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On the Existence of Renormalized Solution for Some Nonlinear Parabolic Problems in
Musielak-Orlicz Spaces
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ABSTRACT: In this paper, we will prove in Musielak—Orlicz spaces, the existence of renormalized solution for
nonlinear parabolic problems of Leray-Lions type, in the case where the Musielak—Orlicz function ¢ doesn’t
satisfy the Ag-condition while the right hand side f belongs to L'(Qr).
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1. Introduction and Basic Hypothesis

Let © be a bounded Lipschitz domain of RN (N > 2), and let ¢ be a Musielak-Orlicz function
that satisfies the log-Hélder condition, its Young conjugate function is denoted by @ and verifying As-
condition. Let T be a positive constant, and we set Qr = Q x (0,T).

In this paper, we consider the following strongly nonlinear parabolic problem

856(:) + A(u) + H(z, t,u, Vu) = f + div(d(z, t,u)) in Qr,
u(a,t) =0 on 99 x (0.T), (1.1)
u(t =0) = uo in Q,

where b : R — R is a strictly increasing C!(R)-function, and satisfying the following conditions :
Vs €R, by <b(s)<by and b(0)=0. (1.2)

The mapping
A:D(A) C Wy Ly (Qr) — WMLz (Qr)
defined by A(u) = —div(a(z,t,u, Vu)) is a Leray-Lions operator, where a : Q7 x R x RY +—— R is a
Carathéodory function that satisfying the following conditions :
la(z,t,r,€)] < p1 (ao(, ) + 35 (@(x, pa|r]) + 55 (p(a, p3l]))
(a(x’tara 5) - (Z((ﬂ,t,?’, f*)) : (5 - g*) > 07
a(.l?,t,?",f) f > O“)O(x7|§|)’ ( 5)

where v is a Musielak-Orlicz function such that ¥ << ¢, ao(-,-) € Eg(Qr), a > 0 and p; > 0 for
i =1,2,3, such that for a.e (z,t) € Q7 and for all » € R and &,¢* € RY with & # ¢*. The Carathéodory
function ¢ that satisfying the following condition :

lp(x,t,7)| < colz, t)B, Lo(, %U)(r)\) for a.e. (x,t) € Qr and for all r € R, (1.6)
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1
where 0 < o9 < min (17 b1> and A\ = diam(Qr), with [|co(.,.)|| Lo (@r) < ﬁ.

Let H : Q7 x R x RV —— R is a Carathéodory function such that for a.e. (z,t) € Qr, and all » € R and
all € € RN
[H (2, t,7,8)| < h(z,t) +d(|r])e(z, [€]) (1.7)

where d : RT —— RT is a continuous positive function which belongs to L>(R"), h(z,t) € L'(Qr) and
H satisfies the classical sign condition

H(z,t,r,&)r > 0. (1.8)
felLl'(Qr), (1.9)
ug € L' (Q). (1.10)

Under these assumptions, we establish an existence theorem for renormalized solutions of the problem
(1.1).

In the setting of classical Sobolev spaces LP(0,T; W1P(Q)) Porretta has proved in [22] the existence
of solutions to problem (1.1), with b(u) = w and H being a nonlinearity satisfying a natural growth
condition.

In the case where H = 0, the existence and uniqueness of renormalized solutions for parabolic problems
of type (1.1) in the Orlicz space framework has been proved by Aberqi et al. [1], while f belongs to
LNQr).

In the Musielak-Orlicz framework, Benkirane et al. in [12] have studied the existence of entropy solutions
for a nonlinear elliptic problem of the type :

A(u) + H(z,u, Vu) = div(g(x,u)) + p in £,

where 1 is assumed to belong to L'(2) + W~1E4(Q). Many papers deals the existence of solutions of
elliptic and parabolic problems under different hypotheses in order to get the fundamental results, we
refer the reader to [2], [3], [6],[7], [8], [9], [10], [11], [16], [18] and [19]. The paper is organized as follows
: In section 2, we give some preliminaries results. Section 3 is devoted to some auxiliary lemmas which
can be used to our result. Finally, in section 4, we present the sense of renormalized solution associated
with the parabolic problem (1.1). Moreover, we will prove the existence result.

2. Preliminaries
Let Q be a domain of R, and let p(z,t) : Q x R* — R* be a function such that :

(1) o(z,-) is an N-function for all z € €, i.e. convex, continuous, strictly increasing with ¢(z,0) = 0,
p(x,t) > 0 for all £ > 0 and such that
(z,1)

t
lim sup M —0 and lim inf 20 — o, (2.1)
t—0 40 t—o00 x€Q t

(#4) (-, t) is a measurable function for all ¢ > 0.

A function ¢(x,t) which satisfies the conditions (¢) and (i7) is called a Musielak-Orlicz function.
The Musielak-orlicz function ¢ is said to satisfy the As-condition, if there exist k£ > 0, and a nonnegative
function ©(-) € L'(Q2) such that

o(x,2t) < ko(z,t) +O(x) forall x€Q and t>0. (2.2)

Let ¢(z,t) be a Musielak-Orlicz function such that ¢, (t) = ¢(x,t), and let ¢, be the nonnegative
reciprocal function satisfies

vz (p(a,1) = ¢ (2,05 () = t.
We say that ¢ grows essentially less rapidly than ¢ at 0 (resp. near infinity), and we write ¢ << ¢, if
for every positive constant ¢, we have
P(x, 0t)

————= =0 (resp. lim sup =0).
=0 2c0 QD(IL',t) ( t—00 2cq) Sa(xvt) )
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Remark 2.1 If ¢ << ¢ near infinity, then for all € > 0 there exists a nonnegative function h € L'(-),
such that
P(x,t) < (x,et) + h(x) forall t>0 and for a.e. x €. (2.3)

Let ¢ be a Musielak-Orlicz function, and u : Q — R be a measurable function. We define the modular

By ou) = / (@, [u(z)]) dz,

and the convex set
K, () = {u: Q — R measurable / ®, o(u) < +oo}

The set K,(2) is called the Musielak-Orlicz class. We define the Musielak-Orlicz space L,(€2) by the

vector space

L,(Q) = {u : Q — R measurable / e K,(Q) for some A > O} .

A
For a Musielak-Orlicz function ¢ we pose :

(@, ) = sup(st = p(x, 5))

@ is the Musielak-Orlicz function conjugate of ¢ in the sense of Young with respect to the variable s. In
the space L,(€2) we present the two norms :

||u¢,9=mf{x>o : /go(x '““)> dmgl},
Q A

which is named the Luxemburg norm and the so-called Orlicz norm by :

lullpo = sup / () (x)] da.

lwllz<1

These two norms are equivalent (see [21]).

The closure in L,(f2) of the bounded measurable functions with compact support in € is denoted by
E,(Q). It is a separable space (see [21], Theorem 7.10). We say that the sequence of functions u,, € L, (2)
is modular convergent to u € L, (1) if there exists a constant A > 0 such that

lim @, (“”A_ “) —0.

n—»oo

For ¢ and her conjugate function , the following inequality is named the Young’s inequality (see [21]) :
rs < p(z,r)+p(x,s), Vr,s>0, ae x €. (2.4)

Let u € L,(92) and v € Lz(12), thus we have :

< |lullg,ollv|lz,o  (the Hélder inequality (see [21])) (2.5)

/Q u(x)v(z) dx

We define the Musielak-Orlicz-Sobolev space as
WL, (Q) = {u € Ly(Q) : D*u € L,(Q), for all |a| < 1}.

The space L, () is endowed with the norm

. D%u
[lull1,p,0 = inf{A > 0: Z O, 0 (A> <1}

la<1
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Let ¢ be a Musielak-Orlicz function for all 2 € RY, we denote by V¢ the distributional derivative of u
on Qr for the order o € NV, We define the inhomogeneous Musielak-Orlicz-Sobolev spaces by

Wh Lo (Qr) = {u € L,(Qr) : Vou € Ly(Qr), forall a € NV |a| <1}.

WY E, (Qr) = {u € E,(Qr) : Viu € E,(Qr), for alla € NV |a| < 1}.

The space Wol’pr (Qr) is defined as the closure of D(Qr) for the norm topology in W'* L, (Q7). When
Q has the segment property, and ¢ satisfies the log-Hélder continuity, then the closure of D(Qr) with
respect to the weak o(IILg, IIE5)-topology denoted by Wol’wLw(QT), is also the closure of D(Qr) for the
modular convergence in WL, (Qr).

The dual space of Wol’zE@(QT) is given by

W La(Qr) = F= Y ViF,: F,€Ly(Qr)

| <1

The space W17 L=(Qr) is endowed with the norm

IE) = inf ) | Fallpoxr-

laf<1

3. Some Auxiliary Lemmas

We will use the following technical lemmas.

Lemma 3.1 (see [5]) (Approzimation theorem)) Let Q) be a bounded Lipschitz domain in RN (N > 2),
and let p and @ be two complementary Musielak-Orlicz functions which satisfy the following conditions :

1. There exists a constant 6 > 0 such that inf,cq ¢(x,1) > 0,

1
2. There exists a constant A > 0 such that for all z,y € Q with |x —y| < o we have

S

A
(2, 1) < t(lmﬁ) for all t>1.

(y,t)

S

3. If E C Q is a bounded measurable set, then / o(z,1) dz < co.
E

4. There exists a constant p > 0 such that p(z,1) < p a.e. in Q.

Under these assumptions, D() is dense in L, (£2) with respect to the modular topology, and D(2) is dense
in W3 L,(2) for the modular convergence and D(f2) is dense in W L, (Q2) for the modular convergence.

Remark 3.1 Let Q be a bounded subset of RV (N > 2). Then, the condition 4 in Lemma 3.1 implies
that the embedding W' Ly, () — Wh'(Q) is continuous. Since the embedding W ' L(Q) —— L'(Q) is
compact, thus we have the following compact embedding

WL, (Q) —— L'(Q)
Lemma 3.2 (see [14]) (Modular Poincaré inequality) Under the assumptions of Lemma 3.1, and by

assuming that o(x,-) decreases with respect to one of coordinate of x, there exists a constant A > 0 which
depends only on Q such that

/go(m7\u|)dx§/cp(x,)\|Vu\)dx for all w € Wy Ly(Q). (3.1)
Q Q



ON THE EXISTENCE OF RENORMALIZED SOLUTION FOR SOME NONLINEAR PARABOLIC PROBLEMS 5

Lemma 3.3 (see [13], Lemma 4) Let G : R — R be uniformly Lipschitz function, with G(0) = 0. If
u € WyLy(Q), then G(u) € Wy L,(Q). Moreover, if the set K of discontinuity points of G'(-) is finite,
then 5

8;2 a.ein{xeQ:u(z) ¢ K},

0 a.ein {x € N:u(zr) € K}.

9 ) ew
oz, G(u) =

(3.2)

For any k > 0, we define the truncation function by

r if Irl <k,
ki > k.
|

Remark 3.2 Let k > 0, it’s clear that the function T(-) verifying the assumptions of the Lemma 3.3,
then Ty (u) € Wy Ly, () for any u € Wy L,(2). Moreover, we have

Tk(T) =

)
Ty (u) _ a;”_ for |s| <k,
O 0 for |s| > k.

Lemma 3.4 Suppose that v,,,v € L'(Q) such that
i) v, >0 a.cin €,

i) v, — v a.ein

iii) /Qvn(x)dx—>/ﬂv(x)dm.

Then v, — v strongly in L*(Q).

Lemma 3.5 (see [13], Lemma 1) Let u € L,(Q) and (un)n be a uniformly bounded sequence in
L,(). If up — u a.e. in Q, then u, — u weakly in L, () for o (L,(Q), E5(9)).
Lemma 3.6 (see [11]) Let a < b € R and Q be a bounded domain of RN with the segment property,
then 5

{u € Wy Ly,(x]a,b]) : a—? € Wy " L, (x]a, b)) + Ll(Qx]a,b[)} C C(a, b, L*(Q)).

Lemma 3.7 (see [17]) Under assumptions (1.2)-(1.10), and let (un)n be a sequence in Wol’mLW(QT)
such that:

Up — u  weakly in Wol’mch(QT) for o(IIL,,I1E3),
(a(@,t, un, V), is uniformly bounded in (L5(Q7))",

lim (a(z,t,u, Vu,) — alx, t,u, Vux,)) - (Vu, — Vux,)dzdt =0,

n—oo QT

where X, is the characteristic function of Q" = {(z,t) € Qr : |Vu| <r}. Then,

Vu, — Vu a.e in Qr,

lim a(x, t, Uy, V) - Vu, dedt = / a(x, t,u, Vu) - Vudz dt,
n—oo QT T

p(z, |Vunl) = p(z, |[Vul|)  strongly in Ll(QT).
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In order to deal with the time derivative, we introduce a time mollification of a function u €

W()LwLw(QT)-
Thus we define, for all 4 > 0 and all (x,t) € Qr

uy(z,t) = [ u(x, s) exp(u(s —t)) ds,

where u(z, s) = u(z, s)X[o,1)(s) is the zero extension of u.

9uy

Lemma 3.8 (see [4]) If u € L,(Qr) then w, is measurable in Qr and 5t

u € K,(Qr) then

= p(u — uy) and if

/<P(337Uu)dl‘dt§/ p(z,u) drdt

Lemma 3.9 (see [23]) 1. Ifu € L,(Qr) then u, — u for the modular convergence in L,(Qr) as
1 —> 0o.

2. Ifue WOI’ILW(QT) then u,, — u for the modular convergence in Wol’sz(QT) as p — 0.

4. Main Result

Before we state our main result, we give the definition of a renormalized solution of (1.1).

Definition 4.1 A mesurable function u defined on Qr is a renormalized solution of problem (1.1), if
satisfies the following conditions :

Ti(u) € Wy Ly, (Qr),  for all k > 0, (4.1)
b(u) € L>=(0,T; LY(Q)), (4.2)

/ a(z,t,u,Vu) - Vudr dt — 0 as | — 400, (4.3)
{(5:)€Qr : I<|ul<I+1}

and, for every function S € W2 (R) wich S’ has a compact support, we have

33%(10 —div (S (u)(a(z, t,u, Vu))) + S"(u)a(x, t,u, Vu) - Vu
+ H(, 0, Va)S' (1) = 15/ (w) + div (' (w) o, 1,))) Y
- S"(w)p(z, t,u) - Vu in D' (Qr),
where Bs(t) :/0 b (w)S (w)dw and
Bs(u)(t =0) = Bs(up) in Q. (4.5)

Theorem 4.1 Under the assumptions (1.2)-(1.10), problem (1.1) admits at least one renormalized so-
lution.

Proof:
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Step 1 : Approximate problem
We define the following approximations :

bn(r) = b(T,(r)) for any r € R, (4.6)
an(z,t, 7, €) = a(z,t,T,(r),€) ae. (z,t) € Qr, Vr € R, V€ € RY, (4.7)
On(z,t, 1) = d(x,t, T (r)) ae. (x,t) € Qr, Vr € R, (4.8)
Hy(z,t,r,&) = To(H(z,t,7,€)) ae. (z,t) € Qp, Vr € R, V€ € RY, (4.9)
fn=Tu(f) implies that f, — f strongly in L'(Qr), (4.10)
g = Tn(ug) implies that wg, — ug strongly in L'(Q). (4.11)
Also, we consider the approximate problem :
Obn(un) . . .
—ar div(an(x,t, un, Vuy)) + Hy (2,8, U, Vuyp) = fr + div(én (2, t,uy,))  in Qr,
un(x,t) =0 on 90 x (0,7T),
Un(t = 0) = ugn () in Q.
(4.12)

It is clear that the Carathéodory function a, + ¢, satisfying the assumptions (11),(12) and (13) in [18].

Then, in view of Theorem 4 in [18], the approximate problem (4.12) admit at least one weak solution
1,z

un € Wy Ly (Q1)-

Remark 4.1 The explicit dependence in x and t of the functions a, ¢ and H will be omitted so that
a(z, t,u, Vu) = a(u, Vu), ¢(z,t,u) = ¢(u) and H(x,t,u, Vu) = H(u, Vu).

Step 2 : A priori estimates
Let £ > 0 and 7 € (0,7, by taking Ty(un)x(0,r) as a test function for the approximate problem
(4.12), we get

/Bg(un(T))dx—&—/ ap (Upy Vun ) VT (uy,) de dt
Q

Q-
+ H,, (un, V) Tk (uy,) dedt = Tk (uy) dz dt
Qr Q-
| o)V T () da it + / BY (un(0) da, (4.13)
Qr Q

T bn
where BJ'(r) = / 9 a(s)Tk(s)ds. By the definition of BJ(r), we deduce that
0 S

/B;;(un(T))dx >0 and /B;g(un(o))dx < kIb(uo) 2 -
Q Q
By (1.6) and using Young inequality, we have

|Tk(un)|

On (un) VI (uy) de dt < ||eo(., .)”Loo(QT)[aObl/ o(z, ) dx dt

Q- Q-

+ / (. [V T (un)]) dar ],

-

thanks to (3.1), we obtain

G (un) VT (up) dedt < |co(., )| Lo (@r) (obr + 1) / o(z, |VTk(uy)|) dx dt.
Qr -
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By (1.8), one has

H,, (up, Vup) Tk (uy,) dedt > 0.
Q-

Returning to (4.13) and using (1.5), we get

(Ozobl + 1)

/ A (U, Vur ) VT (uy) dodt < |[co(., )| Lo (0r) ”

T

/ A (U, V) VT (uy) do dt

+k (I1fallLr @) + 10(uo)l |21 @) »
so by (1.6), we get

/ an (2, t, Un, Vg ) VT (uy,) de dt < kCy. (4.14)
Qr

By (1.5), we obtain
/ o(x, VT (uy,)|) de dt < kCs. (4.15)

Moreover, we have

€

T;
inf o(x, ﬁ)meas{|un| >k} < / @ (m, |k(u")> dx dt
A {lun| >k} A

< [ ot 9T ot (4.16)
Qr
< kCh.
Finally
k
meast[un| > k} < #k — 0 as k— cc. (4.17)

inf,cq o(z, X)

For every n > 0, we have
meas{|un, — um| > n} < meas{|u,| > k} + meas{|uy,| > k}
+meas{|Tk(un) — Tk (um)| > n}.
From (4.15) we conclude that (Tj(un)), is bounded in Wy **L,(Qr), then by using Remark 3.1 there
exists a measurable function vy, such that Ty, (u, ) — vy, strongly in L' (Qr) as n — oo for a subsequence,

and thanks to the reciprocal Lebesgue’s theorem we can assume that Ty (u,) is a Cauchy sequence in
measure in Qr . Consequently, for any €, > 0 there exists ng(e,7) > 0 such that

meas{|u, — um| >n} <e forall n,m > ng(e,n).
This proves that (u,,) is a Cauchy sequence in measure in Q7. Then
Up — u  a.ein Q. (4.18)
Finally, for all £ > 0 we have
Ti(un) — Tk (u) weakly in Wol’wLLP(QT) for o(IIL,,I1E3). (4.19)

Let T’y € W%°(R) such that I'}, has a compact support supp(T'},) C [k, k]. We multiply the Eq. (4.12)
by I'\.(uy), to obtain in D' (Qr),
OB (uy,
% = div(an (tn, Vp)dn (n)) Tk (Un)) = an(tn, Vg ) T5 (un) Vg,
+ div(Ty, (un) ¢ (un)) = Ty (un) o (un) Vo — Hy (tn, Vg )T (uy,)

+ fn]'—‘gé(un)7

(4.20)
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N " by, (s)
where BFk(r):/O I'.(s) B ds.

First we have

|VBF1C (un)| S b1|VTk(un)H|Fk||Loo(R) a.e in QT,

by using (4.15), we obtain
(B (uy)) s bounded in Wy L, (Qr), (4.21)

since supp(I'}.) C [k, k] and supp(T'}) C [k, k] ,u, may be replaced by Ty (u,) in each of these terms.
As a consequence, each in right hand side of (4.20) is bounded either in W~1*Lz(Qr) or in LY(Qr) ,

we conclude that 5Bn
(F(,;t(un)) is bounded in L'(Q7) + W™ Lx(Qr), (4.22)

Now we will prove that
b(u) € L>=(0,T; L' (Q))
By using (4.13) and Fatou’s lemma, we deduce that

%/QBk(u(T))dm <o,

1
for almost any 7 in (0,7). By definition of Bj(r) and since EBk (u(7)) converges pointwise to b(u), as
k — 0, we conclude that b(u) € L>(0,T; L*(€2)).

Step 3 : Boundedness of an(Ty(un), VIi(uy)) in (Lz(Qr))N
Let ¥ € (E,(Q7))Y such that ||J] .0 = 1. By using (1.4), we have

/ an, (Tx (un), VI (uy)) - 9 dadt

T

< / an (Ti(un), VT (un)) - VI (uy) do dt — / an (Ti(un), ) - (VIg(uy) — ) dzdt
Qr Q

T

gkc—/ an(Tk(un),ﬁ)-VTk(un)dxdt—i—/ an (Ti(un), 9) - 0 da dt.,

T

For the two last terms on the right-hand side, in view of Young’s inequality we have

n (Tk(un), ¥
/ an (Ti(un), VI (uy)) - 9dx dt < ke+ 6p1 / %) (x, a(;i}u))) dx dt
T T 1

+3p1/ @(x,\VTk(un)Ddxdt—i—?)pl/ o(z, |9|) dz dt.

T
By using (1.3), (2.1) and the convexity of @, we obtain

5 (n o Bl

A ) < 2 @l an(e ) + 6o plTulun)]) + (o pald])
1

<
-3

we deduce that a, (T (uy,),d) is bounded in Lz(Qr)". This implies from (4.15) that

(@@, a0(x, 1)) + (@, p2k) + @(@, p3|9])) € L' (Q1),

/ tn (T (), VT (un)) - 9 ddt < C(k, ), V9 € (B (@)Y with [|9]]pq = 1,

where C'(k,¥) is a constant depending on & and 9.
Consequently, by using the uniform boundedness principe we conclude that

an (Ti(un), VT (uy)) is bounded in (Lx(Qr))" . (4.23)
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Step 4 : Some regularity results
Multiplying the equation (4.12) by the function Z;(u,) = T1(u,, — T}(u,)) and by applying the same
argument as in Step 2, we obtain

/ A (Un, V) - Vu, de dt + / |Hp, (tn, Vug)| dx dt
{I<|un|<l+1} {|un|>1+1}
<C fnZi(uy) dxdt + / |6y (wo.n)|dz |, (4.24)
Qr {luno|>1}

by combining (4.10) and (4.18), we get

lim an,(Un, V) - Vu, dedt + lim |Hy, (U, Vuy,)| do dt
e Ji< un <141} "0 S {lun|>141}
<C fZl(u)dxdt—i—/ |b(uo)| dz|
Qr {luol>1}

Applying Lebesgue’s Dominated Convergence Theorem and passing [ — oo, we obtain

lim lim sup/ a(Up, V) - Vuy, dedt = 0, (4.25)
{I<|un <141}

=00 nooo

and

lim limsup/ |Hp, (tn,, Vuy,)| da dt = 0. (4.26)
{lun|>1+1}

=400 n—s4oo

Step &5 : Almost everywhere convergence of the gradients

Let k > 0, since Ty(u) € Wy Lp(Qr) and D(Qr) dense modularly in Wy*Lyp(Qr). Then, there
exists a sequence (v;); C D(Qr) converges modularly to Ty (u) in Wy ** Lo(Qr) as j — oo, which implies
that

Ti(v;) — Ti(u) modularly in Wy Lo(Qr), (4.27)

and

Ti(v;) — Th(u) almost everywhere in W, " Lo(Qr)  for a subsequence. (4.28)
Let [ > 0, we define the Lipschitz real function S;(s) as follows
Sils) = 1= [Tisa(s) = Ti(s)]
Let n>pu>j>1>p > 2k, we denote by e(n, u, 7, 8,1) the real function that satisfies

lim lim lim lim lim e(n,pu, 4, 5,1) = 0.
=00 f—00 j—00 —+00 N—00

We set Wd = (Ts(Ti(un) — Ti((v;)))* and W) 5 = (Tp(Tie(u) — T ((v;),))* |

S
; d
By taking exp(D(|un|))W,, 3 Si(uys) as a test function in (4.12), where D(s) = / (T dr, we obtain
0

1 2 3 4 5 6 7 8
Lpigpd ¥ st ¥ Tngpd + Tnpgp T Inpgpd T Inpgpt = o + Tnog oo (4.29)
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with

by, (uy,
B = | ) exp(Du W81 ) o,

T

I} i1 = / an (Un, V) - VW”B exp(D(|unl))Si(uy,) dx dt,
Q

Ig,u,j,,@,l:/ A (Un, V) - Vg exp(D(|uy|))W "’]Sl(un)da:dt
QT

Iﬁﬂj Bl = / On(Un) - Vg, exp(D(Juy|))W Sl(un)dxdt

» i Bl = / O (up) - VW"ﬁexp( (lun]))Si(uy) dz dt,

o, d(unl) g
n,ujﬁl ¢n n Un o X ( (‘un‘)) Sl(un)dxdt
I,Z%m,l:/ Fo exp(D(Jun )W S (1) dv

QT
I8, = /Qh(x,t)exp(D(|un|))W;gSl(un)dxdt.

Starting by the terms I g and I8 npgp.00 We have exp(D(luy )W, Sl(un) 0 weak-* in L>(Qr) as
n, p, j — oo respectively, and h € L*(Qr) then

lim lim lim 17 nog Bl = 0- (4.30)

Jj—00 p—>00 Nn—00
Similarly, we have f,, — f strongly in L*(Q7) as n — oo then

lim lim lim 1% 51 =0. (4.31)

jroo proo n—soo kT

For the term I3 we have

n,p0,3,8,0

I,i’,’“’ml = f/ an (Up, V) - Vuy, exp(D(Juy|))W s B 81gn(un) dx dt
(1< un|<U+1}

<C an (U, V) - Vuy, dz dt.
{I<]un|<I+1}

By using (4.25), we get
Iy 0 < €(nsl). (4.32)

For the term I we have

W B,7,0

2
IERY

= / an(Ty(un), Vi (un)) - (VT (un) = VT (05)) Si(un) exp(D(|unl)) dz di
{ln | SK}N{O< T (un) Tk (v;) <}

- / ap(Un, VUy) - VI (v;),S1(un) exp(D(Juy|)) de dt.
{lun|>k}N{0< Ty (un) =Tk (v;)<B}

In view of (4.23), there exists wi1p € (L5(Qr))" that verifies an (Tt p(un), VIk+s(ty)) = witp weakly
n (Lx(Qr))Y, and since

Si(un) eXP(D(|Un|))VTk(Uj)uX{\un|>k}m{ong(un)—Tk(vj)”gg}
— Si(w) exp(D([u])) VT3 (03) 1 X {|ul>k}n{0<Tx ()~ Ti (v;)n <8} Strongly in (E,(Qr))Y  asn — occ.
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Then,
lim A (Un, V) Si(un) exp(D(|un|)) VT (v5), do dt
0 J{|un|>kIN{OS Tk (un) =Tk (v;) <A}
= / wWi+8S1(w) exp(D(|un|)) VTk(v)), dx dt.
{lu|>k}N{0<Tk (u) Tk (v;) . <B}
Hence,

lim lim w451 (w) exp(D(|u])) VT (uw) de dt
IO B0 S fu| >k} {0< Tk (u) — T (v;) n <B}

/ w51 (u) exp(D(Ju])) VT (u) dz dt
{lul>E}N{O< T () ~ Ty (w) <B)

=0.
This implies from exp(D(|u,|)) > 1 and S;(uy,) =1 for |u,| < k that

an (T (un), VI (un))Si(un)(VTk(un) — VT (vj)u) dz dt +£(n, 1, 5),
(4.33)

2
L0 = /
{|un‘Sk}ﬁ{OSTk(Un)_Tk(vj)HS/B}

Concerning the term IS,mj,ﬁ,l’ from (1.6) we obtain

o Q@
|60 (un) exp(D(|un]))Si(un)| < CF;  o(z, Tolb(l +1)]) € Le(Qr),
and since ¢ satisfies the As-condition, then by applying Vitali’s theorem we conclude
G (un) exp(D([u]))Si(11n) — () exp(D([u]))Sy(u)  strongly in (Ly(Qr))™ as n — ox.

Moreover, we have VW;Z; — 0 weakly in (Ly,(Qr))N as n,u,j — oo then

I3 e = €(n s g) (4.34)
Concerning the terms Ifl’#ﬁ’j’l and IS,uﬁ,j,l’ for n > 141 > k, we have Vu, S| (u,,) = VT 41(uy) sign(uy,)

a.e. in Qr. Since exp(D(\un\))W;Lg — exp(D(|u|))WZ”8 weak-* in L®(Qr) as n.u,j — oo, and the
sequence (¢ (Ti+1(un)))n converges strongly to ¢(Tj4+1(u)) in (E;(QT))N, thus from Vitali’s theorem we
deduce that

G (T (un)) exp(D(|un] ) W5 sign(un) — ¢(Ti+1(u)) exp(D(|ul)) W 5 sign(u)  strongly in (Ex(Qr))" -

e

In addition, we have VTj11(u,) — VTi11(u) weakly in (L,(Qr))™ as n — +oo, then

I’i,;t,j,ﬁ,l = 6(”7 ,LLv.]) (435)
Similarly, we obtain

I gpl = ' 4.36)

n, 1, J,0,1 a(n,,u,]). ( .

Finally, for the term I

.61 sing the same argument followed in [15] we obtain

I’I}L,M,j,ﬂ,l = E(n?ﬂajv 6) (437)

By combining (4.29) and (4.30)—(4.37) we conclude that

/ an(Tk (un)a VT (Un))sl(un)(VTk (un) - VT (vj)u) dx dt < 6(71, s Js Bv l): (438)
Tk (un) =T (v;) 1 <B}

Let r > 0, we set Q" = {(z,t) € Qr : [VIk(u)| < r} and Q = {(z,t) € Qr : [VI}(v;)] < r} and
denoting by x" and x7 the characteristic functions of Q" and Q7 respectively. Also, we set

R,k = (a(Tk(un), VIk(un)) — a(Tk(un), VI (W) (Vg (un) — VIi(u)).
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For 0 < § < 1, we have

OS/QT RfL,k dZdt—/QT R;;L,kX{ITk(un)_Tk(Uj)uIS,B} dl‘dt"‘\/QT Rika{ITk(un)—Tk(’Uj)u|>ﬂ} dl‘dt

According to Holder’s inequality, we obtain

4 1-6
/QT R kX1 () ~Ti (), < 4 E < </Q R kX Toc () =T (0),0| <} dffdt> (/ dffdf>

0
< (meas(Qr))' ™ (/Q B kX{I T (wn) =T (v) | <} 4 dt) )

and

1-6

5
/ R?l,kXﬂTk(un)—Tk(Uj)p|>,@} dl’ dt S </ Rn,k dl‘ dt> / de dt
Q" Qr {1 (un) =Tk (v5)u|>B}

Since a(Tk(uy), VIk(uy)) is bounded in (Lx(Qr))", thus
/ thkX{lTk(un)ka(vj)#|>ﬁ} dr dt < C’gmeas{(x,t) €Qr: |Tk(un) — T;C(vj)u| > 5}1_6.
o

Hence,

8
R,y da dt < Cy </Q B b X{|Toe () = Tie (v <5} 42 dt)

+ Comeas{| Ty, (un) — Ti(v;) | > B} 0.

QT

Additionally,
/Q B b X{I Tk (un) =T (v)u1 <} AT
< / (a(Tk(un), VIk(un)) — a(Tr(un), VIE(u)x")) - (VT (uy) — VT (u)x") dz dt.
{17k (wn) =Tk (v;) u|<B}

Let 7 > 0, by taking r > 7, we obtain

0

IN
S—

(a(Tk(un), VIk(un)) — a(Tk(un), VI(w))) - (VT (un) — VIg(v)) dz dt
QT T (un)—=Tr (v;)u|<B}

I
S—

(a(Tk(un), VIk(un)) — a(Tk(un), VIe(w)xT)) - (Vi (un) — VT (u)x™) dz dt
Q7| Tk (un) =Tk (v;)u|<B}

(@(Tk (un ), VT3 (un)) = a(Th(un), VTk(05)x7)) - (VTk(un) = VTi(v5)x]) dz dt

Il
—

U T (un) =T (vj) u|<B}

+/ a(Ty(up), VI (uy)) - (VTk(vj)X; — VTi(u)x") dx dt
{1 Tk (un) =Tk (v;) | <B}

+

/ (a(Tk(un), VI (vj)x7) — a(Tk(un), VI (u)Xx")) - VI (un) dxdt
{ITk (un) =Tk (v;) | <B}

a(Ty(un), VI (v;)x7) - VI (v;)x; dx dt
{T% (wn)—Tk(v;) | <B}

/ a(Tk(up), VTe(u)xT) - VT (u)x dx dt
{|Tk(“n — T (v ,L|<,3}
=+ +J3+Ji+ Js5.
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Now, we passing n, j, i, and 7 to infinity in each term of the previous inequality.
For the first term J;, we have

J1 :/ a(Tk(un), VIg(un)) - (VIi(un) — VIi(v)) ) de dt
{17k (wn) =Tk (v;) | <B}

- / a(Tk(un), VI (uy)) - (VTk(vj)XJT- — VT (vj),) dx dt
{17k (wn) =Tk (v) | <B}

- / a(Ti (1), VTe(wy)XT) - (VT () — VTi(07)x5) dar .
{I Tk (un) =Tk (v;)u|<B}

Thanks to (4.38), we get

/ (T (1), Vi () - (VT () — VT(v;),) derdt < e(m, i, 1, 1)
{|Tw (un)—Tr(v;)|<B}

Since a(T}(un), VIk(uy,)) is bounded in (Lz(Qr))Y, then there exists a measurable function w; €
(L&(Q7))N satisfying

a(Ty(un), VT (uy)) = @i, weakly in ((Lz(Qr))N  for  o(IlLg, IIE,).
Moreover, we have
(VTe(vi)XG = VTr(V) )X T (wn)=Te () 1 <83 — (VT (U)X = VTR(05) 1) X{IT0 () =T (0,) | < B}

strongly in (E,(Qr))™ as n — oo. Then,

lim a(Tk(un), VT (un)) - (VT (vj)x; — VTk(v)),) dz dt,
O STy (un) — T (v5) | <B}

/ ok (VT (07X — VT (v),0) d dt,
{|Tw (w) =Tk (v;)|<B}

On the other hand, we have
(T (un), VI (U)X T (wn) =T (o) l<8y — ATk (W), VIR (U)X T ()T (05)u1<8)
strongly in (E5(Qr))", and since (VT (un) =V T5(v5)X}) = (VT3 (u) =V Tx(v;)X}), weakly in (L, (Qr)) ™
for the weak topology o(IlL5,IIE,,).
Consequently, by passing j and p to infinity and applying the Lebesgue’s theorem, we conclude that
Jl S 5(”,#,].,1,7")-

Similarly, for the term J5, we have

lim lim lim Jy = lim lim @ (VT (vj)xj — VI (w)X") dz dt = 0.

Jro0 proonTreo IO IO STy (u) ~ T (v5) | <B}

Similarly, we obtain

lim lim lim J3 = / a(Tr(u), VT (u)x") - VIp(u)(1 — x7) dxdt = 0,

J—>00 H—>00 N—>00

lim lim lim Jy = —/ a(Tp(w), VT (u)x™) - VI (w)x™ dz dt,
Qr

J—+00 J4—>00 N—>00

lim lim lim Js :/ a(Tk(u), VT (w)x™) - VI (u)x™ dx dt.

J—00 =00 N—00
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Finally, we deduce that

Ry, dadt < Cy(e(n, 1, 7,1, 8))° + Cale(n, u)) .
Q"

Letting 8 tends to infinity, we obtain
/T(a(Tk(un), VTi(un)) — a(Ti(un), VIi(w))) - (VIk(uy) — VIg(w)) dzdt = e(n). (4.39)

Thus, in view of Lemma 3.7 we conclude that Vu,, — Vu a.e. in 7, and since 7 is arbitrary,
Vu, — Vu a.e. in Qp, (4.40)

Furthermore, by using (4.19), (4.22),(4.23),(4.40) and Fatou’s lemma, we get

n—-+o00

/ a(u, Vu) - Vudz dt < lim inf/ a(Un, Vi) - Vu, dz dt
{I<[u|<l+1} {i<un|<t+1}
—0 as [ —o0

Then, the condition (4.3) is established.

Step 6 : Equi-integrability of the non-linearities
In this step, we will show that

H,,(tn, Vu,) — H(u, Vu) strongly in L' (Q7).
From (4.19) and (4.40), we have
H,(upn,Vu,) = H(u,Vu) a.e. in Qr,

by using (1.5) and (1.7), we obtain

/ |Hn(un7Vun)|dxdt:/ |Hn(un7Vun)|dxdt—|—/ | Hy (tn, V)| dz dt
K KO un|<1} KO un|>1}

g/ h(x,t)dde”d(')”“"’(““’/ an(Ti(un), VT (un)) - VT (un) do dt
K « K

Jr/ | Hp (tn, Vuy)| d dt,
{lun|>1}

where K be a measurable subset of Qp and [ > 0.
Since h € L'(Q7) and by using (4.26) we have

=00 n—+4o0o

lim lim sup/ |Hy, (U, Vuy)| dz dt =0,
{lun|>1}

According to Lemma 3.7 the sequence
(an(Ti(un), VTi(uy)) - VT (uy))n i equi-integrable in Qr

Consequently

lim sup/ | Hy (tn,, Vuy)| dz dt = 0.
|[K|=0 n K

This proves that H,,(u,, Vu,) is equi-integrable.
Therefore, Vitali’s theorem allows us to get H(u, Vu) € L(Qr), and

H,(un, Vuy,) — H(u,Vu) strongly in L' (Qr). (4.41)
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Step 7 : Passage to the limit
Let S € W2(R) which is piecewise C'-function such that supp(S’) C [k, k]. Multiplying the
approximate problem (4.12) by S’(u, ), we get

%éiw — div (S/(Un)(an(un, vun))) + S”(un)an(un7 vu") ’ vun
- Ho(ttn, V) () = £/ () + div (S (w) b (un)) — S (1) (1) - Vit n D'(Qr),

(4.42)

w

where Bg(w) :/ v (r)S' (r)dr.

Now, we will pass to the limit as n — 400 of each term of (4.42).

Bs(un) . . :
— Limit of 857@): since S is bounded, and Bg(u,) converges to Bg(u) a.e. in Qr and weakly-*

ot
B B
in L*(Qr), then 827(;%) converges to 0 gt(U)

— Limit of S'(un)a(uy, Vuy,): since supp(S’) C [—k, k] we have

in D'(Qr) as n tends to +o0.

S (un)a(un, Vuy) = S (un)a(Tk(un), VI (uy))  a.e. in Qr.

The pointwise convergence of u,, to u as n tends to +oo, the bounded character of S’, and by Lemma
3.7, we conclude a (T} (un), VIk(uy,)) converges to a(Ty(u), VT (u)) weakly in (Lx(Qr))" allows us
to obtain S'(u, ) A(Tk(un), VTi(u,)) converges to S’ (uw)a(Ty(u), VI (u)) weakly for o (1L, I1E,),
and S’ (u)a(Tx(u), VIg(u)) = S (w)a(u, Vu) a.e. in Qp.

— Limit of S" (un)a(uy, Vuy) - Vu,: since supp(S’) C [—k, k], we get
S" (up)a(un, Vuy) - Vi, = 8" (up)a(Ti(un), VI (up)) - Vu,  ae. in Q.

The pointwise convergence of S (u,) to S”(u) as n tends to +o00, the bounded character of S” and
by Lemma 3.7, we conclude

S" (un)a(Ti(un), Vi (un)) - Vun, — 8" (w)a(Ti(u), Vi (u)) - Vu  weakly in L' (Qr)
as n — 400, and
S"(w)a(Ty(u), VTk(u)) - Vu = S"(u)a(u, Vu) - Vu  a.e. in Q7.
— Limit of S'(up)d(uy): since supp(S’) C [—k, k] we have
S’ (un)@(un) = 8" (un)$(Ti(un)) a.e. in Qr.
In a similar way, we obtain
S (un)p(uyn) = S"(u)p(u) weakly for o(IlLz, I1E,,).
— Limit of S"(un)d(un) - Vuy,: also we have
S” (un)p(un) - Vit = 5" (un)$(Tie(un)) - VT (un).
Using the weakly convergence of truncation, it is possible to prove that,

S () p(un) - Vi, — S”(u)é(u) - Vu strongly in L*(Qr).

— Limit of H(un, Vuy,)S (uy): we have u,, — u a.e. in Qr, S’ is piecewise C'. It is enough to use
(4.41) to get that H(uy,, Vu,)S' (uy) — H(u, Vu)S'(u) strongly in L*(Qr).
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— Limit of fnS'(uy): we have u,, — u a.e. in Qr, S’ is piecewise C*. It is enough to use (4.10) to
get that f£,9(u,) — £S'(u) strongly in L*(Qr).

As a consequence of the above convergence result, we are in a position to pass to the limit as n tends to
+00 in equation (4.42) and to conclude that u satisfies (4.4).
It remains to show that Bg(uy) satisfies the initial condition (4.5), remark that S being bounded, Bg(uy,)

0Bg(un
is bounded in L*°(Qr). The equation (4.42) allows to show that ‘;7?) is bounded in W1 L>(Qr) +

LY(Qr). By Lemma 3.6 implies that Bg(u,,) lies in a compact set of C°([0,T]; L®°(Q2)). It follows that,
on one hand, Bg(u,)(t = 0)) converges to Bg(u)(t = 0)) strongly in L'(Qr). On the other hand, the
smoothness of S imply that Bg(u)(t = 0)) = Bg(uo) in €. This complete the existence result. O
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