
Bol. Soc. Paran. Mat. (3s.) v. 2026 (44) 3 : 1–20.
©SPM – E-ISSN-2175-1188 ISSN-0037-8712
SPM: www.spm.uem.br/bspm doi:10.5269/bspm.79127

Groupoids and their Topological *-Algebras

Rachid El Harti and Afrae Tanzite∗

abstract: This study introduces the concept of a topological groupoid and some topological *-algebras
are investigated, like the convolution topological *-algebras associated with locally compact groupoids, and in
particular, étale groupoids.
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1. Introduction

Groupoids provide a general framework that captures notions of symmetry and dynamics beyond the
setting of groups. The notion of groupoids originated with Brandt in 1927. It is most elegantly defined
as a small category with inverses.Algebraically, a groupoid can be regarded as a set with a partially
defined multiplication that exhibits group-like properties whenever applicable. Although every group is
a groupoid, there is a wide variety of groupoids that are not groups.
These notes aim to provide a brief overview of some key topics in the area of topological *-algebras
associated with groupoids. The first section begins with a quick overview of groupoids in the algebraic
sense, offering illustrative examples, and introducing topological groupoids and locally compact groupoids.
In order to investigate the topological *-algebras derived from groupoids, one usually requires a *-algebra
structure on Cc(G), the space of continuous complex-valued functions with compact support. This
involves defining the convolution product, which combines functions through integration with respect to
a collection of measures known as the Haar system, denoted by {λu, u ∈ G(0)}, where G(0) is the unit
space of the groupoid G.
Unlike the group case, the existence of a Haar system in groupoids is not guaranteed, and even when it
exists, it need not to be unique. In fact, Seda In [5] shows that if the range map is not open, then a
groupoid cannot possess a Haar system.
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When G is an étale groupoid, the Haar system is simply a collection of counting measures. Consequently,
the construction of the topological *-algebra of an étale groupoid is almost analogous to the discrete group
case, Further discussions on these insights will be provided in the subsequent sections of this paper.

2. Preliminaries

2.1. Groupoids (Algebraically)

A groupoid is a mathematical structure that generalizes the concept of a group. There are many
definitions of groupoids in mathematics since they are a very flexible and powerful mathematical tool
with many applications, but in this section, we will focus on the definition of groupoid as given by Renault
in his book "A Groupoid Approach to C*-Algebras" [1].
A groupoid is a set G endowed with a partial operation

G(2) → G

(g, h) 7→ gh
(2.1)

where G(2) is a subset of G×G called the set of composable pairs. (The key point is that the product of
an arbitrary pair of elements may not be defined, and the product gh is only defined for pairs (g, h) ∈ G2),
and equipped with an inverse map

G → G

g 7→ g−1 (2.2)

such that the following conditions hold for any g, h, k ∈ G:

(i) If (g, h) ∈ G(2) and (h, k) ∈ G(2), then (gh, k) ∈ G(2) and (g, hk) ∈ G(2).
Furthermore, (gh)k = g(hk). (written as ghk).

(ii) (g−1)−1 = g for all g ∈ G.

(iii) For all g ∈ G, (g, g−1) ∈ G(2) , and if (k, g) ∈ G(2), then (kg)g−1 = k.

(iv) For all g ∈ G, (g−1, g) ∈ G(2) , and if (g, h) ∈ G(2), then g−1(gh) = h.

From (iii) and (iv), we conclude that a unit in a groupoid G is any element that can be written both as
gg−1 and g−1g, for some g ∈ G. The set of all units is called the unit space and denoted by

G(0) = {g−1g : G ∈ G} = {gg−1 : g ∈ G} (2.3)
= {g ∈ G : g = g−1 = gg}. (2.4)

For g ∈ G, the source and range maps are respectively defined as

s(g) = g−1g, r(g) = gg−1.

Remark 2.1 Since in the groupoid not all pairs (g, h) ∈ G×G are composable, a pair (g, h) belongs to
G(2) if and only if s(g) = r(h). Thus, for a groupoid G, the set of composable pairs is given by

G(2) = {(g, h) ∈ G×G | s(g) = r(h)}. (2.5)

(Readers seeking alternative treatments and complete proofs for certain statements in this section are
encouraged to consult references such as [2,4], [12], Remark 8.1.5.)

Example 2.1 (Groups.) Let G be a group with identity element e. Then G is a groupoid with
G(2) = G×G and G(0) = {e}. In fact, a groupoid is a group if and only if its unit space is a singleton.
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Example 2.2 Let X be a set and G = X ×X. G is a groupoid with

G(2) = {((x, y)(y, z)) | x, y, z ∈ X}

and the operations defined by

(x, y)(y, z) = (x, z) and (x, y)−1 = (y, x).

Moreover, r(x, y) = (x, x) and s(x, y) = (y, y).

Example 2.3 (Equivalence Relations.) Let X be a set and R ⊆ X ×X an equivalence relation on X.
Define

R(2) = {((x, y), (y, z)) : (x, y), (y, z) ∈ R},
which means that (x, y), (y′, z) are composable if and only if y = y′. Then, for all (x, y), (y, z) ∈ R we
define the product as

(x, y)(y, z) = (x, z)
and the inverse as

(x, y)−1 = (y, x)
Moreover, for all (x, y), (y, z) ∈ R, we have

r(x, y) = (x, y)(x, y)−1 = (x, y)(y, x) = (x, x)
s(x, y) = (y, y)

R(0) = {(x, x) | x ∈ X}

Example 2.4 (Transformation groupoids.) Let Γ be a group acting (on the right) on a set X by bijection.
Consider the set G = X × Γ and define

G(2) = {((x, g), (y, h)) | g, h ∈ Γ, x ∈ X, and y = xg}.

Then the product and the inverse are given by

(x, g)(xg, h) = (x, gh), (x, g)−1 = (xg, g−1),

for x ∈ X and g, h ∈ G. We note

r(x, g) =(x, g)(x, g)−1 = (x, g)(xg, g−1) = (x, e),
s(x, g) =(xg, e),

for x in X, g in G and G(0) = X × {e} ∼= X.

2.2. Topological groupoids

A topological groupoid consists of a groupoid G and a topology compatible with the groupoid struc-
ture. That is, the multiplication and the inverse maps defined in (2.1) and (2.2) are both continuous.
(Here, G(2) carries the topology induced from G×G.)
Remark 2.2 Let G be a topological groupoids, we have:

• The topology of G(0) is induced by the open sets of G that contain G(0).
• G(0) is closed if and only if G is Hausdorff.

Now, let’s revisit our earlier examples and equip them with a topology, turning them into topological
groupoids.
Example 2.5 aaaaaaa

• Groups: If G is a topological group, it is a topological groupoid.
• Discrete groupoids: Every groupoid is a topological groupoid with the discrete topology.
• Equivalence relations: If X is a Hausdorff space and R is an equivalence relation on X, then R is

a topological groupoid with the subspace topology from X ×X.
• Transformation groupoids: Let Γ be a Hausdorff group acting continuously on a Hausdorff space X.

Then Γ ⋉X with the product topology is a topological groupoid.
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3. Locally Compact Groupoids and theirs Topological *- Algebras

We only consider topological groupoids whose topology is locally compact and Hausdorff. We denote
by Cc(G) the algebra of continuous complex valued functions with compact support on G.
For developing an algebraic theory of functions on locally compact groupoids, one needs an analogue of
Haar measure on locally compact groups. We adopt the definition given by Renault in [1].
We denote by Gu for u ∈ G(0) the set Gu = r−1({u}) = {g ∈ G : r(g) = u} and Gu the set Gu =
s−1({u}) = {g ∈ G : s(g) = u}.
Definition 3.1 A (left) Haar system on a locally compact Hausdorff groupoid G is a family of positive
Radon measures, λ = {λu, u ∈ G(0)}, such that:

(i) For all u ∈ G(0), supp(λu) = Gu

(ii) For all f ∈ Cc(G),

G(0) −→ C,

u 7−→ λ(f)(u) =
∫

G

f(x) dλu(x)

is continuous.

(iii) For all f ∈ Cc(G) and all x ∈ G,∫
G

f(y) dλr(x)(y) =
∫

G

f(xy) dλs(x)(y).

These measures are not Haar measures in the strict sense of the term, but they capture similar properties
and provide a measure-theoretic framework for the groupoid. It follows from (ii) that λ(f) also belongs
to Cc(G(0)). And we deduce form (iii) of Definition (3.1) that∫

Gr(x)
f(x−1z) dλr(x)(z) =

∫
Gs(x)

f(y) dλs(x)(y). (3.1)

Remark 3.1 Let G be locally compact Hausdorff groupoid with Haar system λ = {λu}u∈G(0) . Then the
map

λ : Cc(G) −→ Cc(G(0)),
f 7−→ λ(f)

is continuous.

Remark 3.2 Let {λu}u∈G(0) is a left Haar system on locally compact Hausdorff groupoid G. Since
(Gu)−1 = Gu, then, for each u ∈ G(0), we can associate to λu the measure λu = (λu)−1, with∫

f(x) dλu(x) =
∫
f(x−1) dλu(x).

We will call {λu}u∈G(0) a right Haar system on G.

We shall work only with left Haar system.
Example 3.1 If Γ is a locally compact Hausdorff group acting continuously on a locally compact Haus-
dorff space X, then G = X × Γ admits a distinguished (left) Haar system {εx × λ : x ∈ X}, where λ is a
Haar measure on Γ and εx is the Dirac measure at x. For f ∈ Cc(X × Γ). Moreover,

λ(f)(u) =
∫

G

f(x, g) dλ(g) for all f ∈ Cc(X × Γ),

with (x, e) = u ∈ G(0).
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Example 3.2 Let X be a locally compact and Hausdorff space. Consider the groupoid in Example 2.2.
Let µ be a positive Radon measure on X with full support (i.e., supp(µ) = X). Then {εx × µ | x ∈ X} is
a Haar system on X ×X (as a trivial groupoid), where εx is the unit point mass at x. Moreover,

λ(f)(u) =
∫

X

f(x, y) dλ(y) for all f ∈ Cc(X ×X),

with (x, x) = u ∈ G(0).

Unlike the case of locally compact group, Haar system on groupoid need not exist (due to Anton Deit-
mar [3], who shows that a locally compact groupoid does not necessarily have Haar system). On the
other hand, a locally compact groupoid can have a several Haar systems.
One known criterion is that a Haar system can only exist if the range map is open. [Corollary to Lemma
2 in [6], see also [7]].
Remark 3.3 It may be confusing not to define a measure on all of G. However, if µ is a measure on
G(0) then we will obtain a measure ν on G, induced by µ, given by ν = µ ◦ λ, and we have

ν(f) =
∫

G(0)

∫
G

f(γ) dλu(γ) dµ(u) for f ∈ Cc(G).

3.1. The convolution topological *-algebra Cc(G)

In the remaining sections of this paper, we will assume that G is a groupoid equipped with a Haar
system λ = {λu , u ∈ G(0)}.
For f, g ∈ Cc(G), the convolution is defined by

(f ∗ g)(x) =
∫

Gr(x)
f(y)g(y−1x) dλr(x)(y) =

∫
Gs(x)

f(xy)g(y−1) dλs(x)(y) (3.2)

and the involution by :
f∗(x) = f(x−1). (3.3)

Proposition 3.1 Let G be a locally compact groupoid. Then Cc(G) is a topological ∗-algebra under the
convolution multiplication defined in (3.2) and the involution given in (3.3).

Proof: Let f, g ∈ Cc(G). We prove that f ∗ g ∈ Cc(G). Indeed, if (f ∗ g)(x) ̸= 0, then there exists y0
such that f(xy0) ̸= 0 and g(x) ̸= 0. This implies that supp(f ∗ g) is a subset of (supp(f))(supp(g)).
Now, we prove that f ∗ g is continuous. Thanks to Tietze extension theorem, we extend the function
(x, y) 7→ F (x, y) = f(xy)g(y−1) on G(2) to a bounded continuous function k on G × G. Let h ∈ Cc(G)
such that h(y) = 1, if k(x, y) ̸= 0. Then, we have

k(x, y)h(y) = F (x, y) for all(x, y) ∈ G(2).

Define a complex-valued function H by

H : G×G0 −→ C

(x, u) 7−→ H(x, u) =
∫

G

k(x, y) dλu(y).

We have f ∗ g = H|(G,s(x)). Hence, it suffices to show that H is continuous. Let x0 ∈ G, we shall show
that H is continuous at x0. Let K = C × s(C, ) where C is a compact neighborhood of x0. Then, for
(x, u) ∈ K, we have∣∣H(x, u) − H(x0, u0)

∣∣ =
∣∣∣∫ k(x, y) dλu(y) −

∫
k(x0, y) dλu0 (y)

∣∣∣
≤
∫ ∣∣k(x, y) − k(x0, y)

∣∣ |h(y)| dλu(y) +
∣∣∣∫ k(x0, y) dλu(y) −

∫
k(x0, y) dλu0 (y)

∣∣∣
≤ sup

y

∣∣k(x, y) − k(x0, y)
∣∣ ∫ |h(y)| dλu(y) +

∣∣∣∫ k(x0, y) dλu(y) −
∫

k(x0, y) dλu0 (y)
∣∣∣.
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By uniform continuity of k and the definition of the Haar system in (ii), we have the continuity of H on
K. It Follows that the map x 7→ H(x, s(x)) is continuous on C. Since

H(x, s(x)) =
∫
k(x, y) dλs(x)(y) =

∫
f(xy)g(y−1) dλs(x)(y),

we obtain that F is continuous at x0.
For the associativity, let f, g, h ∈ Cc(G), x ∈ G. Then, by using (3.2) we have

f ∗ (g ∗ h)(x) =
∫

Gs(x)
f(xy)(g ∗ h)(y−1) dλs(x)(y)

=
∫

Gs(x)
f(xy) dλs(x)(y)

∫
Gs(y−1)

g(y−1z)h(z−1) dλs(y−1)(z)

=
∫

Gs(x)
f(xy) dλs(x)(y)

∫
Gs(x)

g(y−1z)h(z−1) dλs(x)(z), (s(y−1) = r(y) = s(x))

=
∫

Gs(x)
h(z−1) dλs(x)(z)

∫
Gs(x)

f(xy)g(y−1z) dλs(x)(y), (Fubini’s Theorem)

=
∫

Gs(x)
h(z−1) dλs(x)(z)

∫
Gs(z)

f(x(zy))g((zy)−1z) dλs(z)(y)

=
∫

Gs(x)
h(z−1) dλs(x)(z)

∫
Gs(xz)

f((xz)y)g(y−1) dλs(xz)(y), ((zy)−1z = y−1 ((z, y) ∈ G(2))

=
∫

Gs(x)
f ∗ g(xz)h(z−1) dλs(x)(z)

= (f ∗ g) ∗ h(x).

Notice that f∗ is also continuous with compact support supp(f∗) = (supp(f))−1. Hence, the algebra is
stable under the involution.
We prove that for all f, g ∈ Cc(G), we have g∗ ∗ f∗ = (f ∗ g)∗. Using (3.2), (3.1) and the fact that
s(x) = r(x−1) for all x ∈ G, we have

g∗ ∗ f∗(x) =
∫

Gr(x)
g∗(y)f∗(y−1x) dλr(x)(y)

=
∫

Gr(x)
g∗(x(x−1y))f(x−1y) dλr(x)(y)

=
∫

Gr(x)
g∗(xy)f(y) dλs(x)(y)

=
∫

Gr(x−1)
f(y)g(y−1x−1) dλr(x−1)(y)

= (f ∗ g)∗(x).

Also,
f∗∗ = f∗(x−1) = f((x−1)−1) = f(x).

So the map f 7→ f∗ is an involution on Cc(G).
Now we claim that the convolution product ∗ is continuous. Define the function

H :Cc(G) × Cc(G) −→ Cc(G),
(f, g) 7−→ f ∗ g,

with Cc(G) equipped with the inductive limit topology. Suppose that fn→f and gn→g, hence, there
exist compact sets K and K ′ such that, eventually, supp(fn) ⊂ K and supp(gn) ⊂ K ′. Then, there exist
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N such that for n ≥ N we have supp(fn ∗ gn) ⊂ KK ′ (compact). Also,

|f ∗ g(x) − fn ∗ gn(x)| ≤
∫

KK′

∣∣f(xy)g(y−1) − fn(xy)gn(y−1)
∣∣ dλs(x)(y)

≤
∫

KK′
|f(xy) − fn(xy)||g(y−1)| dλs(x)(y) +

∫
|fn(xy)||g(y−1) − gn(y−1)| dλs(x)(y).

Therefore, fn ∗ gn converges uniformly to f ∗ g on KK ′. 2

Example 3.3 If Γ is a locally compact Hausdorff group acting continuously on a locally compact Haus-
dorff space X, and let {εx ×λ, x ∈ X} be Haar system on X × Γ (as mentioned in example 3.1). let The
convolution be given by f, g ∈ Cc(X × Γ)

f ∗ g(x) =
∫
f((x, γ)(y, γ′)) g((y, γ′)−1) d(εxγ × λ)(y, γ′)

=
∫
f(x, γ′) g(xγγ′, γ′−1) dλ(γ′)

=
∫
f(x, γ′) g(xγ′, γ′−1γ) dλ(γ′),

and the involution by : f∗(x, γ) = f(xγ.γ−1).

Example 3.4 Recall from Example 3.2 that the convolution in G = X ×X is giving by

f ∗ g(x) =
∫
f((x, y)(y, z)) g((y, z)−1) d(εx × λ)(y, z)

=
∫
f(x, z) g(z, y) dλ(z),

and the involution by f∗(x, y) = f(y, x).

3.2. The normed *-algebra (Cc(G), ∗, ∥.∥I)

We seek to enrich the previously discussed convolution algebra by introducing a norm on Cc(G),
closely related, to the L1-norm in the locally compact group case. The algebra Cc(G) is equipped with
the following norms

∥f∥I,r = sup
u∈G(0)

∫
Gu

|f(γ)| dλu(γ), ∥f∥I,s = sup
u∈G(0)

∫
Gu

|f(γ−1)| dλu(γ), (3.4)

and
∥f∥I = max{∥f∥I,r, ∥f∥I,s}.

Considering the maximum of the norms (I, r) and (I, d) norms, ensures that the involution is isometric
on Cc(G).

Remark 3.4 Before proceeding further in the discussion, it is necessary to introduce the inductive limit
topology on Cc(G). Let G be a locally compact and Hausdorff groupoid. Consider the set K, consisting
of all compact subsets of G. For any K ∈ K, let CK(G) to be a subset of Cc(G) consisting of function
with compact support contained in K. It is a normed algebra with the supremum norm. The collection
(Cc(G), CK(G) : K ∈ K), with the order on K, defined by inclusion, is an inductive system (in the sense
of Definition 5.1 in Chapter IV of [8]).

Proposition 3.2 Let G be a locally compact groupoid. Then,

(i) The (Cc(G), ∥f∥I,r) is a normed algebra, whereas (Cc(G), ∥f∥I) is a normed *-algebra.
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(ii) The I-norm on Cc(G) defines a topology coarser than the inductive limit topology.

(iii) The involution is isometric with respect to the I-norm.

Before proceeding with the proof of the Proposition 3.2, it is necessary to employ the following Lemma.

Lemma 3.1 Let {λu}u∈G(0) be a Haar system on a locally compact Hausdorff groupoid G. If K is a
compact subset of G, then there is an M > 0 such that

λu(K) < M for all u ∈ G(0).

Proof: Let f ∈ Cc(G) such that supp(f) = K and U be an open subset of G such that K ⊂ U ⊂ G.
By using Urysohn’s Lemma for locally compact Hausdorff spaces [see [15], 2.12]. Then there exists
h ∈ C+

0 (G) with h ≡ 1 on K and vanishes outside U . We have

λ(h)(u) =
∫
h(γ) dλu(γ)

=
∫

K

λu(γ) +
∫

U/K

h(γ)dλu(γ)

≥
∫

K

λu(γ) = λu(K).

Hence, we have λu(K) ≤ λ(h)(u), for all u ∈ G(0), which implies (by using the continuity in Remark 3.3)
that sup

u∈G(0)
λu(K) ≤ sup

u∈G(0)
|λ(h)(u)| = ∥λ(h)∥∞ = M. 2

Proof: of Proposition 3.2.

(i) To establish the norms ∥f∥I,r and ∥f∥I,s as actual norms, we need to verify certain properties. Let
us focus on the (I, r)-norm.
Given f ∈ Cc(G), let K be a compact set such that supp(f) ⊂ K. By using the previous Lemma,
there exist M > 0m such that λu(K) ≤ M for all u ∈ G(0).Then

∥f∥I,r = sup
u∈G(0)

∫
Gu

|f(γ)| dλu(γ) ≤ ∥f∥∞M.

(Similarly, for ∥f∥I,s ≤ ∥f∥∞, by choosing K symmetric, i.e., K = K−1 ). This implies that
∥f∥I ≤ ∞. If f ̸= 0, there exists u ∈ G(0) such that the restriction of |f | to Gu is non-zero.Therefore
∥f∥I,r > 0 for f ̸= 0. Additional properties required for ∥f∥I,r as a norm are satisfied trivially.

Next, in order to show that Cc(G) is a normed algebra, we need to prove that for all f, g ∈ Cc(G),

∥f ∗ g∥I ≤ ∥f∥I∥g∥I .

Let f, g ∈ Cc(G). Then, we have∫
|f ∗ g(x)| dλu(x) ≤

∫
Gu

∫
Gr(x)

|f(y)| |g(y−1x)| dλr(x)(y) dλu(x)

=
∫

Gr(x)
|f(y)|

∫
Gu

|g(y−1x)| dλu(x) dλr(x)(y)

=
∫

Gr(x)
|f(y)|

∫
Gu

|g(z)| dλu(z) dλr(x)(y)

≤ sup
u∈G0

∫
Gu

|g(x)| dλu(x)
∫

Gr(x)
|f(y)| dλr(x)(y)

≤ sup
u∈G0

∫
Gu

|g(x)| dλu(x) sup
v∈G0

∫
Gv

|f(y)| dλv(y)

≤∥f∥I,r ∥g∥I,r.
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(ii) Now, let us prove that the I-norm on Cc(G) defines a topology coarser than the inductive limit
topology. By Proposition 5.7 in Chapter IV in [8], f is continuous in the inductive limit topology
if and only if its restriction to CK(G) is continuous, for an arbitrary K ∈ K. We have a diagram

(CK(G), ∥ · ∥K) (Cc(G), τind)

(Cc(G), ∥ · ∥I)

jk

Id1Id2

Then, it suffices to show that Id2 is continuous (i.e., there exists C > 0 such that ∥f∥I ≤ C∥f∥K

for f ∈ CK(G) and K is an arbitrary compact).
Suppose that {fn} is a sequence in Cc(G) such that fn converges to 0 in Cc(G). By the continuity
of the map f 7−→ λ(f) [see Remark 3.1], we obtain λ(|fn|) → 0 in Cc(G(0)). On other hand, we
have

∥fn∥I,r = sup
u∈G(0)

∫
Gu

|fn| dλu = sup
u∈G(0)

λ(|fn|) → 0

2

3.3. The C*algebra C∗(G)

We now outline the construction of the full and the reduced C*-algebras associated with a locally
compact groupoid. To this end, we first rcall the necessary definitions.

Definition 3.2 Let L : Cc(G) → B(H) be a *-homomorphism.

(i) L is said to be non-degenerate if the linear span of

{L(f)ξ : f ∈ Cc(G), ξ ∈ H}

is dense in H.

(ii) We say that L is continuous in the inductive limit topology, if, whenever fi → f in the inductive
limit topology on Cc(G) and ξ, η ∈ H, we have

⟨L(fi)ξ, η⟩ → ⟨L(f)ξ, η⟩.

(iii) L is called bounded, if
∥L(f)∥ ≤ ∥f∥I , for all f ∈ Cc(G).

A *-representation L : Cc(G) → B(H) of Cc(G) is a *-homomorphism from the topological *-algebra
Cc(G) into B(H) for some Hilbert space H, that is countinuous with respect to the inductive limit
topology.

Example 3.5 Consider a special class of representations of Cc(G) that play a role analogous to the
regular representation of a group. Let µ be any Radon measure on G(0). Define ν = µ◦λ. Then, we have

ν(f) =
∫

G(0)

∫
G

f(γ) dλu(γ) dµ(u) for f ∈ Cc(G).

Set H = L2(G, ν−1) such that for f ∈ Cc(G) and h ∈ H we have

ν−1(f) =
∫

G(0)

∫
G

f(γ−1) dλu(γ) dµ(u) =
∫

G(0)

∫
G

f(γ) dλu(γ) dµ(u)
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and define Indµ : Cc(G) → B(H) for f ∈ Cc(G) and h ∈ H by

Indµ(f)(h)(γ) =
∫

G

f(η)h(η−1γ) dλr(γ)(γ) = f ∗ h(γ). (3.5)

Then, Indµ is bounded. It suffice to show that : (see [11],p.17 for the proof)

|⟨Indµ(f)ξ, η⟩| ≤ ∥f∥I∥ξ∥2∥η∥2.

Hence, Indµ is a non-degenerate representation of Cc(G). Particularly, if µ = δx the point mass measure
at x ∈ G(0), let us denote Indδx = πx, such that

πx : Cc(G) −→ B(L2(Gx)),
f 7−→ πx(f),

where (πx(f)ξ)(γ) =
∫

Gx

f(η)ξ(η−1γ) dλr(x)(η) = f ∗ ξ(x).

Proposition 3.3 Let L : Cc(G) → B(H) be a representation of Cc(G). Then, L is continuous in the
inductive limit topology.

Proof: Suppose that fi −→ f in the inductive limit topology. By using ((ii)) in Proposition 3.2, we have
∥fi − f∥I −→ 0. And as L is representation which means that L is I-bounded. Hence,

|⟨L(fi)ξ, η⟩ − ⟨L(f)ξ, η⟩| ≤ ∥L(fi − f)∥∥ξ∥∥η∥ ≤ ∥fi − f∥I∥ξ∥∥η∥ for all ξ, η ∈ H.

2

Remark 3.5 The representations of Cc(G) are precisely the *-homomorphisms that exhibit continuity in
the inductive limit topology. This observation strongly supports the claim that I-bounded representations
are the most appropriate ones to consider. [See Disintegration Theorem [11] in Section 8.1.]

Definition 3.3 Consider a Haar system λ = {λu : u ∈ G(0)} on a locally compact Hausdorff groupoid
G. For every f ∈ Cc(G), define the full norm of f as

∥f∥ = sup{∥L(f)∥ : L is a *-representation of Cc(G)}.

The full C*-algebra C∗(G) of G is the completion of Cc(G) with respect to the full norm

∥f∥full = sup
L

∥L(f)∥ (3.6)

The reduced C*-algebra C∗
r (G) is the completion of Cc(G) with respect to the norm

∥f∥r = sup
u∈G(0)

∥πu(f)∥ (3.7)

4. Étale Groupoids and theirs Topological *-Algebras

4.1. Étale groupoids

In this section, we study the topological *-algebra of étale groupoids. Étale groupoids are the analogs
of discrete groups in the groupoid setting. The Haar system on an étale groupoid G is given by the
counting measure, which simplifies the general formulas for multiplication and involution.

Definition 4.1 A topological groupoid G is étale, if the associated source and range maps s, r : G → G(0)

are local homeomorphisms, i.e., for every point g ∈ G, there exists an open neighborhood U ⊂ G of g,
such that r(U) and s(U) are open in G(0) and

r|U : U → r(U) s|U : U → s(U)

are homeomorphism.
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Example 4.1 Let us get back to our previous examples.
• (Étale Groups). A topological group G is étale if and only if it is discrete.
• (Étale Equivalence Relations). Recall Example (2.3). If R = {(x, x) : x ∈ X}, then it is étale as

for any (x, x) ∈ R .
• (transformation groupoid) Recall Example (2.4). Then, G × X is étale if and only if the acting

group G is discrete.

Definition 4.2 A subset U of an étale groupoid G is called a bisection, if the source and range map are
one-to-one, when restricted to U.

The topology of an étale groupoid has a basis consisting of open bisections. If U is an open bisection in
G, then we have r : U → r(U) and s : U → s(U) are both homeomorphisms onto open subsets of G(0).

Proposition 4.1 If U and V are bisections, then
• U−1 = {u−1 : u ∈ U} is a bisection.
• UV = {uv : y ∈ U, v ∈ V, (u, v) ∈ G(2)} is a bisection.

Example 4.2 (Bisection.) In example (2.3), we have X = G(0). Then

B = {(x, x) | x ∈ G(0)}

is a bisection.

Lemma 4.1 [12, Section 8.4] Let G be an étale groupoid. Then we have

(i) G(0) is an open subset of G.

(ii) The fibers Gu = r−1({u}) and Gu = s−1({u}) are discrete in the relative topology.

(iii) If a Haar system exists, it is essentially the counting measure system.

Proof:

(i) Suppose that G is an étale groupoid. Let u ∈ G(0) and let V be an open neighborhood ( a bisection)
of u in G. Then r|V is injective. Now, U =: V ∪ r(V ) is an open neighborhood of u in G(0) and
U = r−1(U) is open in G. Hence, G(0) is open in G.

(ii) If g ∈ Gu, then there exists an open bisection U such that g ∈ U . Since r is one-to-one on U , the
singleton set {x} = G ∩ U is open in Gu.

(iii) Let {λu}u∈G(0) be a Haar system for G. Since the fiber Gu is the support of the measure λu and is
discrete by part ((i)), every element u in G(0) has positive measure λu.
Let g(x) := λ(χG(0))(x), where χG(0) denotes the characteristic function of G(0). By the continuity
condition of the Haar system, g is continuous and positive. Again, since the measure λu is supported
by the fiber Gu for each unit u, we have for u ∈ G(0),

g(u) =
∫

G

χG(0) dλu =
∫

G(0)∩supp(λu)
χG(0) dλu =

∫
Gu

χG(0)λu = λu(Gu).

Replacing λu by λu

g(u) , we can assume that λu(u) = 1 for all u ∈ G(0). Then, by invariance,

λv(x) = 1 for any x ∈ Gv
u.

2

We conclude from (iii) that étale groupoids have properties analogous to those of discrete groups.
Similar to the preceding section, we adopt straightforward procedures guided by the contributions of
Sims [12] and Putnam [13].
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4.2. The convolution topological *-algebra Cc(G)

In the remaining sections of this paper, we assume that G be a locally compact Hausdorff étale
groupoid. We denote by Cc(G) the set of compactly supported continuous complex-valued functions on
G.

Lemma 4.2 Let G be a locally compact and Hausdorff étale groupoid. Then we have

CC(G) := span{f ∈ Cc(G) supp(f) ⊆ U, U is a bisection }

Proof: Let f ∈ Cc(G). Then there exist open bisections {Ui}i∈I , such that supp(f) ⊆
⋃

i∈I Ui.
By compactness of supp(f), there is a finite subcover {U1, · · · , Un} such that supp(f) ⊆

⋃n
i=1 Ui for

suitable Ui ⊆ G. As G is locally compact Hausdorff, there exists a continuous partition of unity
{hi | i ∈ {1, . . . , n}} on

⋃n
i=1 Ui subordinate to the Ui, i.e., for every i ∈ {1, . . . , n}, hi is a continu-

ous function on G with values in [0, 1], and supp(hi) ⊆ Ui such that
∑n

i=1 hi(γ) = 1 for all γ ∈ supp(f)
(see [14], Theorem 2.13). Then, the point-wise product fi := f · hi is continuous with compact support,
because supp(fi) ⊆ supp(f). It follows that f =

∑n
i=1 fi with supp(fi) ⊆ Ui, and supp(fi) is a bisection.

2

Another lemma, that will be used in the upcoming, is the following.

Lemma 4.3 [13, Lemma 3.3.1] Let G be an étale groupoid. If U and V are open bisections, then the
restriction of the product map P to U × V ∩G(2) is a homeomorphism to its image.

For f, g ∈ Cc(G) and for x ∈ G, the convolution is defined by

(f ∗ g)(x) =
∑

αβ=x

f(α)g(β) =
∑

α∈Gr(x)

f(α)g(α−1x) (4.1)

and the involution by
f∗(x) = f(x−1). (4.2)

Proposition 4.2 Let G be a locally compact Hausdorff and étale groupoid. Then Cc(G) is a topological
* -algebra under the convolution multiplication (4.1), and the involution (4.2).

Proof: We first show that these operations are well defined and belong to Cc(G). For a fixed x ∈ G,
consider

{(α, β) ∈ G(2) | αβ = x and f(α)g(β) ̸= 0}.

If αβ = x, then α ∈ Gr(x) and β ∈ Gs(x). Since these sets are discrete (Lemma (ii)), their intersections
with supp(f) and supp(g) are finite. It follows that the sum defining (f ∗ g)(x) is finite.
We now prove that f ∗g ∈ Cc(G). By Lemma (4.2), it suffices to check the case when supp(f and supp(g)
are contained in open bisections U and V . To see that f ∗ g has compact support, note that

supp(f ∗ g) ⊆ supp(f) supp(g) ⊆ UV,

and the product UV is compact whenever U and V are compact.
To establish continuity, let x = αβ ∈ UV . Then, for every γ ∈ U, η ∈ V such that x = γη it follows that{

r(γ) = r(x) = r(α)
s(η) = s(x) = s(β)

=⇒

{
γ = α

η = β

As an immediate consequence, we obtain

(f ∗ g)(x) =
∑

γη=x

f(γ)g(η) = f(α) g(β), γ ∈ U, η ∈ V.
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Define
F : G(2) → C, F (γ, η) = f(γ)g(η).

Clearly, F is continuous and supported in G(2) ∩ (U × V ). Moreover,
(f ∗ g) ◦ P = F =⇒ f ∗ g = F ◦ P−1

where p : G(2) → G is the multiplication map. By Lemma (4.3), the restriction of P U × V is a
homeomorphism. Therefore,f ∗ g is continuous.
For the associativity, let f, g, h ∈ Cc(G) and x ∈ G. Then

((f ∗ g) ∗ h)(x) =
∑

αβ=x

(f ∗ g)(α)h(β)

=
∑

αβ=x

∑
γδ=α

f(γ)g(δ)

h(β)

=
∑

αβ=x

∑
γδ=α

f(γ)g(δ)h(β)

=
∑

γδβ=x

f(γ)g(δ)h(β)

= (f ∗ (g ∗ h))(x).
Now we show that g∗ ∗ f∗ = (f ∗ g)∗. For x ∈ G,

(g∗ ∗ f∗)(x) =
∑

αβ=x

g∗(α)f∗(β)

=
∑

αβ=x

g(α−1) f(β−1)

=
∑

αβ=x

f(β−1)g(α−1)

=
∑

β−1α−1=x−1

f(β−1)g(α−1)

=
∑

γη=x−1

f(γ)g(η) (β−1 = γ, α−1 = η)

= (f ∗ g)(x−1)
= (f ∗ g)∗(x).

Finally, we claim that the convolution product ∗ is continuous. Define the function
H : (Cc(G) × Cc(G),Π(τind × τind)) −→ (Cc(G), τind),

(f, g) 7−→ f ∗ g,

with Cc(G) equipped with the inductive limit topology. Let Π(τind × τind) be the topology generated by
the product topology τind × τind. Suppose that fn→f and gn→g. Hence, there exist open bisections K
and K ′ such that, eventually, supp(fn) ⊂ K and supp(n) ⊂ K ′. Then, supp fn ∗ gn ⊂ KK ′. Also, for
x = αβ ∈ KK ′, we have

|fn ∗ gn(x) − f ∗ g(x)| =
∣∣∣∣∣∑
γη=x

fn(γ)gn(η) −
∑

γη=x

f(γ)g(η)
∣∣∣∣∣

= |fn(α)gn(β) − f(α)g(β)|
≤ |fn(α)gn(β) − fn(α)g(β)| + |fn(α)g(β) − f(α)g(β)|
≤ |fn(α)| |gn(β) − g(β)| + |fn(α) − f(α)| |g(β)|
≤ ∥fn∥∞ |gn(β) − g(β)| + |fn(α) − f(α)| ∥g∥∞.
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Since ∥gn − g∥∞, ∥fn − f∥∞ converge uniformly to zero on compact sets, the above expression tends to
zero uniformly. Therefore fn ∗ gn converges uniformly to f ∗ g on KK ′. 2

Example 4.3 If G is discrete group, then Cc(G) = CG, the product is a ∗ b(g) =
∑

h∈G a(h)b(h−1g),
and the involution a∗(g) = a(g−1).

Example 4.4 (equivalence relation): Recall Example (2.3) with étale topology. For f, g ∈ Cc(G) and for
all (x, y) ∈ R the convolution product is given by (using (4.1))

(f ∗ g)(x, y) =
∑

z∈[x]

f(x, z) g(z, y)

and the involution is defined by
f∗(x, y) = f(y, x).

Lemma 4.4 Let G be a locally compact, Hausdorff and étale groupoid. Let f ∈ Cc(G) and U be a
bisection such that supp(f) ⊆ U . Then

(i) Cc(G(0)) ⊆ Cc(G) is a commutative *-subalgebra.

(ii)
{
f∗ ∗ f ∈ Cc(G(0))
f ∗ f∗ ∈ Cc(G(0))

and we have ∥f∗ ∗ f∥∞ = ∥f ∗ f∗∥∞ = ∥f∥∞

Proof:

(i) By part ((i)) of Lemma 4.1 and Remark 2.2, G(0) is open and closed in G. Hence, every function
g ∈ Cc(G(0)) can be identified with the function f̃ on G as follows

f̃(x) =
{
f(x), if x ∈ G(0)

0, otherwise

To show commutativity, let g, g′ ∈ Cc(G(0)). Then

supp(g ∗ g′) ⊆ supp(g) · supp(g′) ⊆ (G(0).

This is a bisection because r and s are homeomorphisms on G(0). So, we see that g ∗ g′(x) =
g(x) · g′(x) for x = xx ∈ G(0), and the commutativity follows.

(ii) We have supp(f∗ ∗ f) ⊆ supp(f∗) · supp(f) = supp(f)−1 · supp(f) = s(supp(f)) and

∥f∗ ∗ f∥∞ = sup
x∈G(0)

|f∗ ∗ f(x)| = sup
x∈G(0)

||f∗ ∗ f(xx)|

= sup
x∈G(0)

|f∗(x) f(x)|

= sup
x∈G(0)

f(x−1) f(x)

= sup
x∈G(0)

|f(x)|2 = ∥f∥2
∞

2
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4.3. The normed *-algebras (Cc(G), ∗, ∥.∥I)

The "I-norm" on Cc(G), when G is étale, is given by

∥f∥I = max{∥f∥I,r, ∥f∥I,s},

where
∥f∥I,r = sup

u∈G(0)

∑
γ∈Gu

|f(γ)|, ∥f∥I,s = sup
u∈G(0)

∑
Gu

|f(γ−1)|. (4.3)

Following the same path as earlier, we obtain that Cc(G) is a normed *-algebra with respect to the
I-norm.

Proposition 4.3 Let G be a locally compact groupoid then, The I-norm on (Cc(G, ∗)) is a norm satis-
fying, for every f, g ∈ Cc(G),

(i) ∥f ∗ g∥I ≤ ∥f∥I ∥g∥I ,

(ii) ∥f∗∥I = ∥f∥I .

Proof: It is clear that ∥·∥I is homogeneous and satisfies the triangle inequality . To show that it is finite,
we have for f ∈ Cc(G) that f |CK

(G) is continuous for an arbitrary K. Then there is a finite collection
of open bisection {Ui}N

i=1 that cover K. Let {hi}i partition of unity for K subordinate to the Ui. Then
we have

∥f∥I = ∥
N∑

i=1
∥hi.f∥I ≤

i=N∑
i=1

∥hi.f∥I ≤
N∑

i=1
∥hi.f∥∞ ≤ N∥f∥∞ < ∞. (4.4)

For f, g ∈ Cc(G), we have

∑
γ∈Gu

|f ∗ g(γ)| =
∑

γ∈Gu

∣∣∣∣∣∣
∑

α∈Gr(γ)

f(α) g(α−1γ)

∣∣∣∣∣∣
≤
∑

γ∈Gu

∑
α∈Gr(γ)

|f(α)| |g(α−1γ)|

=
∑

α∈Gu

∑
γ∈Gr(α)

|f(α)| |g(α−1γ)|

≤
∑

α∈Gu

|f(α)|

 ∑
γ∈Gr(α)

|g(α−1γ)|


≤
∑

α∈Gu

|f(α)|

 ∑
η∈Gs(α)

|g(η)|


≤
∑

α∈Gu

|f(α)| ∥g∥I

≤∥f∥I∥g∥I .

2

4.4. The C*algebra C∗(G)

The full C*-algebra of a discrete group can be seen either as the universal C*-algebra generated by a
unitary representation, or as the universal C*-algebra generated by a *-representation of Cc(G). We will
use the latter as it provides a more general and applicable perspective.
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In the following, we want to introduce a C*-norm on Cc(G). For this, we need to discuss representations
of Cc(G). Let H be a Hilbert space and

π : Cc(G) → B(H), for all f ∈ Cc(G)

be a *-representation. As consequence of Proposition ((i)) obviously π|Cc(G(0)) is a *-representation, and
we have the following result.

Proposition 4.4 Let G be a locally compact Hausdorff étale groupoid, H be a Hilbert space and π :
Cc(G) → B(H) be a *-representation of the latter. Then there exists a constant Kf > 0 such that

∥π(f)∥ ≤ Kf .

And if supp(f) ⊆ U, is an open bisection we may take Kf = ∥f∥∞.

Proof: By lemma 4.2 every f ∈ Cc(G) can be written as
∑n

i=1 fi, where fi ∈ Cc(G) such that, for each
i, supp(fi) ⊂ Ui and {Ui}i is a collection of bisection. By using the proof of Proposition 4.3, we get

∥π(f)∥ = ∥π

(
n∑

i=1
fi

)
∥ ≤

n∑
i=1

∥π(fi)∥

And
∥π(fi)∥2 = ∥π(fi)π(fi)∗∥ = ∥π(fi ∗ f∗

i )∥. (4.5)

By Lemma 4.4, fi ∗ f∗
i ∈ Cc(G(0)) and the restriction of π to the commutative *-algebra (Cc(G(0)))

becomes a *-homomorphism. We claim that and π|G(0) is a C*- homemorphism. Then it is norm
decreasing. Hence, ∥π(h)∥ ≤ ∥h∥∞ for all h ∈ Cc(G(0)) and we have

∥π(fi)∥2 = ∥π(fi)π(fi)∗∥ = ∥π(fi ∗ f∗
i )∥ ≤ ∥fi ∗ f∗

i ∥∞. (4.6)

For the last inequality, take h = fi ∗ f∗
i . For x ∈ G(0) it is clear that

fi ∗ f∗
i (x) = fi ∗ f∗

i (r(x)) = fi ∗ f∗
i (xx−1) = fi(x) ∗ f∗

i (x−1) = |fi(x)|2.

Getting back to equation (4.6), we get

∥π(fi)∥2 ≤ ∥fi ∗ f∗
i ∥∞ = ∥fi∥2

∞ =⇒ ∥π(f)∥ ≤ n∥f∥∞ = Kf .

If f is supported on a bisection, then there is just one term in the sum then Kf = ∥f∥∞. 2

Lemma 4.5 Let G be a locally compact Hausdorff étale groupoid. Then any *-representation π of Cc(G)
is continuous in the inductive limit topology and satisfies

∥π(f)∥ ≤ ∥f∥I . (4.7)

Proof: By the previous Proposition, it is clear that π is continuous in the inductive limit topology. To
show that it is I-norm bounded, observe that, for f ∈ Cc(G), holds ∥f∥∞ ≤ ∥f∥I . Since continuity is
equivalent to boundedness for linear maps on normed spaces, we deduce that π is I-norm bounded.
The completion of Cc(G) in the I-norm yields a Banach *-algebra, hence, the extension of π to this
completion is a *-homomorphism from the Banach *-algebra Cc(G)I into (B(H)). Applying spectral
theory, write ρA : A → [0,∞) for the spectral-radius function on a Banach algebra A. For each f ∈ Cc(G),
we have

∥π(f)∥2 = ∥π(f∗f)∥ = ρB(H)(π(f∗f)) ≤ ρ
Cc(G)I (f∗f) ≤ ∥f∗f∥I ≤ ∥f∥2

I .

2
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Example 4.5 Let x ∈ G(0). For each f ∈ Cc(G) we define

πx : Cc(G) −→ B(ℓ2(Gx)), (πx(f)ξ)(γ) =
∑

α∈Gr(γ)

f(α) ξ(α−1γ),

for ξ ∈ ℓ2(Gx) and γ ∈ Gx.

Well-definedness. If α ∈ Gr(γ), then

s(α−1) = r(α) = r(γ),

hence (α−1, γ) ∈ G(2), so that α−1γ is defined. Moreover, since γ ∈ Gx, we have

s(γ) = x =⇒ s(α−1γ) = x,

so the terms of the sum indeed belong to Gx. As, f is compactly supported and Gr(γ) is discrete, the sum
is finite. Therefore (πx(f)ξ)(γ) is well-defined for all γ ∈ Gx.

Boundedness. Assume that f is supported on a bisection. Then for each γ ∈ Gx, the set Gx ∩ supp(f)
contains at most one point, which we denote by ηγ . Thus

(πx(f)ξ)(γ) =
{
f(ηγ) ξ(η−1

γ γ), if ηγ exists,
0, otherwise.

It follows that

∥πx(f)ξ∥2
2 =

∑
γ∈Gx

|(πx(f)ξ)(γ)|2

=
∑

γ∈Gx

∑
α∈Gr(γ)

|f(α) ξ(α−1γ)|2

=
∑

γ∈Gx

|f(ηγ)|2 |ξ(η−1
γ γ)|2

≤∥f∥2
∞

∑
γ∈Gx

|ξ(η−1
γ γ)|2

≤∥f∥2
∞

∑
γ∈Gx

|ξ(γ)|2

≤∥f∥2
∞ ∥ξ∥2

2.

Hence πx(f) is bounded with ∥πx(f)∥ ≤ ∥f∥∞.

Multiplicativity. To show that πx(f)πx(g) = πx(f ∗ g), it suffices to check on the basis {δγ : γ ∈ Gx}
of ℓ2(Gx). For γ0 ∈ Gx, compute

(πx(f)δγ0)(γ) =
∑

α∈Gr(γ)

f(α) δγ0(α−1γ) = f(γγ−1
0 ),

hence

πx(f)δγ0 =
∑

u∈Gx

f(uγ−1
0 ) δu. (4.8)
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Therefore,

πx(f)πx(g)δγ = πx(f)

∑
β∈Gx

g(βγ−1)δβ


=
∑

β∈Gx

g(βγ−1)πx(f)δβ

=
∑

β∈Gx

g(βγ−1)
∑

α∈Gx

f(αβ−1)δα

=
∑

α∈Gx

∑
β∈Gx

f(αβ−1)g(βγ−1)

 δα,

while

πx(f ∗ g)δγ =
∑

α∈Gx

(f ∗ g)(αγ−1)δα

=
∑

α∈Gx

 ∑
δ∈Gr(α)

f(δ)g(δ−1αγ−1)

 δα.

For fixed α ∈ Gx, the two expressions in the brackets are the same. This follows from the fact that the
maps

ϕ : Gs(α) −→ Gr(α) ψ : Gr(α) −→ Gs(α)

β 7−→ αβ−1 δ 7−→ δ−1α

are inverse bijections, since we have

ϕ(ψ(δ)) = ϕ(δ−1α) = α(δ−1α)−1 = αα−1δ = δ.

∗-preserving property. For γ, η ∈ Gx,

⟨πx(f∗)δγ , δη⟩ = ⟨
∑

α∈Gx

f∗(αγ−1)δα, δη⟩

=
∑

α∈Gx

f(γα−1)⟨δα, δη⟩

= f(γη−1)

=
∑

α∈Gx

f(αη−1)⟨δγ , δα⟩

= ⟨δγ ,
∑

α∈Gx

f(αη−1)δα⟩

= ⟨δγ , πx(f)δη⟩,

which shows that πx(f∗) = πx(f)∗. Therefore πx is a ∗-representation of Cc(G) on ℓ2(Gx).

Remark 4.1 Let G be a locally compact Hausdorff étale groupoid. The left regular representation of G
πr is the direct sum of the *-representation (4.8)

πr =
⊕

x∈G(0)

πx
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Definition 4.3 Let G be a locally compact Hausdorff étale groupoid. For every f ∈ Cc(G), define the
full norm of f as

∥f∥ = sup{∥π(f)∥ : π is a *-representation of Cc(G)}.

This defines a C*-norm on Cc(G).

The full C*-algebra C∗(G) of G is the completion of Cc(G) with respect to the norm in definition
(3.3).

∥f∥full = sup
π

∥π(f)∥ (4.9)

The reduced C*-algebra C∗
r (G) is the completion of Cc(G) with respect to the norm

∥f∥r = sup
u∈G(0)

∥πu(f)∥ (4.10)

Remark 4.2 For all f ∈ Cc(G), we have

∥f∥∞ ≤ ∥f∥r ≤ ∥f∥full.

If f is supported on a bisection, then we have equality throughout.
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