

On Generalized Weakly (Ricci) ϕ -Symmetric $(LCS)_n$ Manifold

Partha Roy Chowdhury, Kanak Kanti Baishya and Ajoy Mukharjee

ABSTRACT: The present paper introduce the notions of generalized weakly ϕ -symmetric and generalized weakly Ricci ϕ -symmetric $(LCS)_n$ manifold. We further investigate some applications of generalized weakly ϕ -symmetric $(CS)_4$ -space time.

Keywords: Generalized weakly ϕ -symmetric, generalized weakly Ricci ϕ -symmetric, η -Einstein, Lorentzian Para Sasakian manifold.

Contents

1	Introduction	1
2	Some Known results on $(LCS)_n$-manifold	2
3	Generalized weakly ϕ-symmetric $(LCS)_n$ manifold	3
4	Generalized weakly Ricci ϕ-symmetric $(LCS)_n$ manifolds	4
5	Generalized weakly (Ricci) ϕ-symmetric $(CS)_4$-spacetime	5

1. Introduction

In our manuscript, we shall mark the Levi-Civita connection, curvature tensor, Ricci tensor and Ricci operator by the symbols ∇ , R (or \bar{R}), S and Q respectively. As a weaker class of local symmetry [17], Takahashi [37] began the investigation on locally ϕ -symmetric manifold. Further exploration to weaken such notion has been carried out by many authors. For details, we refer to [4], [12], [19], [20], [23], [24], [25], [34], [35], [36] and the references therein.

A semi-Riemannian (or Riemannian) manifold of dimension n is said to be a generalized weakly ϕ -symmetric if it fit the equation

$$\begin{aligned}
 & \phi^2(\nabla_X R)(Y, U, V, Z) \\
 &= A_1(X)R(Y, U, V, Z) + B_1(Y)R(X, U, V, Z) + B_1(U)R(Y, X, V, Z) \\
 & \quad + D_1(V)R(Y, U, X, Z) + D_1(Z)R(Y, U, V, X) + A_2(X)G(Y, U, V, Z) \\
 & \quad + B_2(Y)G(X, U, V, Z) + B_2(U)G(Y, X, V, Z) + D_2(V)G(Y, U, X, Z) \\
 & \quad + D_2(Z)G(Y, U, V, X)
 \end{aligned} \tag{1.1}$$

where

$$G(Y, U, V, W) = g(U, V)g(Y, W) - g(Y, V)g(U, W) \tag{1.2}$$

(ϕ being a $(1, 1)$ tensor) for any vector fields X, Y, U and the 1-forms $A_i = g(, X_{A_i})$, $B_i = g(, X_{B_i})$ and $D_i = g(, X_{D_i})$ for $i = 1, 2$.

The charm of generalized ϕ -weakly symmetric space is that it has the spice of

- (i) locally ϕ -symmetric space [37] (for $X_{A_i} = X_{B_i} = X_{D_i} = 0$) $i = 1, 2$,
- (ii) locally ϕ -recurrent space [20] (for $X_{A_1} \neq 0, X_{A_2} = X_{B_i} = X_{D_i} = 0$) $i = 1, 2$,
- (iii) generalized ϕ -recurrent space in the sense of [21] (for $X_{A_i} \neq 0, X_{B_i} = X_{D_i} = 0$) $i = 1, 2$,
- (iv) quasi ϕ -recurrent space in the sense [29] (for $X_{A_i} \neq 0, X_{B_1} = X_{D_1} = 0, X_{B_2} = X_{D_2} = (\beta - \gamma)X_{A_2}$) $i = 1, 2$

2020 Mathematics Subject Classification: 53C15, 53C25.

Submitted September 24, 2025. Published February 17, 2026

- (v) pseudo ϕ -symmetric space in the sense of [24] (for $\frac{1}{2}X_{A_1} = X_{B_1} = X_{D_1} \neq 0$, $X_{A_2} = X_{B_2} = X_{D_2} = 0$),
- (vi) generalized pseudo ϕ -symmetric space in the sense of [5] (for $\frac{1}{2}X_{A_i} = X_{B_i} = X_{D_i} \neq 0$) $i = 1, 2$,
- (vii) semi-pseudo ϕ -symmetric space in the sense of [39] ($X_{A_i} = X_{B_2} = X_{D_2} = 0$, $X_{B_1} = X_{D_1} \neq 0$),
- (viii) generalized semi-pseudo ϕ -symmetric space in the sense of [8] ($X_{A_i} = 0$, $X_{B_i} = X_{D_i} \neq 0$),
- (ix) almost pseudo ϕ -symmetric space in the sense of [18] (for $X_{A_1} = H_1 + K_1$, $X_{B_1} = X_{D_1} = H_1 \neq 0$ and $X_{A_2} = X_{B_2} = X_{D_2} = 0$),
- (x) almost generalized pseudo ϕ -symmetric space in the sense of [8] ($X_{A_i} = H_i + K_i$, $X_{B_i} = X_{D_i} = H_i \neq 0$), $i = 1, 2$,
- (xi) weakly ϕ -symmetric space in the sense of [38] (for $X_{A_1}X_{B_1}X_{D_1} \neq 0$, $X_{A_2} = X_{B_2} = X_{D_2} = 0$).

Analogously, a semi-Riemannian (or Riemannian) manifold (M^n, g) is said to be generalized weakly Ricci ϕ -symmetric, if it satisfies the condition

$$\begin{aligned} \phi^2(\nabla_X Q)(U) &= A^*(X)QU + B^*(U)QX + S(U, X)\varrho^* \\ &\quad + \alpha^*(X)U + \beta^*(U)X + g(U, X)\sigma^* \end{aligned} \quad (1.3)$$

for any vector fields X, U and V and the 1-forms $A^* = g(\pi_1^*)$, $\alpha^* = g(\pi_2^*)$, $D^* = g(\varrho^*)$, $B^* = g(\delta_1^*)$, $\beta^* = g(\delta_2^*)$ and $\gamma = g(\sigma^*)$.

Einstein's equation in general relativity is given by:

$$S(X, Y) - (r/2)g(X, Y) + \lambda g(X, Y) = kT(X, Y) \quad (1.4)$$

for all vector fields X, Y , where λ is the cosmological constant, k is the gravitational constant and T is the energy momentum tensor of type (0,2).

We present our manuscript as follows: Section 2 is concerned with some basic results of an $(LCS)_n$ -manifold. In section 3, we have investigated generalized weakly ϕ -symmetric $(LCS)_n$ manifold. It is found that such a manifolds may be considered as nearly η -Einstein (nearly quasi-Einstein) manifold. We observe that generalized weakly symmetric $(LCS)_n$ manifold is η -Einstein. Section 4 deal with generalized weakly Ricci ϕ -symmetric $(LCS)_n$ manifolds. We prove that each of (i) Ricci ϕ -symmetric, (ii) Ricci ϕ -recurrent, (iii) generalized Ricci ϕ -recurrent, (iv) pseudo Ricci ϕ -symmetric, (v) generalized pseudo Ricci ϕ -symmetric, (vi) semi-pseudo Ricci ϕ -symmetric, (vii) generalized semi-pseudo Ricci ϕ -symmetric, (viii) almost pseudo Ricci ϕ -symmetric, (ix) almost generalized pseudo Ricci ϕ -symmetric, (x) weakly Ricci ϕ -symmetric $(LCS)_n$ manifold is quasi-Einstein. Finally, we discuss some applications of generalized weakly ϕ -symmetric $(CS)_4$ -spacetime.

2. Some Known results on $(LCS)_n$ -manifold

Let $M^n(\phi, \eta, \xi, g)$ be an $(LCS)_n$ -manifold. In an $(LCS)_n$ -manifold, the following relations hold [1,3, 6,14,15,16,31]:

$$(\nabla_X \eta)(Y) = \alpha\{g(X, Y) + \eta(X)\eta(Y)\} \quad (\alpha \neq 0) \quad (2.1)$$

$$\nabla_X \alpha = (X\alpha) = \rho\eta(X), \quad (2.2)$$

$$\phi X = \frac{1}{\alpha} \nabla_X \xi, \quad (2.3)$$

$$\phi X = X + \eta(X)\xi, \quad (2.4)$$

$$\phi \circ \xi = 0, \quad \eta(\xi) = -1, \quad (2.5)$$

$$\eta(\phi X) = 0, \quad g(\phi X, \phi Y) - g(X, Y) = \eta(X)\eta(Y), \quad (2.6)$$

$$\eta(R(X, Y)Z) = (\alpha^2 - \rho)[g(Y, Z)\eta(X) - g(X, Z)\eta(Y)], \quad (2.7)$$

$$R(X, Y)\xi = (\alpha^2 - \rho)[\eta(Y)X - \eta(X)Y], \quad (2.8)$$

$$S(X, \xi) = (n-1)(\alpha^2 - \rho)\eta(X), \quad Q\xi = (n-1)(\alpha^2 - \rho)\xi \quad (2.9)$$

for any vector fields X, Y, Z .

It is to be noted that 4-dimensional Lorentzian concircular structure spacetime is termed as $(CS)_4$ -spacetime([13], [33], [32]).

Definition 2.1. An (LCS)_n manifolds is said to nearly η -Einstein (nearly quasi-Einstein) manifold if Ricci tensor is of the form $S = a\eta \odot \eta + bg + E$ where a, b are scalar functions and E being a tensor of type (0, 2).

3. Generalized weakly ϕ -symmetric (LCS)_n manifold

In this section, we consider a generalized weakly ϕ -symmetric (LCS)_n manifold. Using equation (2.4) in equation (1.1) we have

$$\begin{aligned}
 & (\nabla_X R)(Y, U)V + \eta((\nabla_X R)(Y, U)V)\xi \\
 = & A_1(X)R(Y, U)V + H_1(Y)R(X, U)V + H_1(U)R(Y, X)V \\
 & + H_1(V)R(Y, U)X + g(R(Y, U)V, X)X_{H_1} + A_2(X)G(Y, U)V \\
 & + H_2(Y)G(X, U)V + H_2(U)G(Y, X)V + H_2(V)G(Y, U)X \\
 & + g(G(Y, U)V, X)X_{H_2}
 \end{aligned} \tag{3.1}$$

where $H_i = \frac{B_i + D_i}{2}$ for $i = 1, 2$. The foregoing equation can also be written as

$$\begin{aligned}
 & g((\nabla_X R)(Y, U)V, W) + \eta((\nabla_X R)(Y, U)V)\eta(W) \\
 = & A_1(X)g(R(Y, U)V, W) + H_1(Y)g(R(X, U)V, W) + H_1(U)g(R(Y, X)V, W) \\
 & + H_1(V)g(R(Y, U)X, W) + H_1(W)g(R(Y, U)V, X) + H_2(X)g(G(Y, U)V, W) \\
 & + H_2(Y)g(G(X, U)V, W) + H_2(U)g(G(Y, X)V, W) + H_2(V)g(G(Y, U)X, W) \\
 & + H_2(W)g(G(Y, U)V, X).
 \end{aligned} \tag{3.2}$$

which yield

$$\begin{aligned}
 & (\nabla_X S)(U, V) + \eta((\nabla_X R)(\xi, U))(V) \\
 = & A_1(X)S(U, V) + H_1(R(X, U)V) + H_1(U)S(X, V) + H_1(V)S(U, X) \\
 & + H_1(R(X, V)U) + (n-1)H_2(X)g(U, V) + H_2(G(X, U)V) \\
 & + (n-1)H_2(U)g(X, V) + (n-1)H_2(V)g(U, X) + H_2(G(X, V)U)
 \end{aligned} \tag{3.3}$$

after contraction. Making use of (2.9), (2.3) and (2.6), we infer

$$\eta((\nabla_X R)(\xi, U))(V) = -(2\alpha\rho - \beta)\eta(X)\{g(U, V) + \eta(U)\eta(V)\}. \tag{3.4}$$

In view of (3.3) and (3.4), we get

$$\begin{aligned}
 & (\nabla_X S)(U, V) \\
 = & (2\alpha\rho - \beta)\eta(X)\{g(U, V) + \eta(U)\eta(V)\} + A_1(X)S(U, V) \\
 & + H_1(R(X, U)V) + H_1(U)S(X, V) + H_1(V)S(U, X) \\
 & + H_1(R(X, V)U) + (n+1)H_2(X)g(U, V) \\
 & + (n-3)H_2(U)g(X, V) + (n-1)H_2(V)g(U, X).
 \end{aligned} \tag{3.5}$$

This motivate us to state the following.

Theorem 3.1. A generalized weakly ϕ -symmetric (LCS)_n-manifold reduces to (GWRM)_n-manifold if

$$H_1(U) = -3\eta(U)H_1(\xi). \tag{3.6}$$

Again from (2.8), we have

$$\begin{aligned}
 (\nabla_X R)(Y, U)\xi &= \nabla_X R(Y, U)\xi - R(\nabla_X Y, U)\xi - R(Y, \nabla_X U)\xi - R(Y, U)\nabla_X \xi \\
 &= -[(2\alpha\rho - \beta - \alpha) + (\alpha^2 - \rho)]\eta(X)\{\eta(Y)U - \eta(U)Y\} \\
 &\quad + (\alpha^2 - \rho)\{g(X, U)Y - g(X, Y)U\} - \alpha R(Y, U)X.
 \end{aligned} \tag{3.7}$$

Now, setting $V = \xi$ in (3.1) and using (3.7), we find

$$\begin{aligned}
& [\alpha + H_1(\xi)]\tilde{R}(Y, U, W, X) \\
= & [(2\alpha\rho - \beta - \alpha) + (\alpha^2 - \rho)] \{ \eta(X)\eta(Y)g(U, W) - \eta(X)\eta(U)g(Y, W) \} \\
& + [H_2(\xi) - (\alpha^2 - \rho)] \{ g(X, U)g(Y, W) - g(X, Y)g(U, W) \} \\
& + [A_1(X)(\alpha^2 - \rho) + A_2(X)] \{ \eta(U)g(Y, W) - \eta(Y)g(U, W) \} \\
& + [H_2(Y) + H_1(Y)(\alpha^2 - \rho)] \{ \eta(U)g(X, W) - \eta(X)g(U, W) \} \\
& + [H_2(U) + H_1(U)(\alpha^2 - \rho)] \{ \eta(X)g(Y, W) - \eta(Y)g(X, W) \} \\
& + [(\alpha^2 - \rho) - \alpha]\eta(W) + (\alpha^2 - \rho)H_1(W) + H_2(W)] \{ g(X, Y)\eta U \\
& - g(X, U)\eta(Y) \}
\end{aligned} \tag{3.8}$$

which gives

$$\begin{aligned}
& [\alpha + H_1(\xi)]S(X, Y) \\
= & [(n-1)(2\alpha\rho - \beta) - (n-2)\alpha + (n-2)(\alpha^2 - \rho)]\eta(X)\eta(Y) \\
& + [(n-2)(\alpha^2 - \rho) + \alpha + (\alpha^2 - \rho)H_1(\xi) - (n-2)H_2(\xi)]g(X, Y) \\
& + E(X, Y)
\end{aligned} \tag{3.9}$$

after contraction, where

$$\begin{aligned}
E(X, Y) = & (1-n)(\alpha^2 - \rho)A_1(X)\eta(Y) + (1-n)A_2(X)\eta(Y) \\
& + (2-n)H_2(Y)\eta(X) + (2-n)(\alpha^2 - \rho)H_1(Y)\eta(X) \\
& - 2H_2(X)\eta(Y) - 2(\alpha^2 - \rho)H_1(X)\eta(Y)
\end{aligned} \tag{3.10}$$

Thus we can state that

Theorem 3.2. *A generalized weakly ϕ -symmetric $(LCS)_n$ manifolds may be considered as nearly η -Einstein (nearly quasi-Einstein) manifold provided algebraic equation involving 1-form $\alpha + H_1(\xi) \neq 0$.*

Remark 1. *We note that $\alpha + H_1(\xi) = 0$ gives the relation between the 1-form.*

4. Generalized weakly Ricci ϕ -symmetric $(LCS)_n$ manifolds

In this section we consider a generalized weakly Ricci ϕ -symmetric $(LCS)_n$ manifolds. Then by the virtue of (2.5) and (1.3) we have

$$\begin{aligned}
& (\nabla_X Q)(U) + \eta((\nabla_X Q)(U))\xi \\
= & A^*(X)QU + B^*(U)QX + S(U, X)\varrho^* \\
& + \alpha^*(X)U + \beta^*(U)X + g(U, X)\sigma^*.
\end{aligned} \tag{4.1}$$

Taking inner product with V on both side, we get

$$\begin{aligned}
& g(\nabla_X Q(U), V) - S(\nabla_X U, V) + \eta((\nabla_X Q)(U))\eta(V) \\
= & A^*(X)S(U, V) + B^*(U)S(V, X) + D^*(V)S(U, X) \\
& + \alpha^*(X)g(U, V) + \beta^*(U)g(V, X) + \gamma^*(V)g(U, X).
\end{aligned} \tag{4.2}$$

Putting $U = \xi$ in (4.2) and using (2.3), (2.6) we get

$$\begin{aligned}
& (n-1)\alpha(\alpha^2 - \rho)g(X, V) - \alpha S(X, V) \\
= & (n-1)(\alpha^2 - \rho)A^*(X)\eta(V) + (n-1)(\alpha^2 - \rho)D^*(V)\eta(X) \\
& + \alpha^*(X)\eta(V) + \beta^*(\xi)g(V, X) + B^*(\xi)S(V, X) + \gamma^*(V)\eta(X).
\end{aligned} \tag{4.3}$$

Again, setting $X = V = \xi$, $X = \xi$ and $V = \xi$ successively in (4.3), we get

$$\begin{aligned} & (n-1)(\alpha^2 - \rho)\{A^*(\xi) + B^*(\xi) + D^*(\xi)\} \\ &= -\{\alpha^*(\xi) + \beta^*(\xi) + \gamma^*(\xi)\}, \end{aligned} \quad (4.4)$$

$$\begin{aligned} & (n-1)(\alpha^2 - \rho)D^*(V) + \gamma^*(V) \\ &= [(n-1)(\alpha^2 - \rho)\{A^*(\xi) + B^*(\xi)\} + \alpha^*(\xi) + \beta^*(\xi)]\eta(V), \end{aligned} \quad (4.5)$$

and

$$\begin{aligned} & (n-1)(\alpha^2 - \rho)A^*(X) + \alpha^*(X) \\ &= [(n-1)(\alpha^2 - \rho)\{B^*(\xi) + D^*(\xi)\} + \beta^*(\xi) + \gamma^*(\xi)]\eta(X). \end{aligned} \quad (4.6)$$

respectively. Using (4.4), (4.5) and (4.6) in (4.3), we get

$$\begin{aligned} & S(X, V) \\ &= \left(\frac{(n-1)\alpha(\alpha^2 - \rho) - \beta^*(\xi)}{\alpha + B^*(\xi)} \right) g(V, X) \\ & \quad - \left(\frac{(n-1)\alpha(\alpha^2 - \rho) + \beta^*(\xi)}{\alpha + B^*(\xi)} \right) \eta(X)\eta(V). \end{aligned} \quad (4.7)$$

$$[\alpha + B^*(\xi)]r = (n-1)[(n+1)\alpha(\alpha^2 - \rho) - \beta^*(\xi)]$$

This leads to the following:

Theorem 4.1. *Every generalized weakly Ricci ϕ -symmetric (LCS)_n manifold is quasi-Einstein provided that $B_1(\xi) \neq -\alpha$.*

Corollary 4.1. *Each of (i) Ricci ϕ -symmetric, (ii) Ricci ϕ -recurrent, (iii) generalized Ricci ϕ -recurrent, (iv) pseudo Ricci ϕ -symmetric, (v) generalized pseudo Ricci ϕ -symmetric, (vi) semi-pseudo Ricci ϕ -symmetric, (vii) generalized semi-pseudo Ricci ϕ -symmetric, (viii) almost pseudo Ricci ϕ -symmetric, (ix) almost generalized pseudo Ricci ϕ -symmetric, (x) weakly Ricci ϕ -symmetric (LCS)_n manifold is quasi-Einstein.*

5. Generalized weakly (Ricci) ϕ -symmetric (CS)₄-spacetime

Definition 5.1. *[30] The Ricci tensor S of spacetime is said to a timelike convergence condition if it admits the following*

$$S(U, U) > 0, \quad U \text{ being timelike vector field.}$$

Proposition 5.1. *The timelike vector field ξ of a generalized weakly Ricci ϕ -symmetric (CS)₄-spacetime possesses convergence condition if $\alpha(\alpha^2 - \rho) < 0$.*

In view of (1.4) and (4.7), we have

$$\begin{aligned} & kT(X, Z) \\ &= \left(\lambda - \frac{r}{2} + \frac{(n-1)\alpha(\alpha^2 - \rho) - \beta^*(\xi)}{\alpha + B^*(\xi)} \right) g(V, X) \\ & \quad - \left(\frac{(n-1)\alpha(\alpha^2 - \rho) + \beta^*(\xi)}{\alpha + B^*(\xi)} \right) \eta(X)\eta(V). \end{aligned} \quad (5.1)$$

Now, for the choice of the vector field ξ to be Killing, we have

$$(\mathcal{L}_\xi g)(X, Z) = 0. \quad (5.2)$$

The equation (5.2) implies that $\alpha = 0$ and hence $\rho = 0$ (see Theorem 3.7, page 419 [13]). Consequently, $\alpha^2 - \rho = 0$ and hence equation (4.7) yields $r = 0$ provided $B_1(\xi) \neq 0$, i.e., ξ is not orthogonal to ρ_1 . Consequently, (5.1) yields

$$(\mathcal{L}_\xi T)(X, Z) = 0.$$

Definition 5.2. A spacetime M is said to admit a matter collineation, if the Lie derivative of the energy momentum tensor with respect to the characteristic vector field ξ vanishes identically, that is,

$$(\mathcal{L}_\xi T)(X, Y) = 0 \text{ for any } X, Y \in \chi(M). \quad (5.3)$$

Thus we can state the following:

Theorem 5.1. If the characteristic vector field ξ of a generalized weakly Ricci ϕ -symmetric $(CS)_4$ -spacetime with Einstein equation and $B_1(\xi) \neq 0$ is Killing, then it admits matter collineation.

Again suppose that α is constant. Then $\alpha^2 - \rho = \text{constant}$ and hence it follows from equation (5.1) that r is constant. Consequently, (5.3) yields

$$k(\mathcal{L}_\xi T)(X, Z) = \left[\lambda - \frac{r}{2} + \frac{(n-1)\alpha(\alpha^2 - \rho) - \beta^*(\xi)}{\alpha + B^*(\xi)} \right] (\mathcal{L}_\xi g)(X, Z). \quad (5.4)$$

Again, if (5.3) holds then (5.4) implies that

$$(\mathcal{L}_\xi g)(X, Z) = 0 \text{ as } r \neq 2 \left[\lambda + \left(\frac{(n-1)\alpha(\alpha^2 - \rho) - \beta^*(\xi)}{\alpha + B_1(\xi)} \right) \right] \text{ by (3.6).}$$

Therefore ξ is a Killing vector field and hence by previous argument the spacetime is of vanishing scalar curvature. Thus we can state the following:

Theorem 5.2. If a generalized weakly Ricci ϕ -symmetric $(CS)_4$ -spacetime with Einstein equation and $B_1(\xi) \neq 0$ admits a matter collineation, then the characteristic vector field ξ of the spacetime is a Killing vector field and the spacetime is of vanishing scalar curvature.

Combining Theorem 3.7 and Theorem 3.8, we can state the following:

Theorem 5.3. If a generalized weakly Ricci-symmetric $(CS)_4$ -spacetime with $B_1(\xi) \neq 0$ satisfies Einstein equation, then the characteristic vector field ξ of the spacetime is a Killing vector field if and only if it admits matter collineation.

Definition 5.3. A spacetime M is said to admit a curvature collineation ([22]) if the Lie derivative of the curvature tensor with respect to the characteristic vector field ξ vanishes identically, that is,

$$(\mathcal{L}_\xi R)(X, Y)Z = 0.$$

If ξ is a Killing vector field then (5.2) holds, which gives after covariant differentiation

$$(\nabla_X \mathcal{L}_\xi g)(Y, Z) = 0. \quad (5.5)$$

By Yano [40], we also have

$$(\mathcal{L}_\xi \nabla_X g - \nabla_X \mathcal{L}_\xi g - \nabla_{[\xi, X]} g)(Y, Z) = -g((\mathcal{L}_\xi \nabla)(X, Y), Z) - g((\mathcal{L}_\xi \nabla)(X, Z), Y). \quad (5.6)$$

In view of the parallelism of the Lorentzian metric g , it follows from the above relation that

$$(\nabla_X \mathcal{L}_\xi g)(Y, Z) = g((\mathcal{L}_\xi \nabla)(X, Y), Z) + g((\mathcal{L}_\xi \nabla)(X, Z), Y). \quad (5.7)$$

Because

$$(\mathcal{L}_\xi \nabla)(X, Y) = (\mathcal{L}_\xi \nabla)(Y, X), \quad (5.8)$$

it follows from (5.7) that

$$2g((\mathcal{L}_\xi \nabla)(X, Y), Z) = (\nabla_X \mathcal{L}_\xi g)(Y, Z) + (\nabla_Y \mathcal{L}_\xi g)(Z, X) - (\nabla_Z \mathcal{L}_\xi g)(X, Y). \quad (5.9)$$

Making use of (5.5) and (5.9), we have

$$(\mathcal{L}_\xi \nabla)(X, Y) = 0. \quad (5.10)$$

Taking the covariant derivative of the above equation along an arbitrary vector field we get

$$(\nabla_X \mathcal{L}_\xi \nabla)(Y, Z) = 0. \quad (5.11)$$

Next, by using the above equation in the following formula (see Yano [40])

$$(\mathcal{L}_\xi R)(X, Y)Z = (\nabla_X \mathcal{L}_\xi \nabla)(Y, Z) - (\nabla_Y \mathcal{L}_\xi \nabla)(X, Z), \quad (5.12)$$

we obtain

$$(\mathcal{L}_\xi R)(X, Y)Z = 0 \quad (5.13)$$

for any $X, Y, Z \in \chi(M)$. Contracting X in (5.13), we get

$$(\mathcal{L}_\xi S)(Y, Z) = 0. \quad (5.14)$$

Using (5.13) and (5.14) in (5.12), we have

$$(\mathcal{L}_\xi \omega)(X, Y, Z) = 0 \quad (5.15)$$

where ω is well known quasi conformal like curvature tensor ([10], [11], [9], [7]). This leads to the following:

Theorem 5.4. *If the characteristic vector field ξ of a generalized weakly Ricci ϕ -symmetric (CS)₄-spacetime with $B_1(\xi) \neq 0$ obeying Einstein equation is a Killing vector field, then such spacetime admits (i) curvature collineation, (ii) conformal collineation, (iii) conharmonic collineation, (iv) concircular collineation, (v) projective collineation, (vi) m -projective collineation.*

Again, if the vector field ξ is a conformal Killing, then

$$(\mathcal{L}_\xi g)(X, Z) = 2\mu g(X, Z) \quad (5.16)$$

where μ is a scalar function. In view of (5.2), (5.4) and (5.16), we find

$$(\mathcal{L}_\xi T)(X, Z) = 2\mu T(X, Z) \quad (5.17)$$

provided α is constant and $3(\alpha^2 - \rho)B_1(\xi) + B_2(\xi) = 0$. Thus we can state that

Theorem 5.5. *If the characteristic vector field ξ of a generalized weakly Ricci ϕ -symmetric (CS)₄-spacetime with $B_1(\xi) \neq 0$ obeying Einstein equation is conformal Killing, then the energy momentum tensor is also conformal Killing.*

Acknowledgments

The authors are grateful to the reviewer for reading the manuscript carefully which leads the reviewer to suggest some corrections and comments in order to improve the quality of contents of the manuscript.

References

1. Baishya, K. K., *GRW-spacetime and certain type of energy momentum tensor*, J. Geom. Phys. **157**, 103855, (2020).
2. Baishya, K. K., *On generalized weakly symmetric (LCS)_n-manifolds*, Hacet. J. Math. Stat. **48** (2), 427–438, (2019).
3. Baishya, K. K., *More on η -Ricci solitons in (LCS)_n-manifolds*, Bull. Transilv. Univ. Braşov Ser. III. Math. Comput. Sci. **11** (60), 1–10, (2018).
4. Baishya, K. K., *On generalized weakly symmetric manifolds*, Bull. Transilv. Univ. Braşov Ser. III. Math. Comput. Sci. **10**(59)(1) 31–38, (2017).
5. Baishya, K. K., *Note on almost generalized pseudo Ricci symmetric manifolds*, Kyungpook Math. J. **57**(3), 517–523, (2017).
6. Baishya, K. K., Bakshi, M. R., Das, A., *Almost quasi-Yamabe solitons on (LCS)_n-manifolds*, Novi Sad J. Math. **54** (2), 2024, 73–85
7. Baishya, K. K. and Chowdhury, P. R., *Semi-symmetry type of LP-Sasakian manifolds*, Acta Math. Acad. Paedagog. Nyhazi. (N.S.) **33**, 67–83, (2017).

8. Baishya, K. K. and Chowdhury, P. R., *On almost generalized weakly symmetric LP-Sasakian manifold*, An. Univ. Vest Timiș. Ser. Mat. Inform. 55(2), 51–64, (2017).
9. Baishya, K. K. and Chowdhury, P. R., *Semi-symmetry type of α -Sasakian manifolds*, Acta Math. Univ. Comenian. (N.S.) **86**(1), 91–100, (2017).
10. Baishya, K. K. and Chowdhury, P. R., *η -Ricci solitons in $(LCS)_n$ -manifolds*, Bull. Transilv. Univ. Brașov Ser. III. Math. Comput. Sci. 9(58)(2), 1–12, (2016).
11. Baishya, K. K. and Chowdhury, P. R., *On generalized quasi-conformal $N(k; \mu)$ -manifolds*, Commun. Korean Math. Soc. 31 (1), 163–176, (2016).
12. Baishya, K. K., Chowdhury, P. R., Josef, M. and Peska, P., *On almost generalized weakly symmetric Kenmotsu manifolds*, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 55(2), 5–15, (2016).
13. Baishya, K. K. and Eysam, S., *Generalized weakly Ricci-symmetric $(CS)_4$ -spacetimes*, J. Geom. Phys. 132, 415–422, (2018).
14. Bakshi, M. R., Baishya, K. K. and Blaga, A. M., *Almost Ricci solitons in a generalized D-conformally deformed $(LCS)_n$ -manifold*, Ann. Univ. Ferrara **69** (2023), 111–120.
15. Bakshi, M. R., Baishya, K. K. and Das, A., *Hyper generalized weakly symmetric $(CS)_4$ -spacetime and the Ricci Solitons*, Acta Universitatis Apulensis **69**, 83–92, (2022).
16. Bakshi, M. R. and Baishya, K. K., *Certain types of $(LCS)_n$ -manifold and the case of Riemann soliton*, Differ. Geom. Dyn. Syst. **22**, 11–25, (2020).
17. Cartan, E., *Sur une Classe Remarquable d’Espaces de Riemannian*, Bull. Soc. Math. France 54, 214–264, (1926).
18. Chaki, M. C., *On pseudo symmetric manifolds*, An. Științ. Univ. Al. I. Cuza Iași. Mat. (N.S.) 33, 53–58, (1987).
19. De, U. C., Shaikh, A. A. and Biswas, S., *On ϕ -recurrent Sasakian manifolds*, Novi Sad J. Math. 33, 13–48, (2003).
20. De, U. C., Yıldız, A. and Yalıniz, A. F., *On ϕ -recurrent Kenmotsu manifolds*, Turkish J. Math. 33, 17–25 (2009).
21. Dubey, R. S. D., *Generalized recurrent spaces*, Indian J. Pure Appl. Math. 10 1508–1513, (1979).
22. Duggal, K. L., *Curvature inheritance symmetry in Riemannian spaces with applications in fluid spacetimes*, J. Math. Phys. 33, 2989–2997, (1992).
23. Hui, S. K., *On ϕ -pseudo symmetric Para-Sasakian manifolds*, Acta Univ. Apulensis Math. Inform. 39, 161–178, (2014).
24. Hui, S. K., *On ϕ -pseudo symmetric Kenmotsu manifolds*, Novi Sad J. Math 43, 89–98, (2013).
25. Kumar, K. T., Pradeep, Bagewadi, C. S. and Venkatesha, *Projective ϕ -symmetric K-contact manifold admitting quarter symmetric metric connection*, Differ. Geom. Dyn. Syst. 13, 128–137, (2011).
26. Prakash, A., *On concircularly ϕ -recurrent Kenmotsu Manifolds*, Bull. Math. Anal. Appl. 27, 287–295, (1952).
27. Prakasha D. G., *On extended generalized ϕ -recurrent Sasakian manifolds*, J. Egyptian Math. Soc. 21, 25–31, (2013).
28. Prakasha, D. G., *On ϕ -symmetric Kenmotsu manifolds with respect to quarter symmetric metric connection*, Int. Electron. J. Geom. 4(1), 88–96, (2011).
29. Prvanov M., *Extended recurrent manifolds*, (Russian) Izv. Vyssh. Uchebn. Zaved. Mat., translation in Russian Math. (Iz. VUZ) 43 (1), 38–47, (1999).
30. Sach, R. K. and Hu, W., *General Relativity for Mathematician*, Springer Verlag, New York, 1977.
31. Shaikh, A. A., *On Lorentzian almost para contact manifolds with a structure of the concircular type*, Kyungpook Math. J. 43, 305–314, (2003).
32. Shaikh, A. A. and Baishya, K. K., *On concircular structure spacetimes II*, American J. Appl. Sci. 3, 1790–1794, (2006).
33. Shaikh, A. A. and Baishya, K. K., *On concircular structure spacetimes*, J. Math. Stat. 1, 129–132, (2005).
34. Shaikh, A. A. and Hui, S. K., *On extended generalized ϕ -recurrent β -Kenmotsu Manifolds*, Publ. Inst. Math. (Beograd) (N.S.) 89(103), 77–88, (2011).
35. Shaikh, A. A. and Hui, S. K., *On locally ϕ -symmetric β -kenmotsu manifolds*, Extracta Math. 24(3) 301–316, (2009).
36. Shukla, S. S. and Shukla, M. K., *On ϕ -Ricci symmetric Kenmotsu manifolds*, Novi Sad J. Math. 39(2), 89–95, (2009).
37. Takahashi, T., *Sasakian ϕ -symmetric spaces*, Tohoku Math. J. 29, 91–113, (1977).
38. Tamássy, L. and Binh, T. Q., *On weakly symmetric and weakly projective symmetric Riemannian manifolds*, Coll. Math. Soc. J. Bolyai 56, 663–670, (1989).
39. Tarafdar, M. and Musa, A. A., Jawarneh, *Semi-Pseudo Ricci Symmetric manifold*, J. Indian Inst. Sci. 73, 591–596, (1993).
40. Yano, K. *Integral Formulas in Riemannian Geometry*, Marcel Dekker, New York, 1970.

Partha Roy Chowdhury

Department of Mathematics

Bankura University

Bankura, W. Bengal- 722 155

India.

E-mail address: `partha.raychowdhury81@gmail.com`

and

Kanak Kanti Baishya

Department of Mathematics

Kurseong College

Kurseong, W. Bengal - 734203, India.

E-mail address: `kanakkanti.kc@gmail.com`

and

Ajoy Mukharjee

Department of Mathematics

Bankura University

Bankura, W. Bengal- 722 155

India.

E-mail address: `ajoyjee@gmail.com`