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Generalized Decomposition Integral of Real Functions with Respect to Fuzzy Measures *

Anca Croitoru®, Alina Iosif and Anna Rita Sambucini

ABSTRACT: In this paper we define a type of generalized Riemann-Lebesgue (decomposition) integral for
non-negative real functions with respect to two non-additive set functions. For this integral we present some
classical properties.
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1. Introduction

Different types of integrals in non-additive or set-valued frameworks have been developed, moti-
vated by challenges in many fields such as economics, game theory, fuzzy logic, and data mining (see
[4,33,34,31,24,2,11,25,26,5,3,9,6,19,20,21,18,12,7,8,10,16,23,32,35,36,28,29,1] and the references therein).

In the literature, various generalizations of the classical Riemann and Lebesgue integrals are known.
One notable extension, called the Riemann-Lebesgue integral, was introduced by Kadets and Tseytlin in
2000 ([17]) for vector-valued functions with respect to countably additive measures. Comparative studies
between the Birkhoff integral and the Riemann-Lebesgue integral have been presented in [30].

More recently, in 2020, Candeloro et al. [7] explored some properties of the Riemann-Lebesgue integral
within the non-additive setting.

In this paper, we propose a new type of decomposition integral based on Riemann-Lebesgue integra-
bility for nonnegative real-valued functions with respect to two non-additive set functions. Our approach
is inspired by previous works such as [16,35,36,1,27,15,22]. The paper is organized as follows: Section
2 introduces the topic and reviews some fundamental concepts. In Section 3, we define the generalized
decomposition integral for nonnegative functions relative to two non-additive set functions, and we ex-
amine key properties such as monotonicity with respect to the set, the integrand, and the set functions;
homogeneity; additivity, with respect to the set and the set functions, and transformation rule. Finally
concluding remarks are presented.

The development of this generalized integral may open new avenues for applications across various
fields: for example, in Economics, this framework can be used to model preferences or utility functions
in uncertain environments where traditional additive measures are insufficient. The integral can also be
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applied to analyze strategies in cooperative or non-cooperative games where pay-offs or utility functions
are non-additive, allowing for more flexible modeling of coalition formation and strategic interactions or
it can provide a tool for aggregating fuzzy data, leading to more accurate reasoning in fuzzy inference
systems.

Finally, the generalized non-additive integral can be a valuable tool in image processing and analysis,
especially when dealing with noisy data. In image reconstruction, for example, pixel intensities or features
often come with uncertainty that traditional additive measures may not adequately capture. By using
this non-additive integral, it becomes possible to model and aggregate information from different regions
or sources. This approach can improve the robustness of image reconstruction, enhance noise reduction,
and better preserve important details, leading to higher quality and more reliable images, see [10,11,2].

2. Preliminaries

Denote N* = {1,2,3,...}. Let R} = [0,00) and (X, |- ||) be a Banach space. Suppose S is a nonempty
set, at least countable, and C a o-algebra of subsets of S.
For every nonempty set A C S, let P(A) be the family of all subsets of A. As usual, let A° =5\ A and
let x4 be the characteristic function of A.

If P and P’ are two countable partitions of S, then P’ is said to be finer than P,
P <P (or P' > P), if every set of P’ is included in some set of P. (2.1)

We will use the symbol &(A) to denote the family of all countable partitions of A whose elements belong
to C; if A =5 we will use simply Z.

For a set function m : C — R, the usual definitions as in [7,10,14] are considered. For the sake
of completeness, we recall some of them. Throughout the paper we consider set functions m such that

m(() = 0.

Definition 2.1 ([14]) Consider a set function m : C — Re. Let B,C be arbitrary sets in C. Then m is
called:

2.1.i) monotone if m(B) < m(C), when B C C;

2.1.ii) fuzzy if m is monotone and m(0) = 0;

2.1.iii) submodular if m(BUC) +m(B N C) < m(B) + m(C);
2.1.iv) additive if m(BUC) = m(B) + m(C), when BN C = {;
2.1.v) subadditive if m(BUC) < m(B) +m(C);

2.1.vi) superadditive if m(B U C) > m(B) + m(C).

Definition 2.2 ([7, Definition 4]) Let m : C — Ry be a set function.

2.2.1) The variation of m is the set function m : P(S) — [0, +o0] defined, for every B C S, as
m(B) = sup{>" m(B)}.
i=1
where the supremum is extended over all finite families of pairwise disjoint sets {B;}_; C C, with
B; C B, for everyi € {1,...,n}.
2.2.ii) m is said to be of finite variation on C if m(S) < co.

A property (P) holds m-almost everywhere (denoted by m-a.e.) if there exists E € C, with m(E) = 0,
so that the property (P) is valid on S\ E.
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Definition 2.3 ([7, Definition 5]) Let v : C — R{ be a set function. A vector function g : S — X is
called absolutely (unconditionaly respectively) v-Riemann-Lebesgue integrable (on S) if there exists a € X
such that for every e > 0, there exists I, € &, such that for every Il € P, Il = (Ey,)nen, finer than 1.,
(II > 11, in the sense of (2.1)):

2.3.i) g is bounded on every E,, with v(E,) > 0 and

+oo
2.3.ii) for every s, € E,, n € N, the series Y, g(sn)v(Ey) is absolutely (unconditionaly respectively)
n=0
convergent and

<eE.

Z 9(sn)v(En) —a

n=0

Remark 2.1 We call a = ((A)RL)/ gdv the Riemann-Lebesgue integral of g (on S) with respect to v.

s
This integral was introduced first in [17] in the countably additive case. Obviously if a exists, then it
is unique. According to [7], the sets of all absolutely (unconditionally respectively) Riemann-Lebesgue

integrable functions on S, are linear spaces. If X is finite dimensional, the two classes coincide and we
denote with RL(v, S) this class.

Other properties of Riemann-Lebesgue integrable functions in non-additive case can be found in [12,7,10,
13]. Note that, thanks to the definition, the introduced integral which is a decomposition-type integral,
does not need the measurability of integrands.

It is also additive, while integrals such as Choquet, Pan, concave or Shilkret are generally only subadditive.
On the other hand not all characteristic functions are integrable in this sense and, those that are, do not
have in general integral equals to the v value of the set.

The described definition permits the integration of functions with respect to measures that are not
necessarily additive, such as capacities or, more generally, fuzzy measures.

3. A Generalized Decomposition integral

Originally, as highlighted in the Introduction, the integrals with respect to non-additive measures
were applied in potential theory and statistical mechanics, and they have evolved into a valuable tool for
addressing uncertainty within the frameworks of imprecise probability theory, decision theory, and the
analysis of cooperative games with applications extend to fields such as finance, economics, and insurance.

In order to motivate the generalized decomposition integral that will be considered in this section
we recall, as an example, that a fundamental challenge in Mathematical Economics involves identifying
equilibrium. In [8] a model was considered where the space of agents is partitioned into a large number
of sections, each representing an autonomous economic subsystem. Additionally, coalitions may form
across members of different sections according to specified rules.

The mathematical framework employed was a product space X* := X x [0,1], where each section
corresponds to the set X x {y}. X denotes a typical section of agents and is equipped with a o-algebra,
while the interval [0, 1] was endowed with the standard Lebesgue o-algebra B and the Lebesgue measure
A. Within each section the o-algebra product was considered, along with a fuzzy measure p, defined on
it. Following this idea we introduced here an integral, based on the Riemann-Lebesgue integrability, for
functions defined in S x R .

In this setting also Rar will be associated to a set-function not necessarily additive. Results of this
type were also given in [16,35,36,1,27,29] for the Choquet integral.

So, the following condition will be considered:
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(H) let (S,C), and (RJ, €) be two measurable spaces endowed with two o-algebras and two set-functions
p:C— RE and v : & — R, both vanishing on the empty set and such that {0} € £.

Let .7 () the family of all y-measurable functions f : S — RJ. For every f € % (u) and for every A € C,
let
EY :={s€S: f(s) >a}

and uﬁ ut R; — RJ be the function defined by
uﬁ#(a):u({seA: f(s) > a}) = pu(EF NA), Va > 0. (3.1)

Definition 3.1 We say that a p-measurable function f : S — R{ is (v, p)-integrable on A € C if ul‘ﬁ"u 1
v-RL integrable on Ry . In this case

/A* fd(v,p) == (RL) /[0,00) uﬁﬂ dv = (RL) /[0700) u{se A: f(s) > a})dv(a) (3.2)

is called the generalized decomposition integral of f on A with respect to (v, ).

For every A € C let Grr(v, 1, A) be the space of all y-measurable non-negative functions f such that the
integral (3.2), valued on A, is finite. If A =S we denote it with Grr (v, ).

Remark 3.1 If v is the Lebesgue measure, then the above integral reduces to the Choquet integral.

Example 3.1
3.1.a) If u(A) =0 for every A € C and v is of finite variation, then / fd(v,u) =0.
5

3.1.b) Suppose that v is RL-integrable, according to [12, Definition 7]. If f is a constant function,
namely f(s) = c € R{, for every s € S, then f € Grp(v, ) and

/ (v, 1) = () - v((0, ).

3.1.c) Let (Rf,B,)\) with B the Borel o-algebra and A be the Lebesgue measure. Let (S,C,u) =
([0,1],B([0,1]), A?). Let f :[0,1] — R be defined by f(x) = z; f is measurable.
In this case, for every @ > 0 and A € B([0,1]), it is

uﬁu(a) =p({zcA:x>a}) = {zc[0,1]:2>a}NA).

Now, let A =10,1]. Then
ufy (@) = (1= a)*xpu.

In this case the integral coincides with the Riemann one and then

*

fdlv, p) :/0 (1—a)’da = %

[0,1]

3.1.d) Let (S,C,u) = (N,P(N), u) with p(0) = 0 and u(A4) = 1 otherwise. Let f : N — R defined by
f(n) =n, as before f is measurable.
Let (RJ, B,v) with B the Borel o-algebra and v(E) = 0 if E is a bounded set and v(FE) = 1 if E is
unbounded. In this case, for every @ > 0 and A € P(N), it is

uﬁ#(a):u({neA: fn)>a})=p{neN:n>a}nA) =1
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Now, let A =N, fix ¢ > 0 and consider P. a countable partition of R(J{ composed by bounded sets,
for example
P.:={[n,n+1[, n € N}.

Then, for every partition P = {En, ne N} > P., we have

= +oo
S (B = Y v(E) =0
n=0 n=0

and then / fd(v,p) =0.
N
Troughout the section we refere to p defined on the measurable space (S,C) and v to (R{,€) and
both satisfies conditions given in (H).

3.1. Case A: v of finite variation

In this subsection properties of the Grr (v, 1) integral are exposed when v is of finite variation. We
start with a dominating result.

Proposition 3.1 Let f € % (u) be such that u?’# is bounded. Then f € Ggryr (v, 1)-integrable and

/S fd(v,u) <D(RY) - sup ufju(a).

a>0

Proof: Bounded and measurable functions u? ., are RL-integrable with respect to v and the assertion
follows by [7, Proposition 1]. O

Remark 3.2 From Proposition 3.1 it follows that # (u) C Grr (v, u) when p is fuzzy and v is of finite
variation, since
sup () < pu(8) < +oc,
a€l0,00)

The integrability of a function in a measurable set is obtained via the integrability on the whole set
S of the product of the function with the characteristic function of the measurable set by Theorem 3.1.

In the subsequent Theorems 3.1, 3.2 and 3.3 of this subsection we suppose also that v({0}) = 0.
Theorem 3.1 Let A € C be fized and let f € F(u) N Grr(v,pu, A). Then

/A*fd(u,u):[; Fxad(v ).

Proof: By definition i
/A fd(v, ) = (RL) /S uﬁ#(a) dv(a),
where uﬁ# (o) = p(EF N A) for every a > 0 and
[ peadw.n = ) [ (0 dvfa),
where

S ()= {M(S) ifa=0

u =
Fxam WEFNA) ifa>0.
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Let us observe that uf)u(a) = u]ScXA’M(a) v-a.e. and

sup ‘uﬁu(a) - U?XA7M(a)| < +o0.
a€l0,00)

So we apply [7, Theorem 1] and obtain

/fd(wu) = (RL)
A

which concludes the proof. O

Moreover the integrability is hereditary on the measurable subsets, as the subsequent Theorem 3.2 shows.

Theorem 3.2 Suppose p1 : C — R is bounded. If f € F(u) N Grr(v,u) then, for every A € C,
f€Grr(v,u,A) and

[ tawn = [ fadon).
A s
Proof: Let A € C. According to Definition 3.1, we have to prove that the function uﬁ#(a) = p(EF NA)

is Riemann-Lebesgue integrable with respect to v.
Since p is bounded, then the function u‘f“, 18 bounded too. According to [7, Proposition 1] it results that

uﬁ . € RL(v,S). Now the conclusion follows by Theorem 3.1. O

Finally the integral of a function which is p-a.e. zero valued is null.

Theorem 3.3 Let yu: C — R be a fuzzy measure. Let f € F(pu) be such that f = 0 p-a.e.. Then
f € Grr(v,pn) and

/S*fd(u,u)zo.

Proof: Suppose f =0 p-a.e. and consider B = {s € S; f(s) > 0}.

Then pu(B) =0 and f(s) =0, for every s € S\ B. Let o > 0.

If @ =0, we have EJQ ={s € S; f(s)>0} = S and for every a > 0, the set
Ef ={s€S;f(s)>a}eCnNB.

Since i is monotone it results that u(E£¢) = 0. Therefore,

g _Ju(S) fora=0
ufu(@) = {0 for o > 0.

Since v({0}) = 0, then u‘;“(a) = 0 v-a.e. and it is bounded by pu(S).
By [7, Theorem 2], uiﬂ € RL(v,S) and

0= (RL)/SUJSC’M(OO dv(a) = /S* fdy,p).
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3.2. Case B: additional assumptions on p

In this subsection we will introduce additional assumptions on the set function p in order to obtain
some other properties of the Gry, integral.

Independently from Theorem 3.3 we can obtain a result of integrability when integrands are equal
p-a.e. imposing assumptions on p rather than v.

Proposition 3.2 Suppose pu : C — R{ is a fuzzy subadditive measure. Let f,g € F(u) be such that
[ =g p-ae. If f € Grr(v,p), then g € Grr(v,p) and

/q*fd(vau)=[g*gd(v,u)~

Proof: Let B = {s € S; f(s) # g(s)}. Then u(B) =0 and f(s) = g(s) for every s € S\ B. We observe
that for every a > 0,
E} CEUB, E® C B} UB,

Since p is monotone and subadditive, it follows that for every a > 0 it is
n(EF) = n(Ey)

and this implies that

S S
uf,u(o‘) = uy H(oz).

s

So the conclusion holds. O

Proposition 3.3 Let i : C — RY be a fuzzy measure and f € F(u). If f is Grr(v, 1) integrable on the
sets A, B € C, with A C B, then
[ tawm < [ tdw.
A B

Proof: Since A C B, we have E]?‘ NAC E}’ N B, for every a > 0.
By the monotonicity of i it follows that u(E¢ N A) < u(E¢ N B) for every a > 0.
Applying [7, Theorem 6], it results

/ fd(y,,u)=(RL)/uﬁMdV§(RL)/u?MdV:/ fdv,p).
A s s B

O

The monotonicity of the set-function p allows also to obtain monotonicity results between integrals and
integrands (Theorem 3.4) and between integrals and set-functions (Theorems 3.5 and 3.6).

Theorem 3.4 Let pn: C — R be a fuzzy measure and fi, fo € F(u) such that fi < fo. If f1,f2 €
Grr(v,pu, A), for some A € C, then

/A* frd(v, 1) < /A fo d(v, ).

Proof: We observe that Ef C EY, for every o > 0. Then, since p is monotone we have, for every a > 0,

H(ES 01 A) < p(ES 0 A).
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According to [7, Theorem 6], it follows

/fld(V7ﬂ) = (rL) [ p(EF, NA)dv <
A

IA
=
)

w(Es, NA)dv = /A fad(v, ).

O

Remark 3.3 Theorem 3.4 also works in the following hyphotesis: p is a complete additive measure and
1 < fa prae.

Theorem 3.5 Let y1, 0 : C — RY be such that uy < po setwise, (namely pi(E) < us(E), for every
E €C) and a function f € F(u;), i =1,2. Let A € C be such that f € Grp (v, p;, A), for i =1,2, then

/A* fd(v,m) < /A Fd(w, ).

Proof: By hypothesis, for every a > 0 we have p1(E$ N A) < p2(EF N A).
By [7, Theorem 6], it follows

/ fd(v,pm) = (RL)/ul(E;‘mA) dv <
A S

IA

(RL) / ,ug(E}’ NA)dv = / fd(v, p2),
s A
which finishes the proof. O

Theorem 3.6 Let v;,: &€ — R}, i = 1,2 be such that vy < vy setwise in € and f € F(u). If there is
A € C such that f € Grr(vi,p, A) N GRrr(va, 1, A), then

[ siwn < [ saeam.
A A
Proof: Since f € Grr(v1, p, A) N GRrr(va, p, A), then by [7, Theorem 7], it results

p(EF N A)dvy

IN

/fd(vl,u) ‘= (RL)
A

<  (RL)

o o

p(EF N A)dvy ::/A fd(va, pm).

3.3. Case C: Additivity properties

In this subsection we will prove that the integral is additive with respect to set-functions, proving it
separately.

Proposition 3.4 Let pu,v be as in (H) and f € F(p). If there is A € C such that f € Grr(v,p, A),
then, for every a,b >0, f € Ggr(av,bu, A) and

[ttt =ab- [ g,
A A
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Proof: The conclusion follows from [7, Theorem 3] and we have

/ fd(av,bp) = (RL)/ bu(Ef N A)d(av) =
A [0,00)

ab - (RL)/ w(EF N A)dv = ab- / fd(v, ).
[0,00) A

Proposition 3.5 Let p;, i = 1,2, be set functions as in (H) and f € F(;),1=1,2.
If there is A € C such that f € Grr (v, pi, A), i = 1,2, then f € Grr(v, 1 + po, A) and

/A F v + o) = /A fd(v,m) + /A f (v, ).

Proof: The Gy, integrability of f with respect to (v, 1 +pus2) on A follows from [7, Theorem 3]; moreover

/ fdw,pr +p2) = (RL)/ (u1 + /LQ)(E? NA)dv =
A [0,00)

= (RL) / p(EF NA)dv + (RL) / p2(EF NA)dv =
[0,00 [0,00)

)
- /fd(u,u1)+/ fd(v, pa).
A A

O

Proposition 3.6 Let v;,i = 1,2, be set functions as in (H) and f € F(u). Let A € C be such that
f€Grr(vi,u,A), i =1,2, then f € Grr(v1 + 2,1, A) and

[ tawnvva = [ gdon+ [ fdosn.
A A A
Proof: The conclusion holds by [7, Theorem 4] and
/ fdw +va,p) = (RL)/ p(EF N A)d(vy +v2) =
A [0,00)

= (RL)/ u(E? N A)dv, + (RL)/ ,u(EJ?‘ NA)dvy =
[0,00)

[0,00)
= /fd(l/1,u)+/ fd(va, p).
A A
O

Finally, using again monotonicity of p we are able to consider the integrability of the supremum or the
infimum of two integrands asking, a priory, the integrability of all the involved functions.

Theorem 3.7 Let p be a fuzzy submodular measure and f,g, fV g, fANg € F(u)NGrr(v, 1, A) for some
A €C, then

/A*(f\/g)d(z/,,u)+/A*(f/\g)d(l/,u) < A*fd(y7ﬂ)+[4*9d(V>u)~

Proof: We observe that
E?V g = Ej‘i‘ U E;‘
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and
Ef\, CEFfNEY.
According to [7, Theorems 3 and 6], we have

*

/*(fvzi)d(v,u) +/ (fAg)dv,p) =
A

A

= (RL)/ w(EFy, N A)dv + (RL) w(EipgNA)dy <
[0,00) [0,00)

< (RL)/ p((EF UEY)NA) dz/Jr(RL)/ wWEFNEFNA)dy <
[0,00) [0,00)

< (RL)/ w(EF NA)dv + (RL)/ w(Ey NA)dy =
[0,00

(0,00)

)
:/A*fd(u,u)Jr/*gd(%u)-

A
|

For what concernes the additivity with respect to the sets where we integrate, only a partial result is
obtained for additive measures.

Theorem 3.8 Let 1 : C — R be an additive measure, A,B € C with ANB =0 and f € F(u). If
f€Grr(v,u, AUB), then f € Grr(v,pu, A) N Grr(v, u, B) and

iy = [ gaw+ [ i),

AUB

Proof: By Theorem 3.2 f € Grr(v, u, A) NGrr(v, u, B). Applying the additivity of x4 and [7, Theorem
3], we get

fdlv,p) = (RL)/ w(EF N(AUB))dv = (RL)/ w(EF NA)dv +
AUB [0,00) [0,00)

b /[WMEan)dv: | i+ [ ra.
O

While for integrands, in general the integral of a sum is not the sum of integrals. As an example
we can consider two scalar functions that are not comonotonic, v = X is the Lebesgue measure and we
consider the Choquet integral.

Theorem 3.9 Suppose i : C — R{ is a superadditive fuzzy measure. Let f,g € F(u) be such that
fi9,f+9€Grr(v,n). Then

[ G+9dean = [ savp+ [ gdw.. (33)
s s s
Proof: For every a > 0,
Ef UES C EY,,.

Since p is monotone, then

N(E? U Eg) < /“L(E?-‘rg)v
for every a > 0. Applying superadditivity of u, we have

uf g (@) = u(Bfy) > w(EY) + n(Ey) =
= uf () +uy (o),

for every @ > 0. Now, the conclusion follows by [7, Theorems 6 and 3-3.c)]. O
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Remark 3.4  However, there are functions for which the inequality (3.3) becomes an equality: let
(S,C,p) = (N,P(N), u) and (R{,E,v) = (R{, B,v) as in Example 3.1.d) and f,g: N — R, defined by
f(n) =an,g(n) =bn, a,b € (0,400). Then:

[ raww = [ gdwn = [ (7+9)dwn) =0
Finally we consider an integration by substitution.
Let T # 0, ¢: S — T be a function and A = {E C T; ¢~ }(E) € C}. Let up~" be the set-function
pp~t: A= R, defined for every E € A by (up ) (E) = p(e *(E)).
It is known that A is a o-algebra of subsets of T and (ue~1)(0) = 0.

Theorem 3.10 (Transformation Rule) Let T be a nonvoid set, ¢ : S — T a function, let A and pp=*

be defined as above and consider a function g : T — RY. Then g € Grr(v,up~',T) if and only if
gow € Grr(v, 1, S). In this case,

[ st = [(gopraw.

Proof: For every a > 0, it holds

o (Ey) = Egyy,

which implies
e~ (Eg) = i(Egoy)-

Now, this leads to the integration by substitution. i

Conclusion

A type of generalized decomposition integral based on the Riemann-Lebesgue integral is introduced
for real-valued functions with respect to two set functions. Several classical properties of this extension
are discussed, including monotonicity with respect to the set, the function, and the set functions; homo-
geneity; additivity concerning the set and the set functions; and a transformation rule.

For future research, we plan to investigate additional properties of this generalized integral, such as var-
ious inequalities, convergence results, and comparisons with other types of known integrals. We are also
interested in finding general condition to have additivity with respect to the functions.
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