
Bol. Soc. Paran. Mat. (3s.) v. 2026 (44) 3 : 1–10.
©SPM – E-ISSN-2175-1188 ISSN-0037-8712
SPM: www.spm.uem.br/bspm doi:10.5269/bspm.79136

Asymptotics of Solutions to p-Laplacian Equations Involving Convection and Reaction
Terms

Arij BOUZELMATE and Inssaf RAISS∗

abstract: The purpose of this work is to investigate a nonlinear p-Laplacian equation that incorporates
both convection and reaction effects. The model under consideration takes the form

div(|∇U |p−2∇U) + λx∇(|U |q−1U) + θU = 0 in RN ,

with parameters N ≥ 1, p > 2, q > 1, λ > 0, and θ > 0. Our main results concern the existence of global
radial solutions, which are shown to be strictly positive under suitable assumptions. In addition, we examine
the qualitative properties of these solutions and describe their asymptotic profile as |x| → ∞.
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1. Introduction

Nonlinear partial differential equations (PDEs) involving the p-Laplacian operator arise in various
physical, biological, and geometric contexts, including non-Newtonian fluid mechanics, reaction-diffusion
processes, and mathematical physics [10,18]. Among these, equations incorporating convection and reac-
tion terms play a crucial role in modeling transport phenomena, population dynamics, and combustion
theory [13,17]. This paper investigates the existence and qualitative properties of solutions to the non-
linear equation

div(|∇U |p−2∇U) + λx∇(|U |q−1U) + θU = 0 in RN , (1.1)

where N ≥ 1, p > 2, q > 1, λ > 0 and θ > 0.
The presence of the convection term x∇(|U |q−1U) introduces additional mathematical challenges, as it

influences both the existence and the asymptotic behavior of solutions. Several studies have investigated
p-Laplacian equations with reaction and convection terms under various settings. In particular, the term
x∇(|U |q−1U) can be physically interpreted as representing a radial drift or flow, either outward from or
inward toward a central point, driven by a velocity field that is proportional to both the distance from
the origin and the magnitude of the solution.

For instance, in [11], the authors established existence results and studied the Emden-Fowler equation
with a convection term. In [5], the authors investigated the structure of radial solutions and studied the
asymptotic behavior of positive solutions near infinity. Moreover, Bouzelmate, Gmira, and Reyes in [6]
investigated radial self-similar solutions of the Ornstein-Uhlenbeck equation. For further details, we refer
the reader to [1,2,8,12,16].

When p = 2, Chipot and Weissler [7] analyzed the one-dimensional form of the nonlinear parabolic
equation with a gradient term. Subsequently, Serrin and Zou published two important papers [14,15],
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which focus on the existence of radial ground states and the introduction of novel energy functions. More
recently, Bidaut-Véron and Véron [3] also examined this equation and demonstrated the existence of a
positive solution with a nonnegative measure µ as boundary data. For more details, see [4,9,19,20].

Our primary aim is to establish the existence of entire radial solutions and to determine conditions
under which these solutions remain strictly positive. Using appropriate functional and analytical tech-
niques, we also investigate the qualitative properties of solutions, including their asymptotic decay at
infinity. Our approach combines methods from nonlinear analysis, such as fixed-point theorems, and
energy estimates, to derive meaningful insights into the solution structure. More specific, we study the
following Cauchy problem:
Problem (P ): Find a function u defined on [0,+∞[ such that |u′|p−2u′ ∈ C1([0,+∞[) and that satisfies{ (

|u′|p−2u′
)′
+
N − 1

r
|u′|p−2u′ + λr(|u|q−1u)′ + θu = 0, r > 0,

u(0) = A, u′(0) = 0,
(1.2)

where N ≥ 1, p > 2, q > 1, λ > 0 and θ > 0.
The paper is structured as follows. In Section 2, we establish the existence of entire radial solutions

u to problem (P ). Section 3 is devoted to studying qualitative properties of these solutions. Finally,
Section 4 deals with their asymptotic behavior at infinity.

2. Existence of Entire Solutions

We establish in this section the existence of global solutions u to problem (P ) by applying the Banach
Fixed Point Theorem.

Theorem 2.1 Problem (P ) admits a unique global solution u. Furthermore, it satisfies

(|u′|p−2
u′)′(0) = −Aθ

N
< 0. (2.1)

Proof:
1) Existence and uniqueness of a local solution.
Multiply equation (1.2) with rN−1, we derive(

rN−1 |u′|p−2
u′ + λrN |u|q−1u

)′
= rN−1u(−θ + λN |u|q−1). (2.2)

By integrating equation (2.2) twice from 0 to r , we get

u(r) = A−
∫ r

0

G(F [u](s))ds, (2.3)

where
G(s) = |s|

2−p
p−1 s, s ∈ R, (2.4)

and F is the following function

F [u](s) = λs|u|q−1u(s) + s1−N

∫ s

0

σN−1
(
θu(σ)− λN |u|q−1u(σ)

)
dσ. (2.5)

We consider the corresponding complete metric space

VA,δ,R = {v ∈ C([0, R]) such that ∥v −A∥0 ⩽ δ} .

Moreover, we introduce the operator Ψ on VA,δ,R as follows

Ψ[v](r) = A−
∫ r

0

G(F [v](s))ds. (2.6)
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i) Ψ maps VA,δ,R into itself for some small δ and R > 0.
It is obvious that Ψ[v] ∈ C([0, R]). Given that ∥v − A∥0 ≤ δ, we conclude that v ∈ [A− δ, A+ δ]. It

is easy to show that F [v] has a constant sign in [0, R] for every v ∈ VA,δ,R. Moreover, there exists m > 0
such that

F [v](s) ≥ ms for all s ∈ [0, R], (2.7)

where m =
A

N
.

Since
G(r)

r
is decreasing on (0,+∞), then

|Ψ[v](r)−A| ≤
∫ r

0

G(F [v](s))

F [v](s)
|F [v](s)|ds ≤

∫ r

0

G(ms)

ms
|F [v](s)|ds,

for r ∈ [0, R]. Hence

|F [v](s)| ≤ Cs,

where C =
θ

N
(A+ δ) + 2λ(A+ δ)q. Then

|Ψ[v](r)−A| ≤ p− 1

p
Cr

p
p−1m

2−p
p−1 .

Select R sufficiently small so that

|Ψ[v](r)−A| ≤ δ, v ∈ VA,δ,R.

Consequently, Ψ[v] ∈ VA,δ,R, which confirming i).
ii) Ψ is a contraction in some interval [0, R].

For any v, w ∈ VA,δ,R, we have

|Ψ[v](r)−Ψ[w](r)| ≤
∫ r

0

|G(F [v](s))−G(F [w](s))|ds, (2.8)

where F [v] is defined by (2.5). Next, we introduce the function

Φ(s) = min(F [v](s), F [w](s)).

Using estimate (2.7), for 0 ≤ s ≤ r < R, we derive

Φ(s) ≥ ms.

It follows that

|G(F [v](s))−G(F [w](s))| ≤ G(Φ(s))

Φ(s)
|F [v](s)− F [w](s)| ≤ G(ms)

ms
|F [v](s)− F [w](s)|. (2.9)

Having in mind that

|F [v](s)− F [w](s)| ≤ C ′∥v − w∥0s, (2.10)

where C ′ =
θ

N
+ qλ(A+ δ)q−1, and using (2.7)− (2.10), we find

|Ψ[v](s)−Ψ[w](s)| ≤ p− 1

p
C ′r

p
p−1m

2−p
p−1 ∥v − w∥0. (2.11)

When R is chosen small enough, Ψ becomes a contraction. According to the Banach Fixed Point Theorem,
there is a unique fixed point of Ψ in VA,δ,R, which constitutes a solution to equation (2.3) and thus to
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problem (P ). Consequently, u ∈ C1((0, R]). Now, we will show that u ∈ C1 in r = 0. By integrate
equation (2.2) on (0, r), we get

|u′|p−2
u′(r)

r
= −λ|u|q−1u+ r−N

∫ r

0

sN−1(−θu(s) + λN |u|q−1u(s))ds. (2.12)

Using L’Hopital’s rule, we derive

(|u′|p−2u′)′(0) = lim
r→0

|u′|p−2
u′(r)

r
= −Aθ

N
.

Using (1.2), we find

lim
r→0

(|u′|p−2
u′)′(r) = −Aθ

N
.

We conclude that problem (1.2) admits a unique solution u on an interval [0, Rmax[, with 0 < Rmax ≤ +∞.

2) Existence of global solution.
Consider

H(r) =
p− 1

p
|u′|p + θ

2
|u|2. (2.13)

By (1.2), we get

H ′(r) = −ru′2
(
N − 1

r
|u′|p−2 + λq|u|q−1

)
. (2.14)

Since H is positive and decreasing, it follows that H is bounded. Consequently, both u and u′ are also
bounded for all r ≥ 0, which allows that necessarily Rmax = +∞ and the solution u will be extended to
the whole R+.

2

3. Structure of Radial Solutions

We analyze in this section the structure of the radial solutions. More specifically, we establish that the
solution remains strictly positive under certain conditions, we also determine when the solution changes
sign. This characterization is obtained through a scaling transformation.

Lemma 3.1 Let u be a solution of (P ) and define Su := {r > 0, u(r) > 0}. Then, for every r ∈ Su, one
has u′(r) < 0.

Proof: We proceed by contradiction. Suppose r0 > 0 is the first zero of u′. From (2.1), we know that
u′(r) < 0 for small r. Since u′ is continuous, there exists an interval ]r0 − ε, r0[ for some ε > 0 where

u′ is strictly increasing and negative. This implies that (|u′|p−2
u′)′(r) > 0 in this region, leading to

(|u′|p−2u′)′ (r0) ≥ 0. Yet, from (1.2), we derive (|u′|p−2
u′)′ (r0) = −θu(r0) < 0, which contradicts the

previous inequality. Hence, the proof is complete. 2

Proposition 3.1 Let u > 0 be a solution to (P ). Then, for any r > 0, it holds that

0 < |u′(r)| <
(

pθ

2(p− 1)

) 1
p

A
2
p . (3.1)

Moreover,

A−
(

pθ

2(p− 1)

) 1
p

A
2
p r < u(r) < A. (3.2)
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Proof: We have u > 0 and u′ < 0 on (0,+∞), applying (2.13) and (2.14) yields H ′ < 0 for all r ≥ 0.

As a result, we obtain H(r) < H(0) =
θ

2
A2. This implies that 0 ≤ p− 1

p
|u′|p ≤ θ

2
A2. Thus, (3.1) holds.

Furthermore, from (3.1), we derive u′(r) > −
(

pθ

2(p− 1)

) 1
p

A
2
p . By integrating from 0 to r, we derive

A−
(

pθ

2(p− 1)

) 1
p

A
2
p r < u < u(0) = A. 2

Theorem 3.1 There exists a constant A∗ > 0 such that, for every A > A∗, the solution u > 0 of (P ) is
strictly positive.

Proof:
We define the transformation

u(r) = AY (η), where η = A
q+1−p

p r.

Therefore, Y satisfies the problem(|Y ′|p−2
Y ′)′ +

N − 1

η
|Y ′|p−2

Y ′ + qλη |Y |q−1
Y ′ +A1−qθY = 0, for η > 0,

Y (0) = 1, Y ′(0) = 0.
(3.3)

In view of (3.1) and (3.2), we derive

|Y (η)| ≤ 1 and |Y ′(η)| ≤
(

pθ

2(p− 1)

)1/p

A
1−q
p . (3.4)

Hence, since q > 1, then for large A, problem (3.3) is a perturbation of the following problem(|Z ′|p−2
Z ′)′ +

N − 1

η
|Z ′|p−2

Z ′ + qλη |Z|q−1
Z ′ = 0, for η > 0,

Z(0) = 1, Z ′(0) = 0.
(3.5)

We claim that Z of (3.5) is strictly positive. Assume, for contradiction, that η0 is the first zero of Z,
implying Z ′(η0) ≤ 0. Multiplying (3.5) by ηN−1 and integrating over (0, η0), we obtain

ηN−1
0 |Z ′|p−2

Z ′(η0) = λN

∫ η0

0

sN−1Zq(s)ds. (3.6)

This results in a contradiction, proving that Z must be strictly positive. Consequently, Y is also strictly
positive, leading to the conclusion that u is strictly positive as well.

2

Theorem 3.2 There exists A0 > 0 such that for all A ∈ (0, A0), the solution u of (P ) changes the sign.

Proof:
We introduce the following transformation

u(r) = AY (η), where η = A
2−p
p r.

Then, Y satisfies the problem(|Y ′|p−2
Y ′)′ +

N − 1

η
|Y ′|p−2

Y ′ + qAq−1λη |Y |q−1
Y ′ + θY = 0, for η > 0,

Y (0) = 1, Y ′(0) = 0.
(3.7)
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Thanks to (3.1) and (3.2), we derive

|Y (η)| ≤ 1 and |Y ′(η)| ≤
(

pθ

2(p− 1)

)1/p

. (3.8)

Hence, when A is taken sufficiently small, problem (3.7) can be regarded as a perturbation of the following
problem (|Z ′|p−2

Z ′)′ +
N − 1

η
|Z ′|p−2

Z ′ + θZ = 0, for η > 0,

Z(0) = 1, Z ′(0) = 0.
(3.9)

Equation (3.9) can be reformulated in the following way(
ηN−1 |Z ′|p−2

Z ′
)′

= −θηN−1Z(η). (3.10)

Integrating this last equality over (0, η), we have

ηN−1 |Z ′|p−2
Z ′ = −θ

∫ η

0

sN−1Z(s)ds. (3.11)

If Z is strictly positive, then Z ′ < 0, which implies that

ηN−1 |Z ′|p−2
Z ′ < − θ

N
ηNZ(η).

This gives (
Z

p−2
p−1

)′
≤ −p− 2

p

(
θ

N

) 1
p−1 (

η
p

p−1

)′
.

by integrating over (0, η), we get

Z
p−2
p−1 (η) ≤ 1− p− 2

p

(
θ

N

) 1
p−1

η
p

p−1 .

Letting η → +∞ leads to a contradiction. Let η0 be the first zero of Z. Then, from (3.11), we have

ηN−1
0 |Z ′|p−2Z ′(η0) = −θ

∫ η0

0

sN−1Z(s)ds.

Since θ > 0 and Z > 0 on (0, η0), we get Z ′(η0) < 0. Thus, Z changes sign, and consequently, u does as
well.

2

4. Asymptotic Behavior Near Infinity

Our focus here is on describing how the positive solution of (P ) behaves as r becomes large.

Theorem 4.1 Suppose u is a solution to (P ). If N > 1 or N = 1 and u > 0, then

lim
r→+∞

u(r) = lim
r→+∞

u′(r) = 0. (4.1)

Proof:
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• 1) N > 1. We have H ≥ 0 and H ′ ≤ 0 for all r > 0, it follows the existence of a constant L ≥ 0
such that lim

r→+∞
H(r) = L. If L > 0, we can find some r1 > 0 such that

H(r) ≥ L

2
for r ≥ r1. (4.2)

Consider the function

B(r) = H(r) +
N − 1

2r
|u′|p−2u′u+

qλ(N − 1)

2(q + 1)
|u|q+1 + qλ

∫ r

0

s|u(s)|q−1u′(s)2 ds. (4.3)

Then

B′(r) = −N − 1

2r

[
|u′|p + N

r
|u′|p−2u′u+ θu2

]
. (4.4)

Due to the boundedness of H, u and u′ are bounded, so we get

lim
r→+∞

|u′|p−2u′u

r
= 0.

According to (2.13) and (4.2), we get for r ≥ r1 that

L

2
≤ H(r) =

p− 1

p
|u′|p + θ

2
u2 ≤ |u′|p + θu2.

As a result, there are two constants c > 0 and r2 ≥ r1 such that

B′(r) ≤ − c
r

for r ≥ r2.

It follows that

B(r) ≤ B(r2)− c ln

(
r

r2

)
for r ≥ r2,

which implies that lim
r→+∞

B(r) = −∞. Having in mind that

H(r) +
N − 1

2r
|u′|p−2u′u ≤ B(r),

then, lim
r→+∞

H(r) = −∞, which is impossible. Therefore, the conclusion follows.

• 2) N = 1 and u > 0. Let
ψ(r) = |u′|p−2u′ + λr|u|q−1u. (4.5)

From (1.2), we get
ψ′(r) = u(λ|u|q−1 − θ). (4.6)

Since u(r) > 0, the function is strictly decreasing, which implies lim
r→+∞

u(r) ∈ [0,+∞[. Assume

that lim
r→+∞

u(r) = ℓ > 0. Because the energy function H defined in (2.13) has a finite limit, we

then have lim
r→+∞

u′(r) = 0. Hence, lim
r→+∞

ψ(r) = +∞. Applying L’Hopital’s rule, we derive

lim
r→+∞

ψ′(r) = lim
r→+∞

ψ(r)

r
.

Therefore
ℓ(λℓq−1 − θ) = λℓq.

Hence, −θℓ = 0, which contradicts the assumption that ℓ > 0. As a result, lim
r→+∞

u(r) = 0.
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2

To establish additional results, we first reformulate equation (1.2) in an equivalent form. For any
c > 0, we introduce the function hc(r) by

hc(r) = cu(r) + ru′(r), r > 0. (4.7)

This leads to the relation

(rcu(r))′ = rc−1hc(r), r > 0. (4.8)

Consequently, applying (1.2), we obtain an alternative formulation valid for all r > 0 where u′(r) ̸= 0.

(p− 1)|u′(r)|p−2h′c(r) = ru(r)

[
−θ − qλr|u|q−3uu′ + (p− 1)

(
c− N − p

p− 1

)
|u′|p−2u′

ru

]
. (4.9)

In view of (4.7) and (4.9), when hc(r0) = 0 for some r0 > 0, we have

(p− 1)|u′(r0)|p−2h′c(r0) = r0u(r0)

[
−θ + qλc u(r0)

q−1 + cp−1(p− 1)

(
N − p

p− 1
− c

)
1

rp0u(r0)
2−p

]
.

(4.10)

Proposition 4.1 Let u > 0 be a solution of (P ). Then the function rcu is strictly monotone for large r.

Proof: Let r0 be a sufficiently large point where hc(r0) = 0. Given that p > 2, lim
r→+∞

u(r) = 0 and by

using equation (4.10), we derive

(p− 1)|u′(r0)|p−2h′c(r0) ∼
+∞

−θr0u(r0). (4.11)

This implies that h′c(r0) < 0. Thus hc(r) does not vanish for large r, which gives that rcu(r) is strictly
monotone for large r. 2

Theorem 4.2 Let u > 0 be a solution of (P ). Then hc(r) < 0 for sufficiently large r, and lim
r→+∞

rcu(r) =

0.

Proof: From Proposition 4.1, we know that for c > 0, the function hc(r) does not vanish for sufficiently
large r. Assume that hc(r) > 0 when r is large. Then, by using (4.7) together with the fact that u′(r) < 0,
we deduce

|u′(r)| < cu(r)

r
for large r. (4.12)

From (1.2), we derive

(|u′|p−2u′)′(r) < u

[
−θ + qλu(r)q−1 + cp−1(N − 1)

u(r)p−2

rp

]
. (4.13)

Since θ > 0, u(r) > 0 and lim
r→+∞

u(r) = 0, then (|u′|p−2u′)′(r) < 0 for large r. Given that u′(r) < 0,

we deduce lim
r→+∞

u′(r) ∈ [−∞, 0[, which leads to a contradiction. Hence, hc(r) < 0 for large r. By

(4.8), this implies lim
r→+∞

rcu(r) ∈ [0,+∞[. If lim
r→+∞

rcu(r) = ℓ > 0, then for small enough ε > 0, one

has lim
r→+∞

rc+εu(r) = +∞, which contradicts the fact that hc+ε(r) < 0 for large r. We therefore get

lim
r→+∞

rcu(r) = 0. 2
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5. Conclusion

By applying the Banach Fixed Point Theorem, we proved the existence and uniqueness of a global
solution. Furthermore, by using a change of scale, we proved the existence of two types of solutions: a
strictly positive solutions and a sign-changing solutions under specific conditions, and we derived several
qualitative properties of the solution u. We also investigated the asymptotic behavior of the positive
solution to problem (P ) at infinity, and showed that for sufficiently large r, lim

r→+∞
rcu(r) = 0, ∀c > 0.

These results naturally give rise to an open question: what is the exact asymptotic equivalent of the
solution near infinity? This problem is still unresolved and will be addressed in future research.
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