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On the Existence of Renormalized Solution for Some Nonlinear Parabolic Problems in
Musielak-Orlicz Spaces

Badr El Haji, Bouchaib Ferrahi and Mohamed Samadi∗

abstract: In this paper, we will prove in Musielak–Orlicz spaces, the existence of renormalized solution for
nonlinear parabolic problems of Leray-Lions type, in the case where the Musielak–Orlicz function φ doesn’t
satisfy the ∆2-condition while the right hand side f belongs to L1(QT ).
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1. Introduction and Basic Hypothesis

Let Ω be a bounded Lipschitz domain of RN (N ≥ 2), and let φ be a Musielak-Orlicz function
that satisfies the log-Hölder condition, its Young conjugate function is denoted by φ and verifying ∆2-
condition. Let T be a positive constant, and we set QT = Ω× (0, T ).
In this paper, we consider the following strongly nonlinear parabolic problem

∂b(u)

∂t
+A(u) +H(x, t, u,∇u) = f + div(ϕ(x, t, u)) in QT ,

u(x, t) = 0 on ∂Ω× (0, T ),

u(t = 0) = u0 in Ω,

(1.1)

where b : R 7−→ R is a strictly increasing C1(R)-function, and satisfying the following conditions :

∀s ∈ R, b0 < b′(s) < b1 and b(0) = 0. (1.2)

The mapping
A : D(A) ⊂W 1,x

0 Lφ (QT ) 7−→W−1,xLφ (QT ) ,

defined by A(u) = − div(a(x, t, u,∇u)) is a Leray-Lions operator, where a : QT × R × RN 7−→ RN is a
Carathéodory function that satisfying the following conditions :

|a(x, t, r, ξ)| ≤ ρ1
(
a0(x, t) + φ−1

x (ψ(x, ρ2|r|))) + φ−1
x (φ(x, ρ3|ξ|)

)
, (1.3)

(a(x, t, r, ξ)− a(x, t, r, ξ∗)) · (ξ − ξ∗) > 0, (1.4)

a(x, t, r, ξ) · ξ ≥ αφ(x, |ξ|), (1.5)

where ψ is a Musielak-Orlicz function such that ψ ≺≺ φ, a0(·, ·) ∈ Eφ(QT ), α > 0 and ρi > 0 for
i = 1, 2, 3, such that for a.e (x, t) ∈ QT and for all r ∈ R and ξ, ξ∗ ∈ RN with ξ ̸= ξ∗. The Carathéodory
function ϕ that satisfying the following condition :

|ϕ(x, t, r)| ≤ c0(x, t)φ
−1
x φ(x,

α0

λ
|b(r)|) for a.e. (x, t) ∈ QT and for all r ∈ R, (1.6)

∗ Corresponding author.
2020 Mathematics Subject Classification: 35B40, 35L70.
Submitted September 24, 2025. Published January 22, 2026

1
Typeset by BSPMstyle.
© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.79149


2 B. El Haji, B. Ferrahi and M. Samadi

where 0 < α0 < min

(
1,

1

b1

)
and λ = diam(QT ), with ∥c0(., .)∥L∞(QT ) <

α

(α0b1 + 1)
.

Let H : QT ×R×RN 7−→ R is a Carathéodory function such that for a.e. (x, t) ∈ QT , and all r ∈ R and
all ξ ∈ RN :

|H(x, t, r, ξ)| ≤ h(x, t) + d(|r|)φ(x, |ξ|) (1.7)

where d : R+ 7−→ R+ is a continuous positive function which belongs to L∞(R+), h(x, t) ∈ L1(QT ) and
H satisfies the classical sign condition

H(x, t, r, ξ)r ≥ 0. (1.8)

f ∈ L1 (QT ) , (1.9)

u0 ∈ L1(Ω). (1.10)

Under these assumptions, we establish an existence theorem for renormalized solutions of the problem
(1.1).
In the setting of classical Sobolev spaces Lp(0, T ;W 1,p(Ω)) Porretta has proved in [22] the existence
of solutions to problem (1.1), with b(u) = u and H being a nonlinearity satisfying a natural growth
condition.
In the case where H = 0, the existence and uniqueness of renormalized solutions for parabolic problems
of type (1.1) in the Orlicz space framework has been proved by Aberqi et al. [1], while f belongs to
L1(QT ).
In the Musielak-Orlicz framework, Benkirane et al. in [12] have studied the existence of entropy solutions
for a nonlinear elliptic problem of the type :

A(u) +H(x, u,∇u) = div(ϕ(x, u)) + µ in Ω,

where µ is assumed to belong to L1(Ω) +W−1Eφ(Ω). Many papers deals the existence of solutions of
elliptic and parabolic problems under different hypotheses in order to get the fundamental results, we
refer the reader to [2], [3], [6], [7], [8], [9], [10], [11], [16], [18] and [19]. The paper is organized as follows
: In section 2, we give some preliminaries results. Section 3 is devoted to some auxiliary lemmas which
can be used to our result. Finally, in section 4, we present the sense of renormalized solution associated
with the parabolic problem (1.1). Moreover, we will prove the existence result.

2. Preliminaries

Let Ω be a domain of RN , and let φ(x, t) : Ω× R+ 7−→ R+ be a function such that :

(i) φ(x, ·) is an N -function for all x ∈ Ω, i.e. convex, continuous, strictly increasing with φ(x, 0) = 0,
φ(x, t) > 0 for all t > 0 and such that

lim
t→0

sup
x∈Ω

φ(x, t)

t
= 0 and lim

t→∞
inf
x∈Ω

φ(x, t)

t
= ∞. (2.1)

(ii) φ(·, t) is a measurable function for all t ≥ 0.

A function φ(x, t) which satisfies the conditions (i) and (ii) is called a Musielak-Orlicz function.
The Musielak-orlicz function φ is said to satisfy the ∆2-condition, if there exist k > 0, and a nonnegative
function Θ(·) ∈ L1(Ω) such that

φ(x, 2t) ≤ kφ(x, t) + Θ(x) for all x ∈ Ω and t ≥ 0. (2.2)

Let φ(x, t) be a Musielak-Orlicz function such that φx(t) = φ(x, t), and let φ−1
x be the nonnegative

reciprocal function satisfies
φ−1
x (φ(x, t)) = φ

(
x, φ−1

x (t)
)
= t.

We say that ψ grows essentially less rapidly than φ at 0 (resp. near infinity), and we write ψ ≺≺ φ, if
for every positive constant δ, we have

lim
t→0

sup
x∈Ω

ψ(x, δt)

φ(x, t)
= 0 (resp. lim

t→∞
sup
x∈Ω

ψ(x, δt)

φ(x, t)
= 0).
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Remark 2.1 If ψ ≺≺ φ near infinity, then for all ε > 0 there exists a nonnegative function h ∈ L1(·),
such that

ψ(x, t) ≤ φ(x, εt) + h(x) for all t ≥ 0 and for a.e. x ∈ Ω. (2.3)

Let φ be a Musielak-Orlicz function, and u : Ω 7−→ R be a measurable function. We define the modular

Φu,Ω(u) =

∫
Ω

φ(x, |u(x)|) dx,

and the convex set
Kφ(Ω) = {u : Ω 7−→ R measurable / Φφ,Ω(u) < +∞}

The set Kφ(Ω) is called the Musielak-Orlicz class. We define the Musielak-Orlicz space Lφ(Ω) by the
vector space

Lφ(Ω) =
{
u : Ω 7−→ R measurable /

u

λ
∈ Kφ(Ω) for some λ > 0

}
.

For a Musielak-Orlicz function φ we pose :

φ(x, s) = sup
t>0

(st− φ(x, s))

φ is the Musielak-Orlicz function conjugate of φ in the sense of Young with respect to the variable s. In
the space Lφ(Ω) we present the two norms :

∥u∥φ,Ω = inf

{
λ > 0 :

∫
Ω

φ

(
x,

|u(x)|
λ

)
dx ≤ 1

}
,

which is named the Luxemburg norm and the so-called Orlicz norm by :

∥u∥φ,Ω = sup
∥w∥φ≤1

∫
Ω

|u(x)w(x)| dx.

These two norms are equivalent (see [21]).
The closure in Lφ(Ω) of the bounded measurable functions with compact support in Ω is denoted by
Eφ(Ω). It is a separable space (see [21], Theorem 7.10). We say that the sequence of functions un ∈ Lφ(Ω)
is modular convergent to u ∈ Lφ(Ω) if there exists a constant λ > 0 such that

lim
n−→∞

Φφ,Ω

(
un − u

λ

)
= 0.

For φ and her conjugate function φ, the following inequality is named the Young’s inequality (see [21]) :

rs ≤ φ(x, r) + φ(x, s), ∀r, s ≥ 0, a.e. x ∈ Ω. (2.4)

Let u ∈ Lφ(Ω) and υ ∈ Lφ(Ω), thus we have :∣∣∣∣∫
Ω

u(x)υ(x) dx

∣∣∣∣ ≤ ∥u∥φ,Ω∥υ∥φ,Ω (the Hölder inequality (see [21])) (2.5)

We define the Musielak-Orlicz-Sobolev space as

W 1Lφ(Ω) = {u ∈ Lφ(Ω) : D
αu ∈ Lφ(Ω), for all |α| ≤ 1}.

The space Lφ(Ω) is endowed with the norm

∥u∥1,φ,Ω = inf{λ > 0 :
∑
|α|≤1

Φφ,Ω

(
Dαu

λ

)
≤ 1}.
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Let φ be a Musielak-Orlicz function for all x ∈ RN , we denote by ∇α
x the distributional derivative of u

on QT for the order α ∈ NN . We define the inhomogeneous Musielak-Orlicz-Sobolev spaces by

W 1,xLφ(QT ) = {u ∈ Lφ(QT ) : ∇α
xu ∈ Lφ(QT ), for all α ∈ NN , |α| ≤ 1}.

W 1,xEφ(QT ) = {u ∈ Eφ(QT ) : ∇α
xu ∈ Eφ(QT ), for all α ∈ NN , |α| ≤ 1}.

The space W 1,x
0 Eφ(QT ) is defined as the closure of D(QT ) for the norm topology in W 1,xLφ(QT ). When

Ω has the segment property, and φ satisfies the log-Hölder continuity, then the closure of D(QT ) with
respect to the weak σ(ΠLφ,ΠEφ)-topology denoted by W 1,x

0 Lφ(QT ), is also the closure of D(QT ) for the
modular convergence in W 1,xLφ(QT ).

The dual space of W 1,x
0 Eφ(QT ) is given by

W−1,xLφ(QT ) =

F =
∑
|α|≤1

∇α
xFα : Fα ∈ Lφ(QT )

 .

The space W−1,xLφ(QT ) is endowed with the norm

∥F∥ = inf
∑
|α|≤1

∥Fα∥φ,QT
.

3. Some Auxiliary Lemmas

We will use the following technical lemmas.

Lemma 3.1 (see [5]) (Approximation theorem)) Let Ω be a bounded Lipschitz domain in RN (N ≥ 2),
and let φ and φ be two complementary Musielak-Orlicz functions which satisfy the following conditions :

1. There exists a constant δ > 0 such that infx∈Ω φ(x, 1) > δ,

2. There exists a constant A > 0 such that for all x, y ∈ Ω with |x− y| ≤ 1

2
, we have

φ(x, t)

φ(y, t)
≤ t

(
A

log( 1
|x−y| )

)
for all t ≥ 1.

3. If E ⊂ Ω is a bounded measurable set, then

∫
E

φ(x, 1) dx <∞.

4. There exists a constant µ > 0 such that φ(x, 1) ≤ µ a.e. in Ω.

Under these assumptions, D(Ω) is dense in Lφ(Ω) with respect to the modular topology, and D(Ω) is dense
in W 1

0Lφ(Ω) for the modular convergence and D(Ω) is dense in W 1
0Lφ(Ω) for the modular convergence.

Remark 3.1 Let Ω be a bounded subset of RN (N ≥ 2). Then, the condition 4 in Lemma 3.1 implies
that the embedding W 1Lφ(Ω) ↪→ W 1,1(Ω) is continuous. Since the embedding W 1,1L(Ω) ↪→↪→ L1(Ω) is
compact, thus we have the following compact embedding

W 1Lφ(Ω) ↪→↪→ L1(Ω)

Lemma 3.2 (see [14]) (Modular Poincaré inequality) Under the assumptions of Lemma 3.1, and by
assuming that φ(x, ·) decreases with respect to one of coordinate of x, there exists a constant λ > 0 which
depends only on Ω such that∫

Ω

φ(x, |u|)dx ≤
∫
Ω

φ(x, λ|∇u|) dx for all u ∈W 1
0Lφ(Ω). (3.1)
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Lemma 3.3 (see [13], Lemma 4) Let G : R 7−→ R be uniformly Lipschitz function, with G(0) = 0. If
u ∈ W 1

0Lφ(Ω), then G(u) ∈ W 1
0Lφ(Ω). Moreover, if the set K of discontinuity points of G′(·) is finite,

then

∂

∂xi
G(u) =

G′(u)
∂u

∂xi
a.e in {x ∈ Ω : u(x) /∈ K},

0 a.e in {x ∈ Ω : u(x) ∈ K}.
(3.2)

For any k > 0, we define the truncation function by

Tk(r) =

r if |r| ≤ k,

k
r

|r|
if |r| > k.

Remark 3.2 Let k > 0, it’s clear that the function Tk(·) verifying the assumptions of the Lemma 3.3,
then Tk(u) ∈W 1

0Lφ(Ω) for any u ∈W 1
0Lφ(Ω). Moreover, we have

∂Tk(u)

∂xi
=


∂u

∂xi
for |s| < k,

0 for |s| ≥ k.

Lemma 3.4 Suppose that υn, υ ∈ L1(Ω) such that

i) υn ≥ 0 a.e in Ω,

ii) υn −→ υ a.e in Ω,

iii)

∫
Ω

υn(x) dx −→
∫
Ω

υ(x) dx.

Then υn −→ υ strongly in L1(Ω).

Lemma 3.5 (see [13], Lemma 1) Let u ∈ Lφ(Ω) and (un)n be a uniformly bounded sequence in
Lφ(Ω). If un −→ u a.e. in Ω, then un ⇀ u weakly in Lφ(Ω) for σ (Lφ(Ω), Eφ(Ω)).

Lemma 3.6 (see [11]) Let a < b ∈ R and Ω be a bounded domain of RN with the segment property,
then {

u ∈W 1,x
0 Lφ(Ω×]a, b[) :

∂u

∂t
∈W−1,x

0 Lφ(Ω×]a, b[) + L1(Ω×]a, b[)

}
⊂ C(]a, b[, L1(Ω)).

Lemma 3.7 (see [17]) Under assumptions (1.2)-(1.10), and let (un)n be a sequence in W 1,x
0 Lφ(QT )

such that:

un ⇀ u weakly in W 1,x
0 Lφ(QT ) for σ(ΠLφ,ΠEφ),

(a(x, t, un,∇un))n is uniformly bounded in (Lφ(QT ))
N ,

lim
n→∞

∫
QT

(a(x, t, u,∇un)− a(x, t, u,∇uχr)) · (∇un −∇uχr) dx dt = 0,

where χr is the characteristic function of Qr = {(x, t) ∈ QT : |∇u| ≤ r}. Then,

∇un −→ ∇u a.e in QT ,

lim
n→∞

∫
QT

a(x, t, un,∇un) · ∇un dx dt =
∫
QT

a(x, t, u,∇u) · ∇u dx dt,

φ(x, |∇un|) → φ(x, |∇u|) strongly in L1(QT ).
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In order to deal with the time derivative, we introduce a time mollification of a function u ∈
W 1,x

0 Lφ(QT ).
Thus we define, for all µ > 0 and all (x, t) ∈ QT

uµ(x, t) =

∫ t

−∞
ũ(x, s) exp(µ(s− t)) ds,

where ũ(x, s) = u(x, s)χ[0,T ](s) is the zero extension of u.

Lemma 3.8 (see [4]) If u ∈ Lφ(QT ) then uµ is measurable in QT and
∂uµ
∂t

= µ(u − uµ) and if

u ∈ Kφ(QT ) then ∫
QT

φ(x, uµ) dx dt ≤
∫
QT

φ(x, u) dx dt

Lemma 3.9 (see [23]) 1. If u ∈ Lφ(QT ) then uµ −→ u for the modular convergence in Lφ(QT ) as
µ −→ ∞.

2. If u ∈W 1,x
0 Lφ(QT ) then uµ −→ u for the modular convergence in W 1,x

0 Lφ(QT ) as µ −→ ∞.

4. Main Result

Before we state our main result, we give the definition of a renormalized solution of (1.1).

Definition 4.1 A mesurable function u defined on QT is a renormalized solution of problem (1.1), if
satisfies the following conditions :

Tk(u) ∈W 1,x
0 Lφ (QT ) , for all k > 0, (4.1)

b(u) ∈ L∞(0, T ;L1(Ω)), (4.2)∫
{(x,t)∈QT : l≤|u|≤l+1}

a(x, t, u,∇u) · ∇u dx dt −→ 0 as l −→ +∞, (4.3)

and, for every function S ∈W 2,∞(R) wich S′ has a compact support, we have

∂BS(u)

∂t
− div (S′(u)(a(x, t, u,∇u))) + S′′(u)a(x, t, u,∇u) · ∇u

+H(x, t, u,∇u)S′(u) = fS′(u) + div (S′(u)ϕ(x, t, u)))

− S′′(u)ϕ(x, t, u) · ∇u in D′ (QT ) ,

(4.4)

where BS(t) =

∫ t

0

b′(ω)S′(ω)dω and

BS(u)(t = 0) = BS(u0) in Ω. (4.5)

Theorem 4.1 Under the assumptions (1.2)-(1.10), problem (1.1) admits at least one renormalized so-
lution.

Proof:
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Step 1 : Approximate problem
We define the following approximations :

bn(r) = b(Tn(r)) for any r ∈ R, (4.6)

an(x, t, r, ξ) = a(x, t, Tn(r), ξ) a.e. (x, t) ∈ QT , ∀r ∈ R, ∀ξ ∈ RN , (4.7)

ϕn(x, t, r) = ϕ(x, t, Tn(r)) a.e. (x, t) ∈ QT , ∀r ∈ R, (4.8)

Hn(x, t, r, ξ) = Tn(H(x, t, r, ξ)) a.e. (x, t) ∈ QT , ∀r ∈ R, ∀ξ ∈ RN , (4.9)

fn = Tn(f) implies that fn −→ f strongly in L1(QT ), (4.10)

u0,n = Tn(u0) implies that u0,n −→ u0 strongly in L1(Ω). (4.11)

Also, we consider the approximate problem :
∂bn(un)

∂t
− div(an(x, t, un,∇un)) +Hn(x, t, un,∇un) = fn + div(ϕn(x, t, un)) in QT ,

un(x, t) = 0 on ∂Ω× (0, T ),

un(t = 0) = u0,n(x) in Ω.

(4.12)
It is clear that the Carathéodory function an + ϕn satisfying the assumptions (11),(12) and (13) in [18].
Then, in view of Theorem 4 in [18], the approximate problem (4.12) admit at least one weak solution
un ∈W 1,x

0 Lφ(QT ).

Remark 4.1 The explicit dependence in x and t of the functions a, ϕ and H will be omitted so that
a(x, t, u,∇u) = a(u,∇u), ϕ(x, t, u) = ϕ(u) and H(x, t, u,∇u) = H(u,∇u).

Step 2 : A priori estimates
Let k > 0 and τ ∈ (0, T ), by taking Tk(un)χ(0,τ) as a test function for the approximate problem

(4.12), we get ∫
Ω

Bn
k (un(τ)) dx+

∫
Qτ

an(un,∇un)∇Tk(un) dx dt

+

∫
Qτ

Hn(un,∇un)Tk(un) dx dt =
∫
Qτ

fnTk(un) dx dt

−
∫
Qτ

ϕn(un)∇Tk(un) dx dt+
∫
Ω

Bn
k (un(0)) dx, (4.13)

where Bn
k (r) =

∫ r

0

∂bn(s)

∂s
Tk(s)ds. By the definition of Bn

k (r), we deduce that∫
Ω

Bn
k (un(τ)) dx ≥ 0 and

∫
Ω

Bn
k (un(0)) dx ≤ k||b(u0)||L1(Ω).

By (1.6) and using Young inequality, we have∫
Qτ

ϕn(un)∇Tk(un) dx dt ≤ ||c0(., .)||L∞(QT )[α0b1

∫
Qτ

φ(x,
|Tk(un)|

λ
) dx dt

+

∫
Qτ

φ(x, |∇Tk(un)|) dx dt],

thanks to (3.1), we obtain∫
Qτ

ϕn(un)∇Tk(un) dx dt ≤ ||c0(., .)||L∞(QT )(α0b1 + 1)

∫
Qτ

φ(x, |∇Tk(un)|) dx dt.
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By (1.8), one has ∫
Qτ

Hn(un,∇un)Tk(un) dx dt ≥ 0.

Returning to (4.13) and using (1.5), we get∫
QT

an(un,∇un)∇Tk(un) dx dt ≤ ||c0(., .)||L∞(QT )
(α0b1 + 1)

α

∫
QT

an(un,∇un)∇Tk(un) dx dt

+k
(
||fn||L1(QT ) + ||b(u0)||L1(Ω)

)
,

so by (1.6), we get ∫
QT

an(x, t, un,∇un)∇Tk(un) dx dt ≤ kC1. (4.14)

By (1.5), we obtain ∫
QT

φ(x, |∇Tk(un)|) dx dt ≤ kC2. (4.15)

Moreover, we have

inf
x∈Ω

φ(x,
k

λ
)meas{|un| > k} ≤

∫
{|un|>k}

φ

(
x,

|Tk(un)|
λ

)
dx dt

≤
∫
QT

φ(x, |∇Tk(un)|) dx dt

≤ kC2.

(4.16)

Finally

meas{|un| > k} ≤ kC2

infx∈Ω φ(x,
k
λ )

−→ 0 as k −→ ∞. (4.17)

For every η > 0, we have

meas{|un − um| > η} ≤ meas{|un| > k}+meas{|um| > k}

+meas{|Tk(un)− Tk(um)| > η}.

From (4.15) we conclude that (Tk(un))n is bounded in W 1,x
0 Lφ(QT ), then by using Remark 3.1 there

exists a measurable function vk, such that Tk(un) −→ vk strongly in L1(QT ) as n→ ∞ for a subsequence,
and thanks to the reciprocal Lebesgue’s theorem we can assume that Tk(un) is a Cauchy sequence in
measure in QT . Consequently, for any ε, η > 0 there exists n0(ε, η) > 0 such that

meas{|un − um| > η} ≤ ε for all n,m > n0(ε, η).

This proves that (un) is a Cauchy sequence in measure in QT . Then

un −→ u a.e in QT . (4.18)

Finally, for all k > 0 we have

Tk(un)⇀ Tk(u) weakly in W 1,x
0 Lφ(QT ) for σ(ΠLφ,ΠEφ). (4.19)

Let Γk ∈W 2,∞(R) such that Γ′
k has a compact support supp(Γ′

k) ⊂ [−k, k]. We multiply the Eq. (4.12)
by Γ′

k(un), to obtain in D′(QT ),

∂Bn
Γk
(un)

∂t
= div(an(un,∇un)ϕn(un))Γ′

k(un))− an(un,∇un)Γ′′
k(un)∇un

+ div(Γ′
k(un)ϕn(un))− Γ′′

k(un)ϕn(un)∇un −Hn(un,∇un)Γ′
k(un)

+ fnΓ
′
k(un),

(4.20)
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where Bn
Γk
(r) =

∫ r

0

Γ′
k(s)

∂bn(s)

∂s
ds.

First we have
|∇Bn

Γk
(un)| ≤ b1|∇Tk(un)|∥Γk∥L∞(R) a.e in QT ,

by using (4.15), we obtain (
Bn

Γk
(un)

)
is bounded in W 1,x

0 Lφ(QT ), (4.21)

since supp(Γ′
k) ⊂ [−k, k] and supp(Γ′′

k) ⊂ [−k, k] ,un may be replaced by Tk(un) in each of these terms.
As a consequence, each in right hand side of (4.20) is bounded either in W−1,xLφ(QT ) or in L1(QT ) ,
we conclude that (

∂Bn
Γk
(un)

∂t

)
is bounded in L1(QT ) +W−1,xLφ(QT ), (4.22)

Now we will prove that
b(u) ∈ L∞(0, T ;L1(Ω))

By using (4.13) and Fatou’s lemma, we deduce that

1

k

∫
Ω

Bk(u(τ)) dx ≤ C1,

for almost any τ in (0, T ). By definition of Bk(r) and since
1

k
Bk(u(τ)) converges pointwise to b(u), as

k −→ 0, we conclude that b(u) ∈ L∞(0, T ;L1(Ω)).

Step 3 : Boundedness of an(Tk(un),∇Tk(un)) in (Lφ(QT ))
N

Let ϑ ∈ (Eφ(QT ))
N such that ∥ϑ∥φ,QT

= 1. By using (1.4), we have∫
QT

an (Tk(un),∇Tk(un)) · ϑ dx dt

≤
∫
QT

an (Tk(un),∇Tk(un)) · ∇Tk(un) dx dt−
∫
QT

an (Tk(un), ϑ) · (∇Tk(un)− ϑ) dx dt

≤ kc−
∫
QT

an (Tk(un), ϑ) · ∇Tk(un) dx dt+
∫
QT

an (Tk(un), ϑ) · ϑ dx dt,

For the two last terms on the right-hand side, in view of Young’s inequality we have∫
QT

an (Tk(un),∇Tk(un)) · ϑ dx dt ≤ kc+ 6ρ1

∫
QT

φ

(
x,
an (Tk(un), ϑ)

3ρ1

)
dx dt

+ 3ρ1

∫
QT

φ(x, |∇Tk(un)|) dx dt+ 3ρ1

∫
QT

φ(x, |ϑ|) dx dt.

By using (1.3), (2.1) and the convexity of φ, we obtain

φ

(
x,

|an (Tk(un), ϑ) |
3ρ1

)
≤ 1

3
(φ(x, a0(x, t)) + ψ(x, ρ2|Tk(un)|) + φ(x, ρ3|ϑ|))

≤ 1

3
(φ(x, a0(x, t)) + ψ(x, ρ2k) + φ(x, ρ3|ϑ|)) ∈ L1(QT ),

we deduce that an(Tk(un), ϑ) is bounded in Lφ(QT )
N . This implies from (4.15) that∫

QT

an (Tk(un),∇Tk(un)) · ϑ dx dt ≤ C(k, ϑ), ∀ϑ ∈ (Eφ(Ω))
N with ∥ϑ∥φ,Ω = 1,

where C(k, ϑ) is a constant depending on k and ϑ.
Consequently, by using the uniform boundedness principe we conclude that

an (Tk(un),∇Tk(un)) is bounded in (Lφ(QT ))
N
. (4.23)



10 B. El Haji, B. Ferrahi and M. Samadi

Step 4 : Some regularity results

Multiplying the equation (4.12) by the function Zl(un) = T1(un − Tl(un)) and by applying the same
argument as in Step 2, we obtain∫

{l≤|un|≤l+1}
an(un,∇un) · ∇un dx dt+

∫
{|un|>l+1}

|Hn(un,∇un)| dx dt

≤ C

[∫
QT

fnZl(un) dx dt+

∫
{|un0|>l}

|bn(u0,n)| dx

]
, (4.24)

by combining (4.10) and (4.18), we get

lim
n→∞

∫
{l≤|un|≤l+1}

an(un,∇un) · ∇un dx dt+ lim
n→∞

∫
{|un|>l+1}

|Hn(un,∇un)| dx dt

≤ C

[∫
QT

fZl(u) dx dt+

∫
{|u0|>l}

|b(u0)| dx

]
.

Applying Lebesgue’s Dominated Convergence Theorem and passing l → ∞, we obtain

lim
l→∞

lim sup
n→∞

∫
{l≤|un|≤l+1}

a(un,∇un) · ∇un dx dt = 0, (4.25)

and

lim
l→+∞

lim sup
n→+∞

∫
{|un|>l+1}

|Hn(un,∇un)| dx dt = 0. (4.26)

Step 5 : Almost everywhere convergence of the gradients

Let k > 0, since Tk(u) ∈ W 1,x
0 Lφ(QT ) and D(QT ) dense modularly in W 1,x

0 Lφ(QT ). Then, there
exists a sequence (vj)j ⊂ D(QT ) converges modularly to Tk(u) in W

1,x
0 Lφ(QT ) as j → ∞, which implies

that

Tk(vj) −→ Tk(u) modularly in W 1,x
0 Lφ(QT ), (4.27)

and

Tk(vj) −→ Tk(u) almost everywhere in W 1,x
0 Lφ(QT ) for a subsequence. (4.28)

Let l > 0, we define the Lipschitz real function Sl(s) as follows

Sl(s) = 1− |Tl+1(s)− Tl(s)| .

Let n ≥ µ ≥ j ≥ l ≥ β ≥ 2k, we denote by ε(n, µ, j, β, l) the real function that satisfies

lim
l→∞

lim
β→∞

lim
j→∞

lim
µ→∞

lim
n→∞

ε(n, µ, j, β, l) = 0.

We set Wn,j
µ,β = (Tβ(Tk(un)− Tk((vj)µ))

+ and W j
µ,β = (Tβ(Tk(u)− Tk((vj)µ))

+.

By taking exp(D(|un|))Wn,j
µ,βSl(un) as a test function in (4.12), where D(s) =

∫ s

0

d(r)

α
dr, we obtain

I1n,µ,j,β,l + I2n,µ,j,β,l + I3n,µ,j,β,l + I4n,µ,j,β,l + I5n,µ,j,β,l + I6n,µ,j,β,l = I7n,µ,j,β,l + I8n,µ,j,β,l, (4.29)
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with

I1n,µ,j,β,l =

∫
QT

∂bn(un)

∂t
exp(D(|un|))Wn,j

µ,βSl(un) dx dt,

I2n,µ,j,β,l =

∫
QT

an(un,∇un) · ∇Wn,j
µ,β exp(D(|un|))Sl(un) dx dt,

I3n,µ,j,β,l =

∫
QT

an(un,∇un) · ∇un exp(D(|un|))Wn,j
µ,βS

′
l(un) dx dt,

I4n,µ,j,β,l =

∫
QT

ϕn(un) · ∇un exp(D(|un|))Wn,j
µ,βS

′
l(un) dx dt,

I5n,µ,j,β,l =

∫
QT

ϕn(un) · ∇Wn,j
µ,β exp(D(|un|))Sl(un) dx dt,

I6n,µ,j,β,l =

∫
QT

ϕn(un) · ∇un
d(|un|)
α

exp(D(|un|))Wn,j
µ,βSl(un) dx dt,

I7n,µ,j,β,l =

∫
QT

fn exp(D(|un|))Wn,j
µ,βSl(un) dx dt,

I8n,µ,j,β,l =

∫
QT

h(x, t) exp(D(|un|))Wn,j
µ,βSl(un) dx dt.

Starting by the terms I7n,µ,j,β,l and I
8
n,µ,j,β,l, we have exp(D(|un|))Wn,j

µ,βSl(un)⇀ 0 weak-∗ in L∞(QT ) as

n, µ, j → ∞ respectively, and h ∈ L1(QT ) then

lim
j→∞

lim
µ→∞

lim
n→∞

I7n,µ,j,β,l = 0. (4.30)

Similarly, we have fn −→ f strongly in L1(QT ) as n→ ∞ then

lim
j→∞

lim
µ→∞

lim
n→∞

I8n,µ,j,β,l = 0. (4.31)

For the term I3n,µ,j,β,l, we have

I3n,µ,j,β,l = −
∫
{l≤|un|≤l+1}

an(un,∇un) · ∇un exp(D(|un|))Wn,j
µ,β sign(un) dx dt

≤ C

∫
{l≤|un|≤l+1}

an(un,∇un) · ∇un dx dt.

By using (4.25), we get

I3n,µ,j,β,l ≤ ε(n, l). (4.32)

For the term I2n,µ,β,j,l, we have

I2n,µ,β,j,l

=

∫
{|un|≤k}∩{0≤Tk(un)−Tk(vj)≤β}

an(Tk(un),∇Tk(un)) · (∇Tk(un)−∇Tk(vj)µ)Sl(un) exp(D(|un|)) dx dt

−
∫
{|un|>k}∩{0≤Tk(un)−Tk(vj)≤β}

an(un,∇un) · ∇Tk(vj)µSl(un) exp(D(|un|)) dx dt.

In view of (4.23), there exists ϖk+β ∈ (Lφ(QT ))
N that verifies an(Tk+β(un),∇Tk+β(un))⇀ ϖk+β weakly

in (Lφ(QT ))
N , and since

Sl(un) exp(D(|un|))∇Tk(vj)µχ{|un|>k}∩{0≤Tk(un)−Tk(vj)µ≤β}

−→ Sl(u) exp(D(|u|))∇Tk(vj)µχ{|u|>k}∩{0≤Tk(u)−Tk(vj)µ≤β} strongly in (Eφ(QT ))
N as n→ ∞.
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Then,

lim
n→∞

∫
{|un|>k}∩{0≤Tk(un)−Tk(vj)µ≤β}

an(un,∇un)Sl(un) exp(D(|un|))∇Tk(vj)µ dx dt

=

∫
{|u|>k}∩{0≤Tk(u)−Tk(vj)µ≤β}

ϖk+βSl(u) exp(D(|un|))∇Tk(vj)µ dx dt.

Hence,

lim
j→∞

lim
µ→∞

∫
{|u|>k}∩{0≤Tk(u)−Tk(vj)µ≤β}

ϖk+βSl(u) exp(D(|u|))∇Tk(u) dx dt

=

∫
{|u|>k}∩{0≤Tk(u)−Tk(u)≤β}

ϖk+βSl(u) exp(D(|u|))∇Tk(u) dx dt

= 0.

This implies from exp(D(|un|)) ≥ 1 and Sl(un) = 1 for |un| ≤ k that

I2n,µ,j,β,l =

∫
{|un|≤k}∩{0≤Tk(un)−Tk(vj)µ≤β}

an(Tk(un),∇Tk(un))Sl(un)(∇Tk(un)−∇Tk(vj)µ) dx dt+ ε(n, µ, j),

(4.33)

Concerning the term I5n,µ,j,β,l, from (1.6) we obtain

|ϕn(un) exp(D(|un|))Sl(un)| ≤ Cφ−1
x φ(x,

α0

λ
|b(l + 1)|) ∈ Lφ̄(QT ),

and since φ̄ satisfies the ∆2-condition, then by applying Vitali’s theorem we conclude

ϕn(un) exp(D(|un|))Sl(un) → ϕ(u) exp(D(|u|))Sl(u) strongly in (Lφ̄(QT ))
N

as n→ ∞.

Moreover, we have ∇Wn,j
µ,β ⇀ 0 weakly in (Lφ(QT ))

N as n, µ, j → ∞ then

I5n,µ,j,β,l = ε(n, µ, j) (4.34)

Concerning the terms I4n,µ,β,j,l and I
6
n,µ,β,j,l, for n > l+1 > k, we have ∇unS′

l(un) = ∇Tl+1(un) sign(un)

a.e. in QT . Since exp(D(|un|))Wn,j
µ,β ⇀ exp(D(|u|))W j

µ,β weak-∗ in L∞(QT ) as n.µ, j → ∞, and the

sequence (ϕn(Tl+1(un)))n converges strongly to ϕ(Tl+1(u)) in (Eφ(QT ))
N
, thus from Vitali’s theorem we

deduce that

ϕn(Tl+1(un)) exp(D(|un|))Wn,j
µ,β sign(un) −→ ϕ(Tl+1(u)) exp(D(|u|))W j

µ,β sign(u) strongly in (Eφ(QT ))
N .

In addition, we have ∇Tl+1(un)⇀ ∇Tl+1(u) weakly in (Lφ(QT ))
N as n→ +∞, then

I4n,µ,j,β,l = ε(n, µ, j). (4.35)

Similarly, we obtain
I6n,µ,j,β,l = ε(n, µ, j). (4.36)

Finally, for the term I1n,µ,j,β,l, using the same argument followed in [15] we obtain

I1n,µ,j,β,l = ε(n, µ, j, β). (4.37)

By combining (4.29) and (4.30)−(4.37) we conclude that∫
{|Tk(un)−Tk(vj)µ|≤β}

an(Tk(un),∇Tk(un))Sl(un)(∇Tk(un)−∇Tk(vj)µ) dx dt ≤ ε(n, µ, j, β, l), (4.38)

Let r > 0, we set Qr = {(x, t) ∈ QT : |∇Tk(u)| ≤ r} and Qr
j = {(x, t) ∈ QT : |∇Tk(vj)| ≤ r} and

denoting by χr and χr
j the characteristic functions of Qr and Qr

j respectively. Also, we set

Rn,k = (a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u)))(∇Tk(un)−∇Tk(u)).
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For 0 < δ < 1, we have

0 ≤
∫
Qr

Rδ
n,k dz dt =

∫
Qr

Rδ
n,kχ{|Tk(un)−Tk(vj)µ|≤β} dx dt+

∫
Qr

Rδ
n,kχ{|Tk(un)−Tk(vj)µ|>β} dx dt.

According to Hölder’s inequality, we obtain∫
Qr

Rδ
n,kχ{|Tk(un)−Tk(vj)µ|≤β} dx dt ≤

(∫
Qr

Rn,kχ{|Tk(un)−Tk(vj)µ|≤β} dx dt

)δ (∫
Qr

dx dt

)1−δ

≤ (meas(QT ))
1−δ

(∫
Qr

Rn,kχ{|Tk(un)−Tk(vj)µ|≤β} dx dt

)δ

,

and ∫
Qr

Rδ
n,kχ{|Tk(un)−Tk(vj)µ|>β} dx dt ≤

(∫
Qr

Rn,k dx dt

)δ
(∫

{|Tk(un)−Tk(vj)µ|>β}
dx dt

)1−δ

.

Since a(Tk(un),∇Tk(un)) is bounded in (Lφ(QT ))
N , thus∫

Qr

Rδ
n,kχ{|Tk(un)−Tk(vj)µ|>β} dx dt ≤ C2meas{(x, t) ∈ QT : |Tk(un)− Tk(vj)µ| > β}1−δ.

Hence, ∫
Qr

Rδ
n,k dx dt ≤ C1

(∫
Qr

Rn,kχ{|Tk(un)−Tk(vj)µ|≤β} dx dt

)δ

+ C2meas{|Tk(un)− Tk(vj)µ| > β}1−δ.

Additionally,∫
Qr

Rn,kχ{|Tk(un)−Tk(vj)µ|≤β} dx dt

≤
∫
{|Tk(un)−Tk(vj)µ|≤β}

(a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u)χr)) · (∇Tk(un)−∇Tk(u)χr) dx dt.

Let τ > 0, by taking r > τ, we obtain

0 ≤
∫
Qτ∩{|Tk(un)−Tk(vj)µ|≤β}

(a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u))) · (∇Tk(un)−∇Tk(u)) dx dt

=

∫
Qτ∩{|Tk(un)−Tk(vj)µ|≤β}

(a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u)χτ )) · (∇Tk(un)−∇Tk(u)χτ ) dx dt

=

∫
{|Tk(un)−Tk(vj)µ|≤β}

(a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(vj)χτ
j )) · (∇Tk(un)−∇Tk(vj)χτ

j ) dx dt

+

∫
{|Tk(un)−Tk(vj)µ|≤β}

a(Tk(un),∇Tk(un)) · (∇Tk(vj)χτ
j −∇Tk(u)χτ ) dx dt

+

∫
{|Tk(un)−Tk(vj)µ|≤β}

(a(Tk(un),∇Tk(vj)χτ
j )− a(Tk(un),∇Tk(u)χτ )) · ∇Tk(un) dx dt

−
∫
{|Tk(un)−Tk(vj)µ|≤β}

a(Tk(un),∇Tk(vj)χτ
j ) · ∇Tk(vj)χτ

j dx dt

+

∫
{|Tk(un)−Tk(vj)µ|≤β}

a(Tk(un),∇Tk(u)χτ ) · ∇Tk(u)χτ dx dt

= J1 + J2 + J3 + J4 + J5.
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Now, we passing n, j, µ, and τ to infinity in each term of the previous inequality.
For the first term J1, we have

J1 =

∫
{|Tk(un)−Tk(vj)µ|≤β}

a(Tk(un),∇Tk(un)) · (∇Tk(un)−∇Tk(vj)µ) dx dt

−
∫
{|Tk(un)−Tk(vj)µ|≤β}

a(Tk(un),∇Tk(un)) · (∇Tk(vj)χτ
j −∇Tk(vj)µ) dx dt

−
∫
{|Tk(un)−Tk(vj)µ|≤β}

a(Tk(un),∇Tk(vj)χτ
j ) · (∇Tk(un)−∇Tk(vj)χτ

j ) dx dt.

Thanks to (4.38), we get∫
{|Tk(un)−Tk(vj)|≤β}

a(Tk(un),∇Tk(un)) · (∇Tk(un)−∇Tk(vj)µ) dx dt ≤ ε(n, µ, j, l)

Since a(Tk(un),∇Tk(un)) is bounded in (Lφ(QT ))
N , then there exists a measurable function ϖk ∈

(Lφ(QT ))
N satisfying

a(Tk(un),∇Tk(un))⇀ ϖk weakly in ((Lφ(QT ))
N for σ(ΠLφ,ΠEφ).

Moreover, we have

(∇Tk(vj)χr
j −∇Tk(vj)µ)χ{|Tk(un)−Tk(vj)µ|≤β} −→ (∇Tk(vj)χr

j −∇Tk(vj)µ)χ{|Tk(u)−Tk(vj)µ|≤β},

strongly in (Eφ(QT ))
N as n→ ∞. Then,

lim
n→∞

∫
{|Tk(un)−Tk(vj)µ|≤β}

a(Tk(un),∇Tk(un)) · (∇Tk(vj)χτ
j −∇Tk(vj)µ) dx dt,

=

∫
{|Tk(u)−Tk(vj)|≤β}

ϖk(∇Tk(vj)χr
j −∇Tk(vj)µ) dx dt,

On the other hand, we have

a(Tk(un),∇Tk(vj))χ{|Tk(un)−Tk(vj)µ|≤β} −→ a(Tk(u),∇Tk(vj))χ{|Tk(u)−Tk(vj)µ|≤β}

strongly in (Eφ(QT ))
N , and since (∇Tk(un)−∇Tk(vj)χr

j)⇀ (∇Tk(u)−∇Tk(vj)χr
j), weakly in (Lφ(QT ))

N

for the weak topology σ(ΠLφ,ΠEφ).
Consequently, by passing j and µ to infinity and applying the Lebesgue’s theorem, we conclude that

J1 ≤ ε(n, µ, j, l, r).

Similarly, for the term J2, we have

lim
j→∞

lim
µ→∞

lim
n→∞

J2 = lim
j→∞

lim
µ→∞

∫
{|Tk(u)−Tk(vj)µ|≤β}

ϖk(∇Tk(vj)χr
j −∇Tk(u)χr) dx dt = 0.

Similarly, we obtain

lim
j→∞

lim
µ→∞

lim
n→∞

J3 =

∫
QT

a(Tk(u),∇Tk(u)χτ ) · ∇Tk(u)(1− χτ ) dx dt = 0,

lim
j→∞

lim
µ→∞

lim
n→∞

J4 = −
∫
QT

a(Tk(u),∇Tk(u)χτ ) · ∇Tk(u)χτ dx dt,

lim
j→∞

lim
µ→∞

lim
n→∞

J5 =

∫
QT

a(Tk(u),∇Tk(u)χτ ) · ∇Tk(u)χτ dx dt.
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Finally, we deduce that ∫
Qr

Rn,k dx dt ≤ C1(ϵ(n, µ, j, l, β))
δ + C2(ε(n, µ))

1−δ.

Letting β tends to infinity, we obtain∫
Qτ

(a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u))) · (∇Tk(un)−∇Tk(u)) dx dt = ε(n). (4.39)

Thus, in view of Lemma 3.7 we conclude that ∇un −→ ∇u a.e. in Qτ , and since τ is arbitrary,

∇un −→ ∇u a.e. in QT , (4.40)

Furthermore, by using (4.19), (4.22),(4.23),(4.40) and Fatou’s lemma, we get∫
{l≤|u|≤l+1}

a(u,∇u) · ∇u dx dt ≤ lim inf
n→+∞

∫
{l≤|un|≤l+1}

a(un,∇un) · ∇un dx dt

−→ 0 as l → ∞

Then, the condition (4.3) is established.

Step 6 : Equi-integrability of the non-linearities
In this step, we will show that

Hn(un,∇un) → H(u,∇u) strongly in L1(QT ).

From (4.19) and (4.40), we have

Hn(un,∇un) → H(u,∇u) a.e. in QT ,

by using (1.5) and (1.7), we obtain∫
K

|Hn(un,∇un)| dx dt =
∫
K∩{|un|≤l}

|Hn(un,∇un)| dx dt+
∫
K∩{|un|>l}

|Hn(un,∇un)| dx dt

≤
∫
K

h(x, t) dx dt+
∥d(·)∥L∞(R+)

α

∫
K

an(Tl(un),∇Tl(un)) · ∇Tl(un) dx dt

+

∫
{|un|>l}

|Hn(un,∇un)| dx dt,

where K be a measurable subset of QT and l > 0.
Since h ∈ L1(QT ) and by using (4.26) we have

lim
l→∞

lim sup
n→+∞

∫
{|un|>l}

|Hn(un,∇un)| dx dt = 0,

According to Lemma 3.7 the sequence

(an(Tl(un),∇Tl(un)) · ∇Tl(un))n is equi-integrable in QT

Consequently

lim
|K|→0

sup
n

∫
K

|Hn(un,∇un)| dx dt = 0.

This proves that Hn(un,∇un) is equi-integrable.
Therefore, Vitali’s theorem allows us to get H(u,∇u) ∈ L1(QT ), and

Hn(un,∇un) → H(u,∇u) strongly in L1(QT ). (4.41)
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Step 7 : Passage to the limit
Let S ∈ W 2,∞(R) which is piecewise C1-function such that supp(S′) ⊂ [−k, k]. Multiplying the

approximate problem (4.12) by S′(un), we get
∂BS(un)

∂t
− div (S′(un)(an(un,∇un))) + S′′(un)an(un,∇un) · ∇un

+Hn(un,∇un)S′(un) = fS′(un) + div (S′(u)ϕn(un))− S′′(un)ϕn(un) · ∇un in D′ (QT ) ,
(4.42)

where BS(w) =

∫ w

0

b′(r)S′(r)dr.

Now, we will pass to the limit as n→ +∞ of each term of (4.42).

− Limit of
∂BS(un)

∂t
: since S is bounded, and BS(un) converges to BS(u) a.e. in QT and weakly-*

in L∞(QT ), then
∂BS(un)

∂t
converges to

∂BS(u)

∂t
in D′(QT ) as n tends to +∞.

− Limit of S′(un)a(un,∇un): since supp(S′) ⊂ [−k, k] we have

S′(un)a(un,∇un) = S′(un)a(Tk(un),∇Tk(un)) a.e. in QT .

The pointwise convergence of un to u as n tends to +∞, the bounded character of S′, and by Lemma
3.7, we conclude a(Tk(un),∇Tk(un)) converges to a(Tk(u),∇Tk(u)) weakly in (Lφ(QT ))

N allows us
to obtain S′(un)A(Tk(un),∇Tk(un)) converges to S′(u)a(Tk(u),∇Tk(u)) weakly for σ(ΠLφ,ΠEφ),
and S′(u)a(Tk(u),∇Tk(u)) = S′(u)a(u,∇u) a.e. in QT .

− Limit of S′′(un)a(un,∇un) · ∇un: since supp(S′) ⊂ [−k, k], we get

S′′(un)a(un,∇un) · ∇un = S′′(un)a(Tk(un),∇Tk(un)) · ∇un a.e. in QT .

The pointwise convergence of S′′(un) to S
′′(u) as n tends to +∞, the bounded character of S′′ and

by Lemma 3.7, we conclude

S′′(un)a(Tk(un),∇Tk(un)) · ∇un ⇀ S′′(u)a(Tk(u),∇Tk(u)) · ∇u weakly in L1(QT )

as n −→ +∞, and

S′′(u)a(Tk(u),∇Tk(u)) · ∇u = S′′(u)a(u,∇u) · ∇u a.e. in QT .

− Limit of S′(un)ϕ(un): since supp(S′) ⊂ [−k, k] we have

S′(un)ϕ(un) = S′(un)ϕ(Tk(un)) a.e. in QT .

In a similar way, we obtain

S′(un)ϕ(un)⇀ S′(u)ϕ(u) weakly for σ(ΠLφ,ΠEφ).

− Limit of S′′(un)ϕ(un) · ∇un: also we have

S′′(un)ϕ(un) · ∇un = S′′(un)ϕ(Tk(un)) · ∇Tk(un).

Using the weakly convergence of truncation, it is possible to prove that,

S′′(un)ϕ(un) · ∇un −→ S′′(u)ϕ(u) · ∇u strongly in L1(QT ).

− Limit of H(un,∇un)S′(un): we have un −→ u a.e. in QT , S
′ is piecewise C1. It is enough to use

(4.41) to get that H(un,∇un)S′(un) −→ H(u,∇u)S′(u) strongly in L1(QT ).
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− Limit of fnS
′(un): we have un −→ u a.e. in QT , S

′ is piecewise C1. It is enough to use (4.10) to
get that fnS

′(un) −→ fS′(u) strongly in L1(QT ).

As a consequence of the above convergence result, we are in a position to pass to the limit as n tends to
+∞ in equation (4.42) and to conclude that u satisfies (4.4).
It remains to show that BS(un) satisfies the initial condition (4.5), remark that S being bounded, BS(un)

is bounded in L∞(QT ). The equation (4.42) allows to show that
∂BS(un)

∂t
is bounded inW−1,xLφ(QT )+

L1(QT ). By Lemma 3.6 implies that BS(un) lies in a compact set of C0([0, T ];L∞(Ω)). It follows that,
on one hand, BS(un)(t = 0)) converges to BS(u)(t = 0)) strongly in L1(QT ). On the other hand, the
smoothness of S imply that BS(u)(t = 0)) = BS(u0) in Ω. This complete the existence result. 2
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