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Asymptotics of Solutions to p-Laplacian Equations Involving Convection and Reaction
Terms

Arij BOUZELMATE and Inssaf RAISS*

ABSTRACT: The purpose of this work is to investigate a nonlinear p-Laplacian equation that incorporates
both convection and reaction effects. The model under consideration takes the form

div(|VUP~2VU) + A2V (U] U)+6U =0 in RV,

with parameters N > 1, p > 2, ¢ > 1, A > 0, and # > 0. Our main results concern the existence of global
radial solutions, which are shown to be strictly positive under suitable assumptions. In addition, we examine
the qualitative properties of these solutions and describe their asymptotic profile as |z| — co.
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1. Introduction

Nonlinear partial differential equations (PDEs) involving the p-Laplacian operator arise in various
physical, biological, and geometric contexts, including non-Newtonian fluid mechanics, reaction-diffusion
processes, and mathematical physics [10,18]. Among these, equations incorporating convection and reac-
tion terms play a crucial role in modeling transport phenomena, population dynamics, and combustion
theory [13,17]. This paper investigates the existence and qualitative properties of solutions to the non-
linear equation

div(|VU[P2VU) + \eV(|U|"'U)+ 60U =0 in RY, (1.1)

where N >1, p>2 ¢g>1, A>0and 6 > 0.

The presence of the convection term 2V (|U|?71U) introduces additional mathematical challenges, as it
influences both the existence and the asymptotic behavior of solutions. Several studies have investigated
p-Laplacian equations with reaction and convection terms under various settings. In particular, the term
xV(|U]|971U) can be physically interpreted as representing a radial drift or flow, either outward from or
inward toward a central point, driven by a velocity field that is proportional to both the distance from
the origin and the magnitude of the solution.

For instance, in [11], the authors established existence results and studied the Emden-Fowler equation
with a convection term. In [5], the authors investigated the structure of radial solutions and studied the
asymptotic behavior of positive solutions near infinity. Moreover, Bouzelmate, Gmira, and Reyes in [6]
investigated radial self-similar solutions of the Ornstein-Uhlenbeck equation. For further details, we refer
the reader to [1,2,8,12,16].

When p = 2, Chipot and Weissler [7] analyzed the one-dimensional form of the nonlinear parabolic
equation with a gradient term. Subsequently, Serrin and Zou published two important papers [14,15],
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which focus on the existence of radial ground states and the introduction of novel energy functions. More
recently, Bidaut-Véron and Véron [3] also examined this equation and demonstrated the existence of a
positive solution with a nonnegative measure p as boundary data. For more details, see [4,9,19,20].
Our primary aim is to establish the existence of entire radial solutions and to determine conditions
under which these solutions remain strictly positive. Using appropriate functional and analytical tech-
niques, we also investigate the qualitative properties of solutions, including their asymptotic decay at
infinity. Our approach combines methods from nonlinear analysis, such as fixed-point theorems, and
energy estimates, to derive meaningful insights into the solution structure. More specific, we study the
following Cauchy problem:
Problem (P): Find a function u defined on [0, +-00[ such that |u/|P~2u’ € C([0, +00]) and that satisfies

o N—-1 ., -
{ ([ P20) + —— /[P + Ar(Jul " ) + u =0, >0, (1.2)

uw(0) = A, v (0) =0,

where N > 1, p>2, ¢g>1, A>0and 6 > 0.

The paper is structured as follows. In Section 2, we establish the existence of entire radial solutions
u to problem (P). Section 3 is devoted to studying qualitative properties of these solutions. Finally,
Section 4 deals with their asymptotic behavior at infinity.

2. Existence of Entire Solutions

We establish in this section the existence of global solutions u to problem (P) by applying the Banach
Fixed Point Theorem.

Theorem 2.1 Problem (P) admits a unique global solution u. Furthermore, it satisfies

(W2 (0) =~ <. (21)

Proof:
1) Existence and uniqueness of a local solution.
Multiply equation (1.2) with 7V =1 we derive

!/
(TN_l ' P2+ )\rN|u|q_1U) =¥ u(=0 + AN u|"). (22)

By integrating equation (2.2) twice from 0 to r , we get

where

and F is the following function
Flu](s) = As|u|? u(s) + Sl_N/ o1 (Bu(o) — ANl u(o)) do. (2.5)
0
We consider the corresponding complete metric space

Va,s,r = {v € C([0, R]) such that |jv — Aljo < d}.

Moreover, we introduce the operator ¥ on V4 s r as follows

Uvl(r)=A— /OT G(Fv](s))ds. (2.6)
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i) ¥ maps V4 s g into itself for some small § and R > 0.

It is obvious that ¥[v] € C([0, R]). Given that ||v — A|lg < J, we conclude that v € [A — 3§, A+ 0]. It
is easy to show that F'[v] has a constant sign in [0, R] for every v € V4 5 r. Moreover, there exists m > 0
such that

F[v](s) > ms for all s € [0, R, (2.7)
A
h = —.
w ereén N
Since ir) is decreasing on (0, +00), then

el - a1 < [ CEEEN Fpias < [0 E s

for r € [0, R]. Hence
[Flv](s)] < Cs,

where C' = %(A +6) +2X(A+96)?. Then

— 1 P 2—p
T[] (r) — A] < pTCrﬁmF.
Select R sufficiently small so that
|Ulv](r) — Al <6, v €& Vagsr.
Consequently, ¥[v] € V4 s g, which confirming 1).

ii) ¥ is a contraction in some interval [0, R].
For any v,w € V4 s r, we have

[W[v](r) — Plw](r)] < /OT |G(Fv](s)) — G(F[w](s))|ds, (2.8)
where F[v] is defined by (2.5). Next, we introduce the function
®(s) = min(F[v](s), F[w](s))-

Using estimate (2.7), for 0 < s <r < R, we derive

D(s) > ms
It follows that
Grpl(e) - ol < CEEPLE) - Flule) < Sl - el (29)
Having in mind that
IF](s) — Flu)(s)| < C'l|o — wos, (2.10)
where C' = % +gA(A+6)77! and using (2.7) — (2.10), we find
W](s) — Dlu)(s)] < 2ot O T mEE o — wll. (2.11)

When R is chosen small enough, ¥ becomes a contraction. According to the Banach Fixed Point Theorem,
there is a unique fixed point of ¥ in V4 5 g, which constitutes a solution to equation (2.3) and thus to
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problem (P). Consequently, u € C'((0,R]). Now, we will show that u € C! in r = 0. By integrate
equation (2.2) on (0,7), we get
np=2_ r
[ " u'(r) = Au|?tu + r_N/ sNTH(—Bu(s) + AN|u|? tu(s))ds. (2.12)
r 0

Using L’Hopital’s rule, we derive

np=2
1p—2,/\/ _ ‘u‘ u(r):_ﬁ
([u'[7~%)'(0) = lim . N

Using (1.2), we find

_ Al
. 1P=2 y\s _
Jim (Ju' | ") (r) = — -

We conclude that problem (1.2) admits a unique solution u on an interval [0, Ryqz[, with 0 < Rypa. < 400.

2) Existence of global solution.
Consider

p—1

0
H(r) = lu'|” + §|u|2 (2.13)

By (1.2), we get
N -1
r

H'(r) = —ru’ ( |u/[P~2 + )\q|uq_1> ) (2.14)

Since H is positive and decreasing, it follows that H is bounded. Consequently, both u and v’ are also
bounded for all » > 0, which allows that necessarily R, = +0c0 and the solution u will be extended to
the whole RT.

O

3. Structure of Radial Solutions

We analyze in this section the structure of the radial solutions. More specifically, we establish that the
solution remains strictly positive under certain conditions, we also determine when the solution changes
sign. This characterization is obtained through a scaling transformation.

Lemma 3.1 Let u be a solution of (P) and define S, := {r > 0,u(r) > 0}. Then, for every r € S, one
has u'(r) < 0.

Proof: We proceed by contradiction. Suppose rg > 0 is the first zero of u'. From (2.1), we know that
w'(r) < 0 for small r. Since u’ is continuous, there exists an interval Jrg — &, 7¢[ for some & > 0 where
' is strictly increasing and negative. This implies that (|u/|’"*«/)/(r) > 0 in this region, leading to
(Ju/|P~2u') (ro) > 0. Yet, from (1.2), we derive (Ju/|P">w')’ (ro) = —6u(ro) < 0, which contradicts the
previous inequality. Hence, the proof is complete. O

Proposition 3.1 Let u > 0 be a solution to (P). Then, for any r > 0, it holds that
P 1
p P2
0 < |u'(r)| < () Avr. 3.1
Moreover,

A (2(”9> " ARr < u(r) < A. (3.2)
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Proof: We have u > 0 and v’ < 0 on (0, +00), applying (2.13) and (2.14) yields H' < 0 for all » > 0.
0 -1 0
As a result, we obtain H(r) < H(0) = §A2. This implies that 0 < pT /|7 < 5142- Thus, (3.1) holds.

0 P
Furthermore, from (3.1), we derive u'(r) > — (2(1)1)) A¥. By integrating from 0 to 7, we derive
D
o )P 2
A—|—7——=) Arr<u<u(0)=A. O
(s )

Theorem 3.1 There exists a constant A, > 0 such that, for every A > A,, the solution u > 0 of (P) is
strictly positive.

Proof:
We define the transformation

gtl—p

u(r) =AY (n), where n=A"7»

Therefore, Y satisfies the problem

_ N -1 _ _
(IY'P2y"Y + — Y'P2Y + g |Y|T Y + AY99Y =0, forn >0, (33
Y(0)=1, Y’'(0)=0.
In view of (3.1) and (3.2), we derive
2] 1/p 1
Yol ad s (50) AT (3.4
- “\2(p-1)
Hence, since g > 1, then for large A, problem (3.3) is a perturbation of the following problem
1P—2 1\ N-1 1P—2 1 q—1 1
(17| Z)+T|Z| Z'+qm|Z|" Z"'=0, forn>0, (3.5)

Z0)=1, Z'(0)=0.
We claim that Z of (3.5) is strictly positive. Assume, for contradiction, that 7o is the first zero of Z,
implying Z'(n9) < 0. Multiplying (3.5) by ¥ ~! and integrating over (0, 79), we obtain
7o
=12 P 2 (no) :AN/ sN174(s)ds. (3.6)
0

This results in a contradiction, proving that Z must be strictly positive. Consequently, Y is also strictly
positive, leading to the conclusion that u is strictly positive as well.
O

Theorem 3.2 There exists Ag > 0 such that for all A € (0, Ag), the solution u of (P) changes the sign.

Proof:
We introduce the following transformation

u(r) =AY (n), where 7= AT

Then, Y satisfies the problem

- N -1 - -
(V'P2YY 4 S = P AT A YT Y 4 0Y =0, fory >0,

Y(0)=1, Y'(0)=0.
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Thanks to (3.1) and (3.2), we derive

1/p
Y <1 and |Y'<n>|s(2(ppfl)> | (3)

Hence, when A is taken sufficiently small, problem (3.7) can be regarded as a perturbation of the following
problem

_ N—1, .
2927y + ——|Z'"* 72 +60Z=0, forn>0,
(2P 2y + =17 59
Z(0)=1, Z'(0)=0.
Equation (3.9) can be reformulated in the following way
!
(112172 2) = o 2 (). (3.10)
Integrating this last equality over (0,7), we have
n
N 7P 7 = —0/ sN=1Z(s)ds. (3.11)
0

If Z is strictly positive, then Z’ < 0, which implies that
_ —2 0
N2 < =g Z ().

This gives

by integrating over (0,7), we get

1
p=2 p—2 0\
z5m<1-2—= (2 =3
() < ) <N) n

Letting 7 — +o00 leads to a contradiction. Let 1y be the first zero of Z. Then, from (3.11), we have
o
W22 ) =6 [ 2
0

Since # > 0 and Z > 0 on (0,19), we get Z'(ng) < 0. Thus, Z changes sign, and consequently, u does as
well.

O
4. Asymptotic Behavior Near Infinity
Our focus here is on describing how the positive solution of (P) behaves as r becomes large.
Theorem 4.1 Suppose u is a solution to (P). If N >1 or N =1 and u > 0, then
lim w(r)= lim «/(r)=0. (4.1)

r——4o0 r——4o0

Proof:
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1) N > 1. We have H > 0 and H' <0 for all » > 0, it follows the existence of a constant L > 0
such that lim H(r) = L. If L > 0, we can find some r; > 0 such that

r——4o00
L
H(r)> 3 for r>ry. (4.2)
Consider the function
N -1 AMN -1 T
B) = 1) + o B [l e s (49)
Then N N
-1
B'(r) = 5 [u' [P+ — |/ [P % u + 9u2] . (4.4)
r r

Due to the boundedness of H, u and u’ are bounded, so we get

l\p—2,,/
TIC CA
r—+00 r

According to (2.13) and (4.2), we get for r > r; that
-1 0

< H(r)= L\u’\p + ~u? < [W/|P 4 0u?.
p 2

As a result, there are two constants ¢ > 0 and 79 > r1 such that

B’(r)g—f for > 7.
r

It follows that

B(r) < B(ry) —cln <r) for r > 1o,
T2
which implies that hgl B(r) = —co0. Having in mind that
T—>+00
N -1
H(r) + ——|u/|P7%u'u < B(r),
2r
then, lirf H(r) = —oo, which is impossible. Therefore, the conclusion follows.
r——+00
2) N=1and u > 0. Let
Y(r) = [ [P72u 4 Mr|ul? . (4.5)
From (1.2), we get
¥ (r) = u(Nul'™" —0). (4.6)

Since u(r) > 0, the function is strictly decreasing, which implies 1irl1 u(r) € [0,4o00[. Assume
T—>+00
that hIJP u(r) = £ > 0. Because the energy function H defined in (2.13) has a finite limit, we
r—400
then have lim u/(r) = 0. Hence, lim (r) = +oco. Applying L’Hopital’s rule, we derive
r—+00 r—+00

: L Y(r)
/ —
rl}r-&{loow (T) - rllr-ipoo r ’

Therefore
é(/\ﬁq_l —0) =\,

Hence, —0¢ = 0, which contradicts the assumption that £ > 0. As a result, lim wu(r)=0.

li
r—400
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a

To establish additional results, we first reformulate equation (1.2) in an equivalent form. For any
¢ > 0, we introduce the function h.(r) by

he(r) = cu(r) +ru'(r), 7 >0. (4.7

This leads to the relation
(reu(r)) = r*the(r), r>0. (4.8)

Consequently, applying (1.2), we obtain an alternative formulation valid for all » > 0 where u/(r) # 0.

(p— D' (r)P~2RL(r) = ru(r) [—9 — ghrfu)? B + (p— 1) (c - JZ - f ) '“";;2“/} . (4.9)

In view of (4.7) and (4.9), when h.(r¢) = 0 for some ¢ > 0, we have

0= DIl 0r0) = rou(ro) |0+ ade ura)™ 4 o= 1) (SE ) ]
(4.10)

Proposition 4.1 Let u > 0 be a solution of (P). Then the function r°u is strictly monotone for large r.

Proof: Let rg be a sufficiently large point where h.(rg) = 0. Given that p > 2, lim w(r) = 0 and by

r—-+00
using equation (4.10), we derive

(p = D' (r0) [P~ he(r0) 2 =Orou(ro). (4.11)

This implies that h.(rg) < 0. Thus h.(r) does not vanish for large r, which gives that r°u(r) is strictly
monotone for large r. O

Theorem 4.2 Letu > 0 be a solution of (P). Then h.(r) < 0 for sufficiently large r, and lim r°u(r) =

r——4o00
0.

Proof: From Proposition 4.1, we know that for ¢ > 0, the function h.(r) does not vanish for sufficiently
large r. Assume that h.(r) > 0 when r is large. Then, by using (4.7) together with the fact that u'(r) < 0,
we deduce

cu(r)

|u'(r)| < ——= for large r. (4.12)
r
From (1.2), we derive

u(r)P—2

rp

(W |P~2) (r) < u | =0 + @hu(r)~! + P H(N — 1) (4.13)

Since 6 > 0, u(r) > 0 and EI-P u(r) = 0, then (|u/|P~2u/)'(r) < 0 for large r. Given that u/(r) < 0,

we deduce Erf u'(r) € [~00,0[, which leads to a contradiction. Hence, h.(r) < 0 for large 7. By
s o0

(4.8), this implies EE—H ru(r) € [0,4o0[. If ET ru(r) = ¢ > 0, then for small enough £ > 0, one

has lim r“" u(r) = 400, which contradicts the fact that h.i.(r) < 0 for large r. We therefore get

r——400

lim ru(r) =0. O
r—+00
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5. Conclusion

By applying the Banach Fixed Point Theorem, we proved the existence and uniqueness of a global

solution. Furthermore, by using a change of scale, we proved the existence of two types of solutions: a
strictly positive solutions and a sign-changing solutions under specific conditions, and we derived several
qualitative properties of the solution u. We also investigated the asymptotic behavior of the positive
solution to problem (P) at infinity, and showed that for sufficiently large r, TEIJPOO r°u(r) =0, Ve > 0.

These results naturally give rise to an open question: what is the exact asymptotic equivalent of the

solution near infinity? This problem is still unresolved and will be addressed in future research.
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