), when G is étale, is given by

£l = max{[| fllz.r, [ Fll1.s}

where

Il = sup > Ifly _p Sl (4.3)

u€G(O ’YEG“ G(0) Gu

Following the same path as earlier, we obtain that C.(G) is a normed *-algebra with respect to the
[-norm.

Proposition 4.3 Let G be a locally compact groupoid then, The I-norm on (C.(G,*)) is a norm satis-
fying, for every f,g € C.(G),

(1) I1f =gl < I1fNlz llgllz.
(@) | f*llr = 1£llz-

Proof: It is clear that |- ||; is homogeneous and satisfies the triangle inequality . To show that it is finite,
we have for f € C, (G) that f|c, (G) is continuous for an arbitrary K. Then there is a finite collection
of open bisection {U;}¥; that cover K. Let {h;}; partition of unity for K subordinate to the U;. Then
we have

N i=N N
1l =13 it < 3 Wi flle < 3 Mhieflloo < NIl < 0. (4.4)
=1 i=1 i=1

For f,g € C.(G), we have

SUfral=> | > fla)gla'y)

yEGY® YEGY |aeGT(™M)

<Y > 1 @lgle )]

~YEGY qeGT (V)

=> > f@)]lgla™y)

aeGY yeGr(e)

<D @I DD lglaty)l
acGv ~yEGT ()

<SS @I DD gl
aeGY neGs(e)

<> 1@l glls
acGY

<lIflzllgllz-

4.4. The C*algebra C*(G)

The full C*-algebra of a discrete group can be seen either as the universal C*-algebra generated by a
unitary representation, or as the universal C*-algebra generated by a *-representation of C.(G). We will
use the latter as it provides a more general and applicable perspective.
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In the following, we want to introduce a C*-norm on C.(G). For this, we need to discuss representations
of C.(G). Let H be a Hilbert space and

m:C.(G) = B(H), forall fe C.(G)

be a *-representation. As consequence of Proposition ((i)) obviously 7[¢ (g is a *-representation, and
we have the following result.

Proposition 4.4 Let G be a locally compact Hausdorff étale groupoid, H be a Hilbert space and m :
C.(G) — B(H) be a *-representation of the latter. Then there exists a constant Ky > 0 such that

[ (NI < K.

And if supp(f) C U, is an open bisection we may take K¢ = | fl|co-

Proof: By lemma 4.2 every f € C.(G) can be written as >, fi, where f; € C.(G) such that, for each
i, supp(f;) C U; and {U;}; is a collection of bisection. By using the proof of Proposition 4.3, we get

()l = llm (Z fi> B

And
Im(f)ll? = I (f)m(f) Il = N (fi % £)1I- (4.5)

By Lemma 4.4, f; * f € C.(G®)) and the restriction of 7 to the commutative *-algebra (C.(G(®))
becomes a *-homomorphism. We claim that and 7|s©) is a C*- homemorphism. Then it is norm
decreasing. Hence, ||7(h)| < ||hlso for all h € C.(G(?) and we have

e (£)I1? = llm (F)m (£i) 1| = Il (fs £ < 1o £ o (4.6)
For the last inequality, take h = f; * f. For z € GO it is clear that
fir fi(@) = fix fi(r(@) = fix £ (227h) = fil) « £ (270) = | fi(@) .
Getting back to equation (4.6), we get
lw(£)I? < MIfi * filloo = Ifille = 17 (Al < nllfllee = K.
If f is supported on a bisection, then there is just one term in the sum then Ky = || f||- O

Lemma 4.5 Let G be a locally compact Hausdorff étale groupoid. Then any *-representation m of C.(G)
s continuous in the inductive limit topology and satisfies

[ (AN < £l (4.7)

Proof: By the previous Proposition, it is clear that 7 is continuous in the inductive limit topology. To
show that it is I-norm bounded, observe that, for f € C.(G), holds ||f|lcc < ||f|lz- Since continuity is
equivalent to boundedness for linear maps on normed spaces, we deduce that 7 is I-norm bounded.

The completion of C.(G) in the I-norm yields a Banach *-algebra, hence, the extension of 7 to this

I
completion is a *-homomorphism from the Banach *-algebra C.(G) into (B(H)). Applying spectral
theory, write p4 : A — [0, 00) for the spectral-radius function on a Banach algebra A. For each f € C.(G),
we have

l=(HIZ = lIx (N = pan (7 (£ 1) < pgggy () < 1F fll < IF117-
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Example 4.5 Let 2 € GO, For each f € C.(G) we define

o Co(G) — B(P(GL)),  (ma(NOM) = D fl@)é(a™),

aceGr()

for ¢ € 2(G) and v € G,.
Well-definedness. If o € G™), then

hence (a~1,y) € G®), so that a1y is defined. Moreover, since v € G, we have

s() =2 = s(a7'y) =g,

17

s0 the terms of the sum indeed belong to G. As, f is compactly supported and G is discrete, the sum

is finite. Therefore (mx(f)€)(7y) is well-defined for all v € G.

Boundedness. Assume that f is supported on a bisection. Then for each v € G, the set G, Nsupp(f)

contains at most one point, which we denote by 1. Thus

(7 ()E) () = {f (117) €005 1), if yy ewists,

B 0, otherwise.

It follows that

I (FENZ =D |(mal NI

vE€EGS

=Y > @ yP

vEGL acGr (™

= > 111 s )P

VEG:

<IFIZ D 1wy P

YEG,

<Ifl% Y 1M

YEG,

<IIFI1% lgll3-

Hence 7, (f) is bounded with |7 ()] < ||f|loo-

Multiplicativity. To show that 7, (f)m.(g) = 7 (f * g), it suffices to check on the basis {6,
of 2(G,.). For vy € Gy, compute

(me(£)020)(N) = Y f(@)dy(a™y) = fFiyr )

acGr(M

hence

Wr(f)(s'yo = Z f(UW(;l)éu'

u€Gy

iy € Gy}

(4.8)
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Therefore,

while

Wx(f*g)év = Z (f*g)(a'y_l)(Sa

acGy,
-y ( 3 f<6>g<6—1cw-1>) b
a€G, \seGr(e)

For fired a € G, the two expressions in the brackets are the same. This follows from the fact that the
maps
(b : Gs(a) — GT(Q) ’(/J : Gr(a) — Gs(a)

B— af™! §— 0t
are inverse bijections, since we have

6((8)) = B(6~1a) = a(0~'a) ™ = aa~15 = 4.
x-preserving property. For v,n € G,

(ma(f*)0y,6n) = ( Z f*(a'7_1)5a76n>

acG®

ST Fra) (G 8

aeG®

fom™h)
Z f(an_l)@w Oar)

aeG®

= (05, Z f(0477_1)5a>

acG®

= <5’ya7rac(f)5n>a

which shows that m,(f*) = 7. (f)*. Therefore . is a *-representation of C.(G) on £2(G.,).

Remark 4.1 Let G be a locally compact Hausdorff étale groupoid. The left reqular representation of G
7" is the direct sum of the *-representation (4.8)

=@

€GO
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Definition 4.3 Let G be a locally compact Hausdorff étale groupoid. For every f € C.(G), define the
Sfull norm of f as

£l = sup{||7(f)| : 7 is a *-representation of C.(G)}.
This defines a C*-norm on C.(G).

The full C*-algebra C*(G) of G is the completion of C.(G) with respect to the norm in definition
(3.3).

[[fllgun = sup [[x(f)]| (4.9)
The reduced C*-algebra C}(G) is the completion of C.(G) with respect to the norm
1fllz = sup |lmu(f)ll (4.10)

ueG©)

Remark 4.2 For all f € C.(G), we have

[flloo < Wfllr < A1 putr-

If f is supported on a bisection, then we have equality throughout.
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