
Bol. Soc. Paran. Mat. (3s.) v. 2026 (44) 6 : 1–9.
©SPM – E-ISSN-2175-1188 ISSN-0037-8712
SPM: www.spm.uem.br/bspm doi:10.5269/bspm.79141

On Generalized Weakly (Ricci) ϕ-Symmetric (LCS)n Manifold

Partha Roy Chowdhury, Kanak Kanti Baishya and Ajoy Mukharjee

abstract: The present paper introduce the notions of generalized weakly ϕ-symmetric and generalized
weakly Ricci ϕ-symmetric (LCS)n manifold. We further investigate some applications of generalized weakly
ϕ-symmetric (CS)4-space time.

Keywords:Generalized weakly ϕ-symmetric, generalized weakly Ricci ϕ-symmetric, η-Einstein,
Lorentzian Para Sasakian manifold.

Contents

1 Introduction 1

2 Some Known results on (LCS)n-manifold 2

3 Generalized weakly ϕ-symmetric (LCS)n manifold 3

4 Generalized weakly Ricci ϕ-symmetric (LCS)n manifolds 4

5 Generalized weakly (Ricci) ϕ-symmetric (CS)4-spacetime 5

1. Introduction

In our manuscript, we shall mark the Levi-Civita connection, curvature tensor, Ricci tensor and Ricci
operator by the symbols ∇, R(or R̄), S and Q respectively. As a weaker class of local symmetry [17],
Takahashi [37] began the investigation on locally ϕ-symmetric manifold. Further exploration to weaken
such notion has been caried out by many authors. For details, we refer to [4], [12], [19], [20], [23], [24],
[25], [34], [35], [36] and the references therein.

A semi-Riemannian (or Riemannian) manifold of dimension n is said to be a generalized weakly
ϕ-symmetric if it fit the equation

ϕ2(∇XR)(Y, U, V, Z)

= A1(X)R(Y,U, V, Z) +B1(Y )R(X,U, V, Z) +B1(U)R(Y,X, V, Z)

+D1(V )R(Y,U,X,Z) +D1(Z)R(Y,U, V,X) +A2(X)G(Y, U, V, Z)

+B2(Y )G(X,U, V, Z) +B2(U) G(Y,X, V, Z) +D2(V ) G(Y, U,X,Z)

+D2(Z)G(Y, U, V,X) (1.1)

where
G(Y, U, V, W ) = g(U, V )g(Y,W )− g(Y, V )g(U,W ) (1.2)

(ϕ being a (1, 1) tensor) for any vector fields X,Y, U and the 1-forms Ai = g(, XAi
), Bi = g(, XBi

) and
Di = g(, XDi

) for i = 1, 2.
The charm of generalized ϕ-weakly symmetric space is that it has the spice of
(i) locally ϕ-symmetric space [37] (for XAi

= XBi
= XDi

= 0) i = 1, 2,
(ii) locally ϕ-recurrent space [20] (for XA1

̸= 0, XA2
= XBi

= XDi
= 0) i = 1, 2,

(iii) generalized ϕ-recurrent space in the sense of [21] (for XAi ̸= 0, XBi = XDi = 0) i = 1, 2,
(iv) quasi ϕ-recurrent space in the sense [29] (for XAi

̸= 0, XB1
= XD1

= 0, XB2
= XD2

=
(β − γ)XA2

) i = 1, 2
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(v) pseudo ϕ-symmetric space in the sense of [24] (for 1
2XA1

= XB1
= XD1

̸= 0, XA2
= XB2

=
XD2 = 0),

(vi) generalized pseudo ϕ-symmetric space in the sense of [5] (for 1
2XAi = XBi = XDi ̸= 0) i = 1, 2,

(vii) semi-pseudo ϕ-symmetric space in the sense of [39] ( XAi
= XB2

= XD2
= 0, XB1

= XD1
̸= 0),

(viii) generalized semi-pseudo ϕ-symmetric space in the sense of [8] (XAi
= 0, XBi

= XDi
̸= 0),

(ix) almost pseudo ϕ-symmetric space in the sense of [18] (for XA1
= H1+K1, XB1

= XD1
= H1 ̸= 0

and XA2 = XB2 = XD2 = 0),
(x) almost generalized pseudo ϕ-symmetric space in the sense of [8]) ( XAi = Hi +Ki, XBi = XDi =

Hi ̸= 0 ), i = 1, 2,
(xi) weakly ϕ-symmetric space in the sense of [38] ( for XA1

XB1
XD1

̸= 0, XA2
= XB2

= XD2
= 0).

Analogously, a semi-Riemannian (or Riemannian) manifold (Mn, g) is said to be generalized weakly
Ricci ϕ-symmetric, if it satisfies the condition

ϕ2(∇XQ)(U) = A∗(X)QU +B∗(U)QX + S(U,X)ϱ∗

+α∗(X)U + β∗(U)X + g(U,X)σ∗ (1.3)

for any vector fields X,U and V and the 1-forms A∗ = g(, π∗
1), α

∗ = g(, π∗
2), D

∗ = g(, ϱ∗), B∗ = g(, δ∗1),
β∗ = g(, δ∗2) and γ = g(, σ∗).

Einstein’s equation in general relativity is given by:

S(X,Y )− (r/2)g(X,Y ) + λg(X,Y ) = kT (X,Y ) (1.4)

for all vector fields X, Y , where λ is the cosmological constant, k is the gravitational constant and T is
the energy momentum tensor of type (0,2).

We present our manuscript as follows: Section 2 is concerned with some basic results of an (LCS)n-
manifold. In section 3, we have investigated generalized weakly ϕ-symmetric (LCS)n manifold. It is
found that such a manifolds may be considered as nearly η-Einstein (nearly quasi-Einstein) manifold.
We observe that generalized weakly symmetric (LCS)n manifold is η-Einstein. Section 4 deal with
generalized weakly Ricci ϕ-symmetric (LCS)n manifolds. We prove that each of (i) Ricci ϕ-symmetric,
(ii) Ricci ϕ-recurrent, (iii) generalized Ricci ϕ-recurrent, (iv) pseudo Ricci ϕ-symmetric, (v) generalized
pseudo Ricci ϕ-symmetric, (vi) semi-pseudo Ricci ϕ-symmetric, (vii) generalized semi-pseudo Ricci ϕ-
symmetric, (viii) almost pseudo Ricci ϕ-symmetric, (ix) almost generalized pseudo Ricci ϕ-symmetric,
(x) weakly Ricci ϕ-symmetric (LCS)n manifold is quasi-Einstein. Finally, we discuss some applications
of generalized weakly ϕ-symmetric (CS)4-spacetime.

2. Some Known results on (LCS)n-manifold

Let Mn(ϕ, η, ξ, g) be an (LCS)n-manifold. In an (LCS)n-manifold, the following relations hold [1,3,
6,14,15,16,31]:

(∇Xη)(Y ) = α{g(X,Y ) + η(X)η(Y )} (α ̸= 0) (2.1)

∇Xα = (Xα) = ρη(X), (2.2)

ϕX =
1

α
∇Xξ, (2.3)

ϕX = X + η(X)ξ, (2.4)

ϕ ◦ ξ = 0, η(ξ) = −1, (2.5)

η(ϕX) = 0, g(ϕX, ϕY )− g(X,Y ) = η(X)η(Y ), (2.6)

η(R(X,Y )Z) = (α2 − ρ)[g(Y, Z)η(X)− g(X,Z)η(Y )], (2.7)

R(X,Y )ξ = (α2 − ρ)[η(Y )X − η(X)Y ], (2.8)

S(X, ξ) = (n− 1)(α2 − ρ)η(X), Qξ = (n− 1)(α2 − ρ)ξ (2.9)

for any vector fields X,Y, Z.
It is to be noted that 4-dimensional Lorentzian concircular structure spacetime is termed as (CS)4-

spacetime( [13], [33], [32]).
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Definition 2.1. An (LCS)n manifolds is said to nearly η-Einstein (nearly quasi-Einstein) manifold if
Ricci tensor is of the form S = aη ⊙ η + bg + E where a, b are scalar functions and E being a tensor of
type (0, 2).

3. Generalized weakly ϕ-symmetric (LCS)n manifold

In this section, we consider a generalized weakly ϕ-symmetric (LCS)n manifold. Using equation (2.4)
in equation (1.1) we have

(∇XR)(Y, U)V + η ((∇XR)(Y, U)V ) ξ

= A1(X)R(Y,U)V +H1(Y )R(X,U)V +H1(U)R(Y,X)V

+H1(V )R(Y, U)X + g(R(Y, U)V, X)XH1
+A2(X)G(Y, U)V

+H2(Y )G(X,U)V +H2(U) G(Y,X)V +H2(V ) G(Y, U)X

+ g(G(Y, U)V, X)XH2
(3.1)

where Hi =
Bi+Di

2 for i = 1, 2. The foregoing equation can also be written as

g((∇XR)(Y, U)V,W ) + η((∇XR)(Y, U)V )η(W )

= A1(X)g(R(Y,U)V,W ) +H1(Y )g(R(X,U)V,W ) +H1(U)g(R(Y,X)V,W )

+H1(V )g(R(Y, U)X,W ) +H1(W )g(R(Y, U)V, X) +H2(X)g(G(Y,U)V,W )

+H2(Y )g(G(X,U)V,W ) +H2(U) g(G(Y,X)V,W ) +H2(V )g(G(Y,U)X,W )

+H2(W ) g(G(Y,U)V,X ). (3.2)

which yield

(∇XS)(U, V ) + η((∇XR)(ξ, U))(V )

= A1(X)S(U, V ) +H1(R(X,U)V ) +H1(U)S(X,V ) +H1(V )S(U,X)

+H1(R(X,V )U) + (n− 1)H2(X)g(U, V ) +H2(G(X,U)V )

+(n− 1)H2(U)g(X,V ) + (n− 1)H2(V )g(U,X) +H2(G(X,V )U) (3.3)

after contraction. Making use of (2.9), (2.3) and (2.6), we infer

η((∇XR)(ξ, U))(V ) = −(2αρ− β)η(X) {g(U, V ) + η(U)η(V )} . (3.4)

In view of (3.3) and (3.4), we get

(∇XS)(U, V )

= (2αρ− β)η(X) {g(U, V ) + η(U)η(V )}+A1(X)S(U, V )

+H1(R(X,U)V ) +H1(U)S(X,V ) +H1(V )S(U,X)

+H1(R(X,V )U) + (n+ 1)H2(X)g(U, V )

+(n− 3)H2(U)g(X,V ) + (n− 1)H2(V )g(U,X). (3.5)

This motivate us to state the following.

Theorem 3.1. A generalized weakly ϕ-symmetric (LCS)n-manifold reduces to (GWRS)n-manifold if

H1(U) = − 3η(U)H1(ξ). (3.6)

Again from (2.8), we have

(∇XR)(Y, U)ξ = ∇XR(Y, U)ξ −R(∇XY,U)ξ −R(Y,∇XU)ξ −R(Y,U)∇Xξ

= −
[
(2αρ− β − α) + (α2 − ρ)

]
η(X) {η(Y )U − η(U)Y }

+(α2 − ρ) {g(X,U)Y − g(X,Y )U} − αR(Y,U)X. (3.7)
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Now, setting V = ξ in (3.1) and using (3.7), we find

[α+H1(ξ)]R̃(Y, U,W,X)

=
[
(2αρ− β − α) + (α2 − ρ)

]
{η(X)η(Y )g(U,W )− η(X)η(U)g(Y,W )}

+
[
H2(ξ)− (α2 − ρ)

]
{g(X,U)g(Y,W )− g(X,Y )g(U,W )}

+[A1(X)(α2 − ρ) +A2(X)] {η(U)g(Y,W )− η(Y )g(U,W )}
+
[
H2(Y ) +H1(Y )(α2 − ρ)

]
{η(U)g(X,W )− η(X)g(U,W )}

+
[
H2(U) +H1(U)(α2 − ρ)

]
{η(X)g(Y,W )− η(Y )g(X,W )}

+
[
{(α2 − ρ)− α}η(W ) + (α2 − ρ)H1(W ) +H2(W )

]
{g(X,Y )ηU)

−g(X,U)η(Y )} (3.8)

which gives

[α+H1(ξ)]S(X,Y )

= [(n− 1)(2αρ− β)− (n− 2)α+ (n− 2)(α2 − ρ)]η(X)η(Y )

+[(n− 2)(α2 − ρ) + α+ (α2 − ρ)H1(ξ)− (n− 2)H2(ξ)]g(X,Y )

+E(X,Y ) (3.9)

after contraction, where

E(X,Y ) = (1− n)(α2 − ρ)A1(X)η(Y ) + (1− n)A2(X)η(Y )

+(2− n)H2(Y )η(X) + (2− n)(α2 − ρ)H1(Y )η(X)

−2H2(X)η(Y )− 2(α2 − ρ)H1(X)η(Y ) (3.10)

Thus we can state that

Theorem 3.2. A generalized weakly ϕ-symmetric (LCS)n manifolds may be considered as nearly η-
Einstein (nearly quasi-Einstein) manifold provided algebraic equation involving 1-form α+H1(ξ) ̸= 0.

Remark 1. We note that α+H1(ξ) = 0 gives the relation between the 1-form.

4. Generalized weakly Ricci ϕ-symmetric (LCS)n manifolds

In this section we consider a generalized weakly Ricci ϕ-symmetric (LCS)n manifolds. Then by the
virtue of (2.5) and (1.3) we have

(∇XQ)(U) + η((∇XQ)(U))ξ

= A∗(X)QU +B∗(U)QX + S(U,X)ϱ∗

+α∗(X)U + β∗(U)X + g(U,X)σ∗. (4.1)

Taking inner product with V on both side, we get

g(∇XQ(U), V )− S(∇XU, V ) + η((∇XQ)(U))η(V )

= A∗(X)S(U, V ) +B∗(U)S(V,X) +D∗(V )S(U,X)

+α∗(X)g(U, V ) + β∗(U)g(V,X) + γ∗(V )g(U,X). (4.2)

Putting U = ξ in (4.2) and using (2.3),(2.6) we get

(n− 1)α(α2 − ρ)g(X,V )− αS(X,V )

= (n− 1)(α2 − ρ)A∗(X)η(V ) + (n− 1)(α2 − ρ)D∗(V )η(X)

+α∗(X)η(V ) + β∗(ξ)g(V,X) +B∗(ξ)S(V,X) + γ∗(V )η(X). (4.3)
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Again, setting X = V = ξ, X = ξ and V = ξ successively in (4.3), we get

(n− 1)(α2 − ρ){A∗(ξ) +B∗(ξ) +D∗(ξ)}
= −{α∗(ξ) + β∗(ξ) + γ∗(ξ)}, (4.4)

(n− 1)(α2 − ρ)D∗(V ) + γ∗(V )

= [(n− 1)(α2 − ρ){A∗(ξ) +B∗(ξ)}+ α∗(ξ) + β∗(ξ)]η(V ), (4.5)

and

(n− 1)(α2 − ρ)A∗(X) + α∗(X)

= [(n− 1)(α2 − ρ){B∗(ξ) +D∗(ξ)}+ β∗(ξ) + γ∗(ξ)]η(X). (4.6)

respectively. Using (4.4), (4.5) and (4.6) in (4.3), we get

S(X,V )

=

(
(n− 1)α(α2 − ρ)− β∗(ξ)

α+B∗(ξ)

)
g(V,X)

−
(
(n− 1)α(α2 − ρ) + β∗(ξ)

α+B∗(ξ)

)
η(X)η(V ). (4.7)

[α+B∗(ξ)]r = (n− 1)[(n+ 1)α(α2 − ρ)− β∗(ξ)]

This leads to the following:

Theorem 4.1. Every generalized weakly Ricci ϕ-symmetric (LCS)n manifold is quasi-Einstein provided
that B1(ξ) ̸= −α.

Corollary 4.1. Each of (i) Ricci ϕ-symmetric, (ii) Ricci ϕ-recurrent, (iii) generalized Ricci ϕ-recurrent,
(iv) pseudo Ricci ϕ-symmetric, (v) generalized pseudo Ricci ϕ-symmetric, (vi) semi-pseudo Ricci ϕ-
symmetric, (vii) generalized semi-pseudo Ricci ϕ-symmetric, (viii) almost pseudo Ricci ϕ-symmetric,
(ix) almost generalized pseudo Ricci ϕ-symmetric, (x) weakly Ricci ϕ-symmetric (LCS)n manifold is
quasi-Einstein.

5. Generalized weakly (Ricci) ϕ-symmetric (CS)4-spacetime

Definition 5.1. [30] The Ricci tensor S of spacetime is said to a timelike convergence condition if it
admits the following

S(U,U) > 0, U being timelike vector field.

Proposition 5.1. The timelike vector field ξ of a generalized weakly Ricci ϕ-symmetric (CS)4-spacetime
possesses convergence condition if α(α2 − ρ) < 0.

In view of (1.4) and (4.7), we have

kT (X,Z)

=

(
λ− r

2
+

(n− 1)α(α2 − ρ)− β∗(ξ)

α+B∗(ξ)

)
g(V,X)

−
(
(n− 1)α(α2 − ρ) + β∗(ξ)

α+B∗(ξ)

)
η(X)η(V ). (5.1)

Now, for the choice of the vector field ξ to be Killing, we have

(£ξg)(X,Z) = 0. (5.2)

The equation (5.2) implies that α = 0 and hence ρ = 0 (see Theorem 3.7, page 419 [13]). Consequently,
α2 − ρ = 0 and hence equation (4.7) yields r = 0 provided B1(ξ) ̸= 0, i.e., ξ is not orthogonal to ρ1.
Consequently, (5.1) yields

(£ξT )(X,Z) = 0.
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Definition 5.2. A spacetime M is said to admit a matter collineation, if the Lie derivative of the energy
momentum tensor with respect to the characteristic vector field ξ vanishes identically, that is,

(£ξT )(X,Y ) = 0 for any X,Y ∈ χ(M). (5.3)

Thus we can state the following:

Theorem 5.1. If the characteristic vector field ξ of a generalized weakly Ricci ϕ-symmetric (CS)4-
spacetime with Einstein equation and B1(ξ) ̸= 0 is Killing, then it admits matter collineation.

Again suppose that α is constant. Then α2 − ρ = constant and hence it follows from equation (5.1)
that r is constant. Consequently, (5.3) yields

k(£ξT )(X,Z) =

[
λ− r

2
+

(n− 1)α(α2 − ρ)− β∗(ξ)

α+B∗(ξ)

]
(£ξg)(X,Z). (5.4)

Again, if (5.3) holds then (5.4) implies that

(£ξg)(X,Z) = 0 as r ̸= 2

[
λ+

(
(n− 1)α(α2 − ρ)− β∗(ξ)

α+B1(ξ)

)]
by (3.6).

Therefore ξ is a Killing vector field and hence by previous argument the spacetime is of vanishing scalar
curvature. Thus we can state the following:

Theorem 5.2. If a generalized weakly Ricci ϕ-symmetric (CS)4-spacetime with Einstein equation and
B1(ξ) ̸= 0 admits a matter collineation, then the characteristic vector field ξ of the spacetime is a Killing
vector field and the spacetime is of vanishing scalar curvature.

Combining Theorem 3.7 and Theorem 3.8, we can state the following:

Theorem 5.3. If a generalized weakly Ricci-symmetric (CS)4-spacetime with B1(ξ) ̸= 0 satisfies Einstein
equation, then the characteristic vector field ξ of the spacetime is a Killing vector field if and only if it
admits matter collineation.

Definition 5.3. A spacetime M is said to admit a curvature collineation ( [22]) if the Lie derivative of
the curvature tensor with respect to the characteristic vector field ξ vanishes identically, that is,

(£ξR)(X,Y )Z = 0.

If ξ is a Killing vector field then (5.2) holds, which gives after covariant differentiation

(∇X£ξg)(Y, Z) = 0. (5.5)

By Yano [40], we also have

(£ξ∇Xg −∇X£ξg −∇[ξ,X]g)(Y, Z) = −g((£ξ∇)(X,Y ), Z)− g((£ξ∇)(X,Z), Y ). (5.6)

In view of of the parallelism of the Lorentzian metric g, it follows from the above relation that

(∇X£ξg)(Y, Z) = g((£ξ∇)(X,Y ), Z) + g((£ξ∇)(X,Z), Y ). (5.7)

Because
(£ξ∇)(X,Y ) = (£ξ∇)(Y,X), (5.8)

it follows from (5.7) that

2g((£ξ∇)(X,Y ), Z) = (∇X£ξg)(Y, Z) + (∇Y £ξg)(Z,X)− (∇Z£ξg)(X,Y ). (5.9)

Making use of (5.5) and (5.9), we have

(£ξ∇)(X,Y ) = 0. (5.10)
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Taking the covariant derivative of the above equation along an arbitrary vector field we get

(∇X£ξ∇)(Y, Z) = 0. (5.11)

Next, by using the above equation in the following formula (see Yano [40]])

(£ξR)(X,Y )Z = (∇X£ξ∇)(Y,Z)− (∇Y £ξ∇)(X,Z), (5.12)

we obtain
(£ξR)(X,Y )Z = 0 (5.13)

for any X, Y , Z ∈ χ(M). Contracting X in (5.13), we get

(£ξS)(Y, Z) = 0. (5.14)

Using (5.13) and (5.14) in (5.12), we have

(£ξω)(X,Y, Z) = 0 (5.15)

where ω is well known quasi conformal like curvature tensor( [10], [11], [9], [7]). This leads to the
following:

Theorem 5.4. If the characteristic vector field ξ of a generalized weakly Ricci ϕ-symmetric (CS)4-
spacetime with B1(ξ) ̸= 0 obeying Einstein equation is a Killing vector field, then such spacetime admits
(i) curvature collineation, (ii) conformal collineation, (iii) conharmonic collineation, (iv) concircular
collineation, (v) projective collineation, (vi) m-projective collineation.

Again, if the vector field ξ is a conformal Killing, then

(£ξg)(X,Z) = 2µg(X,Z) (5.16)

where µ is a scalar function. In view of (5.2), (5.4) and (5.16), we find

(£ξT )(X,Z) = 2µT (X,Z) (5.17)

provided α is constant and 3(α2 − ρ)B1(ξ) +B2(ξ) = 0. Thus we can state that

Theorem 5.5. If the characteristic vector field ξ of a generalized weakly Ricci ϕ-symmetric (CS)4-
spacetime with B1(ξ) ̸= 0 obeying Einstein equation is conformal Killing, then the energy momentum
tensor is also conformal Killing.
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19. De, U. C., Shaikh, A. A. and Biswas, S., On ϕ-recurrent Sasakian manifolds, Novi Sad J. Math. 33, 13–48, (2003).

20. De, U. C., Yildiz, A. and Yaliniz, A. F., On ϕ-recurrent Kenmotsu manifolds, Turkish J. Math. 33, 17–25 (2009).

21. Dubey, R. S. D., Generalized recurrent spaces, Indian J. Pure Appl. Math. 10 1508–1513, (1979).

22. Duggal, K. L., Curvature inheritance symmetry in Riemannian spaces with applications in fluid spacetimes , J. Math.
Phys. 33, 2989–2997, (1992).

23. Hui, S. K., On ϕ-pseudo symmetric Para-Sasakian manifolds, Acta Univ. Apulensis Math. Inform. 39, 161–178, (2014).

24. Hui, S. K., On ϕ-pseudo symmetric Kenmotsu manifolds, Novi Sad J. Math 43, 89-98, (2013). .

25. Kumar, K. T., Pradeep, Bagewadi, C. S. and Venkatesha, Projective ϕ-symmetric K-contact manifold admitting quarter
symmetric metric connection, Differ. Geom. Dyn. Syst. 13, 128–137, (2011).

26. Prakash, A., On concircularly ϕ-recurrent Kenmotsu Manifolds, Bull. Math. Anal. Appl. 27, 287–295, (1952).

27. Prakasha D. G., On extended generalized ϕ-recurrent Sasakian manifolds, J. Egyptian Math. Soc. 21, 25–31, (2013).

28. Prakasha, D. G., On ϕ-symmetric Kenmotsu manifolds with respect to quarter symmetric metric connection, Int.
Electron. J. Geom. 4(1), 88–96, (2011).

29. Prvanovc M., Extended recurrent manifolds, (Russian) Izv. Vyssh. Uchebn. Zaved. Mat., translation in Russian Math.
(Iz. VUZ) 43 (1), 38–47, (1999).

30. Sach, R. K. and Hu, W., General Relativity for Mathematician, Springer Verlag, New York, 1977.

31. Shaikh, A. A., On Lorentzian almost para contact manifolds with a structure of the concircular type, Kyungpook Math.
J. 43, 305–314, (2003).

32. Shaikh, A. A. and Baishya, K. K., On concircular structure spacetimes II, American J. Appl. Sci. 3, 1790–1794, (2006).

33. Shaikh, A. A. and Baishya, K. K., On concircular structure spacetimes, J. Math. Stat. 1, 129–132, (2005).

34. Shaikh, A. A. and Hui, S. K., On extended generalized ϕ-recurrent β-Kenmotsu Manifolds, Publ. Inst. Math. (Beograd)
(N.S.) 89(103), 77–88, (2011).

35. Shaikh, A. A. and Hui, S. K., On locally ϕ-symmetric β-kenmotsu manifolds, Extracta Math. 24(3) 301–316, (2009).

36. Shukla, S. S. and Shukla, M. K., On ϕ-Ricci symmetric Kenmotsu manifolds, Novi Sad J. Math. 39(2), 89–95, (2009).

37. Takahashi, T., Sasakian ϕ-symmetric spaces, Tohoku Math. J. 29, 91–113, (1977).
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