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Solving a System of Nonlinear Fractional Differential Equations via Novel Best Proximity
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ABSTRACT: This paper is devoted to examining the existence of optimal solutions for a coupled system of
differential equations characterized by right sided-Hilfer fractional derivatives under initial conditions as form:

MDD (k) = M (i, a2 (),
OB s () = Aol ()
for b < k < v. To this end, we develop a series of best proximity pair theorems for a new category of proximal

contractions, referred to as the a-generalized Geraghty proximal interpolative contraction pair, formulated
within the framework of a regular semimetric space (Q, p, ®).
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1. Introduction

The theory of the fixed point (FP) is extremely important and plays an indisputable role in the
progress and development of various branches of mathematical science. In essence, numerous scientific
problems can be expressed and modeled as a FP equation, that is taking the form of equation Tu = u,
where T is an application defined over a metric space (MS), a normal linear space, or another suitable
space.

In 1931, Wilson studied the theory of semimetric spaces (SMSs) [40] and then McAuley in 1956, Burke
in 1972, Galvin et al. in 1984 obtained scientific results in the space [28,10,16]. In 2014, Bessenyei et
al. [9] introduced the definition of a triangular function for a SMS, (9, p) in other words they proposed
the notion of regularity of a SMS. Let us consider non-empty subsets A; and As within a SMS, with
T : Ay — A, denoting a non-self mapping. In certain scenarios, the aforementioned equation may
not possess a solution. In such cases, we can aim to find a point u that minimizes the error §(u,Tu),
where § denote a metric, leading to the proximity of w and Tw. Consequently, the best proximity
point (BPP) results ensures an optimal solution for globally minimizing 6 (u, Tw), whenever the condition
0(u, Tu) = dist(A;, A2) holds with an approximate solution u. These approximate solutions are referred
to as BPPs of T, providing an approximate solution to the equation Tw = u. In the context of a
Hausdorff locally convex topological vector space &, consider a nonempty convex compact subset A, and
a continuous non-self mapping T : A — €. An influential result in the form of a BPP theorem, initially
presented by Fan [15], guarantees the existence of a point u € A satisfying §(u, Tu) = 6(Tu, A). This
innovative result by Fan subsequently served as a basis for further improvements and generalizations
made by various authors, such as Prolla [34], Reich [35], Sehgal and Singh [37], who explored different
directions. Moreover, several other studies have also contributed to the establishment of the existence of
BPP theorems, as evidenced by the works referenced in [8,13,33,26,17,38].
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A BPP result for generalized proximal C contractions in MS equipped with partial orders has been
elicited in [30,31] by Mongkolkeha et al.. Generalized a-¢-Geraghty contraction type mapping has been
introduced by Karapinar ([22]), Hamzehnejadi and Lashkaripour ([18]) initiated generalized a-¢-Geraghty
proximal contractions. They have investigated BPPs for these types of mappings. Poom Kumam in [25],
has establish some common BPPs results for generalized a-¢-Geraghty contraction mappings. Addition-
ally, BPP for this class of contraction have been discussed in [4,20,21,14,27,32,36]. The Hardy-Rogers
(HR) interpolative contractions was introduced and examined by Karapinar et al. [23].

Theorem 1.1 ([23]) Let (Q,0) be a MS. If S : Q — Q is an interpolative HR type contraction i.e.,
there exist 0 < XA <1 and 0,0, € (0,1) with o +0+n < 1, s.t.

l1—0—0—n
6(Spr, Spiz) < AB(n, 2)] 7[5 (1, Sp)]? B2, Spip)]? | AeeStead bl | SN B

for all py, pe € Q\ Fix(S), then S possesses a FP of Q.

Fractional calculus, which generalizes integer-order integration and differentiation to arbitrary or-
ders, has emerged as a rapidly expanding field of research, driven by the significant outcomes achieved
through the application of fractional operators in modelling various phenomena [12,19]. To enhance the
understanding of certain real-world problems, recent studies have introduced novel fractional operators,
discussed in [1,3,11] are particularly noteworthy.

Simultaneously, the existence and uniqueness of solutions to differential and integral equations involv-
ing fractional operators have been well investigated using fixed point theorems. For a deep study, one
refers to [2,5,6,7,24,29].

The content is organized as takes after: Section 1, recalls the foundational results that will be utilized
in the subsequent sections. We introduce an innovation class of contraction providing improved results at
proximity points, in Section 2. Each contraction in this class is termed a Geragthy proximal interpolative
Gpi of type HR (see Definition 2.4). We provide the necessary conditions to establish the common best
proximity points (CBPPs) for this mapping in complete regular SMS. To illustrate our results, we provide
an example. The findings of this study extend and generalize the results of Sadig Basha in [8], Karapinar
et al. in [23] and other related works from the literature. In Section 3, we apply the result obtained
from the corollary 2.1 to investigate the existence of optimal solutions of a coupled system of fractional
differential equations (FDEs) under initial values involving a fractional ¢-Hilfer derivative.

2. Theorems, lemmas, and other proclamations

Assume that Q # @ be an arbitrary set. A function p : Q2 — R2? is called semimetric (SM) on Q
whenever p(g1,92) = p(92,91), p(g1,92) =0 <= g1 = g2 for each g1, g2 € Q and a pair (9Q, p), is called
a SMS if p is a SM on Q. A SM p is metric if the triangle inequality p(u1, u2) < p(p1, pus) + p(us, pu2)
holds, for each u; € Q, i = 1,2, 3. In the context of a SMS (£, p), the distance between nonempty subsets
A; and A5 can established as follows

dist(Ay, As) == inf{p(ul,yg) Ly € A g € AQ}. (2.1)

If Ay consists of a single point u, then we denote the distance between p and Ay as dist(u, As) rather
than dist({p1}, A2). Consider a SMS (9, p) and nonempty subsets F; and Fy of Q. We can define the
following sets

E, = {,u € Ey: p(p,v) = dist(Ey, Ey) for some v € EQ}, (2.2)

Ey, = {v € Ey: p(u,v) = dist(Fy, Es) for some p € Eg}. (2.3)

A pair (uo,vo) € E1, x Eo, for which p(uo,vo) = dist(E1, E2) referred to as a “best prozimity pair” for
E1 and EQ.

Definition 2.1 Let E; # @, i = 1,2, be subset of SMS (2, p).
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o An element a* € A is defined as a BPP of the mapping T : E1 — Es if p(a*,Ta*) = dist(E1, Es);
o CBPP of non-self mappings S, T : 1 — Fo are points v € 9 s.t.
p(v, Sv) = p(v, Tv) = p(E1, Es). (2.4)
In the case where dist(E7, Ey) =0, then a common FP coincides with a CBPP of S and T'.
Bessenyei et al. [9] introduced the following definition of a triangular function for a SMS (Q, p),

Definition 2.2 ([9]) Consider a SMS (Q,p). A triangle function ® : RZ, — Rsq for p, is symmetric
and monotone increasing in both of its arguments, with properties ®(0,0) =0 and

p(gl792) < ®(p(glag3)ap(g27g3))7 Hi € Dv 1= 17273' (25)

In SMSs, we say the triangular function & is reqular whenever @ is continuous at the origin. Let A1, Ao €
Ry,

e O\, \g) = c(\ + A2) (c-relaxed triangular inequality, ¢ > 1);

o &(Aj, Xo) = emax{Ay, o} (c-infrared inequality, ¢ > 1);
1

. <I>(5\1, 5\2) = (5\1p + Xgp)p (triangular inequality of order p, where p > 0).

The topology of a regular SMS is Hausdorff and a convergent sequence in a regular SMS has a unique
limit, possesses the Cauchy property. Moreover, a SMS (9, p) is regular iff lig_n sup diam(B,-(p)) = 0,
T OOPEQ

where B,.(g) = {y € Q : p(y,p) < r}, g € Qand r > 0 [9]. We give the same definitions of the two
articles [22](1*) and [34](2*) in SMSs.

Definition 2.3 Let (Q,p) be a SMS, a : Q% — R2% be a function.

(1*) The sequence (up)n>0 5 said to be a-reqular on Q if a(Up, Un1+1) = 1, n € N and lirf Uy, = U € 1,
n—r-+00o

then there exists a subsequence (un, k>0 Of (Un)n>0 S.t. for each k € N, a(up,,u) > 1;
(2*) « is said to be triangular if a(u1, pe) = 1 and a(pe, ps) = 1 then a(pr, us) = 1;

(3*) a pair (V,S) of non-self mappings from E; to Es is said a-proximal admissible if condition,

alpr, pz) =1,
p(t, V) = dist(Ey, Ey), = min{a(t,s),a(s,t)} > 1, (2.6)
p(sa SMZ) = diSt(Ela E2)7

V/Ll,ug,t,ﬁ € Fq, holds,

Theorem 2.1 ([4]) Consider nonempty subsets Ey and Ey of a complete MS (Q,p). suppose that Ey,
1s nonempty and E7 is closed set. Let V and S be a pair of a-y-proximal contraction pair of the first
kind from Ey to Ey s.t. (1) V(Ey,) C Ey,, S(E1,) C E1,; (i) (V,8) is an a-prozimal admissible pair;
(iii) I (po, 1) € E1§ s.t.

min {a(uo,m), a(p1, uo)} >1, p(p1, Spo) = dist(E1, Ea); (2.7)

(iv) V and S are continuous. Then, Au* € By s.t. p(p*, Vu*) = p(p*, Sp*) = dist(E1, Es).

Consider a SMS (9, p). We assume that a : Q% — R is triangular and consider the values of
the triangular function ® in R-(. Denote the family of functions 1 : RZ% — [0,1) by ¥, satisfying the
property as

limsup?(t,) =1 = I(tn, ) k>0 C (tn)n>o @ lim ¢, =0. (2.8)

n—-+00 k—+o00

In what follows, we introduce a new class of proximal contractions, the so-called a-Gp; contraction
type HR.
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Definition 2.4 Let V,S : E1 — Ey be two mappings. The couple (V,S) is called a a-generalized Gp;
contraction pair type HR, if V3,8, fi1, iz € E1, the conditions

a(ﬂ17/j2) 21, p(ﬁvvﬁl) :p(E17E2)7 p(57S/iz) :p(ElvEQ)v (2'9)
imply that

a(ﬁlvﬁ&)@ (P(3,5)7P(575)) < ¢(P(ﬁ1,ﬁ2)) (p(/j’h/j@))n (p(/\ll’ﬁ))e

- (pliiz:))° [p(iir, ) + pliia,3)] ", (2.10)
where 0 < 0,n <1 withn+20 <1 .
o If @ is c-relaxed inequality triangular, then Eq. (2.10) becomes
a(jin, fiz) 2¢ p(3,8) < Y (pljn, fi2)) (p(iin, f12))" (p(fi, 3))°
- (pliiz:9))° [p(jir,5) + pljiz, 3)) "~ (2.11)
We obtain
alfin, fiz) p(3,5) < W (plfia, i2)) (pljin, fi2))" (p(f1, 5))°
- (plin, 5))" [p(ﬂus);rcp(ﬂz,z)] e (2.12)

e If ® is c-infrared inequality triangular, then Eq. (2.10) becomes

alpr, p2) p(t,5) < Y(p(p, p2)) (o1, p2)) (1, t))?
(12, 9))? [p(p1,5) + plpa, )] 7% (2.13)

In the sequel, we denote (9, p, @), the regular SMS (9, p) provided with a triangular function ¢ continuous
at the point (0,0) s.t. V3 € Rso, ®(3,3) > 3-

Theorem 2.2 Consider @ # E; C Q, 1 = 1,2, in a regular SMS (Q, p, ®) and suppose that (Q, p) is
complete and Ey o 15 a closed set. Let V, S : By — Ey fulfilling The subsequent requirements

i) (V,S) is a a-generalized Gy; contraction type HR pair;
p

(i

i) any sequence (un)n>o of E1 is a-regular and (V,S) is a-prozimal admissible;
(iii) V(Ey,) C Ea, and S(E1,) C Ey,;
)

(iv) there ezists (ko, k1) € E12 where

min {a(no,m),a(m,feo)} >1, p(k1, Vo) = dist(Eq, Es). (2.14)

Then, there exists a point p* € Ey s.t. p(u*, Vu*) = p(u*, Su*) = p(E1, Es).
Proof: By (iv), E1, is a nonempty set and there exist ro,x1 € Eq, s.t.
min {Oz(lio,lil),a(lil,lio)} > 1, p(k1,Vkg) = dist(Eq, Es). (2.15)

According to the hypothesis S(Elo) C Es,, we can conclude the existence of ky € Eq s.t. p(ka, Sk1) =
dist(E7, Es). Since (V,.S) is a pair of a-proximal admissible mappings and

min{a(mo,m),a(m,mo)} >1,
p(k1, Vkg) = dist(Er, Eq), = min{a(lﬁ)17lﬁ)2)7a<ﬁz7ﬁ}1>} > 1. (2.16)
p(ka, Sk1) = dist(E1, Es),
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Similarly, we assert the existence of k3 € Ey, where p(k3, Vky) = dist(E1, Ep). Since (V,S) is a pair of

a-proximal admissible mappings and

min{a(m,ng),a(HQ,m)} >1,
p(lig, Vlig) = diSt(El,EQ), = min {a(’iZa’{?))va(HSv/{Z)} > 1.
p(k2,Sk1) = dist(Ey, Es),

Continuing this process, we construct a sequence (6, )n>0 in Ep, s.t.

min {a(&n,&n+1),a(5n+1,5n)} >1,
p(Gant1, Vo) = dist(Er, Ey),
p(5'2n+27 S&Qn_l,_l) = diSt(El,Eg), Vn € N,

V,S) is a a-generalized G,; contraction type HR pair and «(6,,,6,41) = 1, then Vn € N,
P +

Q(p(Gant1,02n42), P(G2nt1, O2ni2))

SR - - L —n—20
(P(U2n,U2n+1))n+6(/)(02n+1,02n+2))6 (p(02na02n+2))1 2
P(02n,02n41 P(002n+1, 02042
(pn( )" (p( )?

1—-n—26

<
<

[@(p(F2n, G2nt1), P(G2n+1, T2nt2))]

Also, one has
a(&na&n+1) 2 17
p(Gant2, SFany1) = dist(Ey, Ea),
p(52n+37 V&2n+2) = diSt(El, EQ), Vn € N.

Hence,

D (p(Gant2,02n+3), P(O2n+2, Tant3))

- - . - —n—20
0 (p(Gans2,52043))" (p(G2nt1, Ganss)) "
(p(G2nt2,52n+3))"

1-n—26

< (p(Gant1,02n12))
<

(p(G2n11,Fan2))"H?

[@(p(G2n41502n+2), P(G2n+25 O2n43))]
Thus, for each integer n > 0,
®(p(Gnt1,0n+2), P(Ont1,Ont2))
g (p(a}h &7L+1))n+0 (p(&n—i-h &n+2))9 [(I)(p(a'na &7L+1)a P(5n+1, 5'n+2))]

Case 1: If 3ng € Ns.t. 6, = dp,+1, then by Eq. (2.22),

D(p(Fng+1s Ong+2)s P(Fng+1, Ong+2)) = 0,

1—-n—260

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

and as ® is monotonically increasing, we obtain p(Gpy+1,0ng+2) = 0. S0, Fny = Fng+1 = Ong+2. We
follow the same procedure, we obtain &,, = &,41, for any integer n > ng. The sequence (6,)n>0 being

stationary from a certain rank, it is therefore convergent.

Case 2: Let n € N, §,, # Gy 41. Suppose that p(Gy,,Fn41) < p(Gni1,Fnt2), for some n € N. Then,

(p(n,Tn+1), P(Ont1,0n+2)) < P(p(On+t1, Tnt2), P(Ont1, On2))-
From inequality (2.10), one has

(I)(p(&n-&-la &n+2)a P(Ont1;0n12))

< (p(6n, 6n41)) " (p(Gr1s Gnr2))? (R(P(Grg1s Fnt2), P(Grg1, i)

1—n—260

(2.24)

(2.25)
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We obtain

(@(p(Fnt1sGn42), PFns1,Gns2))) " 2 (p(Gni1,Gni2)) ™ < (p(Fn Gnyr)) ", (2.26)

As by hypothesis, for all s € Rsg, ®(s,8) > s, then thanks to Eq. (2.26),

(0(Fnt1550+2))" < (p(Gs Tng1)) " (2.27)

Hence, p(6p41,0n+2) < p(Gn,Fnt1), which is a contradiction. Thus, p(Gp41,0n+2) < p(Gn,Fnt1), for
n € N. Therefore, (p(Gn,nt1))n>0 is non-increasing sequence and bounded below. There exists 7 > 0

s.t. lirf (G, Fp+1) = 7. Assuming that w > 0, we can find X € N s.t. for all positive integers n > N,
n——+0oo

p(Gpnyne1) > 0. Additionally, Vn € N, one has

D (p(ant1,0n+42), P(Ont1,0nt2))
< w(p(&m tn—&-l))(p(&na C~Tn+1))77+2‘9 [@(p(&n, 5n+1)a p(5n+17 5n+2))]1in720 ) (2'28)

in other words,

< w(ﬂ(ﬁm &nJrl))(p(&m &n+1))n+29©(p(5na &n+1)7 p(énv 5n+1))' (2'29)

And consequently,

(p(on, &n+1))n+29©(p(5n+17 Gn+2); P(Ont1, Tnt2))
< Y(P(Fs T 41)) (p(Gny 50 11)) 2@ ((Gs Gs1), PG Ttn)) - (2.30)

Since p(Gy,0pn+1) > 0, for all n > N,

D(p(Gni1,0nt2), P(Ont1;0nt2)) < V(P(Gn, 5ni1))P(P(Grs Ont1)s P(On, Frg1))- (2.31)
We have,
limsup ®(p(Gnt1,n+2), P(Gni1,Ong2)) = limsup p(Gri1,0ng2) =7 >0, (2.32)
n—-+oo n—-+oo
and so

lim sup®(p(Gp41,0nt2), P(Ont1, Tny2))

n—+oo
< limsup (p(Gn, Gpt1)) imsup @ (p(6n, Gnt1)s PGy Tnt1)) s (2.33)
n—-+oo n—+4oo
which shows that
1 < limsup ¢ (p(6n,0nt1)) = limsup(p(Gn,dnt1)) = 1. (2.34)
n—+4oo n—-+00

Since, ¥ € U, we consider a subsequence (p(Gp,, Tny+1))k>0 Of (0(Gns Fnt1))n>0 .t

Hm p(Gn, . Gns1) =0, (2.35)

k—4o0c0

so w = 0, which is a contradiction. Hence, (GnyOnt1) = 0.

lim p
n—+4o0o
e Suppose that (a,)n>o is not a Cauchy sequence. Therefore, there 3¢ > 0 s.t. we can find two
subsequences (my)r>0 and (ng)r>o of positive integers satisfying ny > my, > k s.t.

Ck = p(a—mk7&nk) 2 €, p(&mka&nk—l) <g, ke N. (236)
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Set vy, := p(Tpt1,Tn), Vn € N. We notice that, Vk € N,

CD(mG+1, P(&mk+1a &nk)) < (I)(mGJrlv (I)(mG ’ p(é—mk ) 5—"1}9)))
( (0'05 6'1)’ (I)(p(&()? 61)7 Ck))a

(mGvq)(p(&mk’&nk+2))< (lew (Ck’ (Vnmynk-i-l)))

( (UOv 01)’ (I)(Cky (I)(p(&m Ul)7 p(Uo, 01)))) ,
p(&'f”k"rl?&nk"rl)) (V7Vlk7¢(<k7ynk)) < (I)(p(&()?&l)?¢(Ck7p(&0’&1)))v
p(&mk“rl?&nk) (D(megk) é( (00’01) Ck) (237)

Since Ck < P(p(Tmy,> Onp—1), P(Onp—1,0n,)) < ®(g, p(G0,51)), then limsup ; < +o0,
k——+o0

p(&mk +25 &nk )

NN

p(&mk“l‘l? &nk+2)

NN

P
P
P
P

N

lm sup p(Gmy+1, Ong+1),  Umsup p(Gm,+1,0n,), Umsup p(Gm,, 0npt+1), (2.38)
k— 400 k—4o00 k——4oc0

lim sup p(Gom, +2,0n,) and Umsup p(Gm,+1,0n,+2) are also finite. « being triangular, one has
k— oo k— 400
a(@n,,Om,+1) = 1, for all k € N, and as
p(énk+17 V&nk) = diSt(El, Eg), p(&mk+2, S&mk+1) = diSt(El, Eg), (239)
then
q)(p(a'nk-‘rla &mk-‘r?)a p(&mﬁ-lv &mk+2))

< 1/)(P(5nk ) &mk"rl))(p(&nk ) &mk"rl))n(p(&nk ) &nk+1))0

- - - ~ . 1-n—26
’ (p(gmk+17 Jmchr?))G [p(ank+1ﬂ Umk+1) + p(o'nwo'karQ)} ! : (240)
As,  lim p(Gpny,0np+1) =0= lm p(Gmy,0mu+1), and 7,6 > 0 and n + 20 < 1, then
k—+o00 k—+o00
limsup p(Gn, +1, Gmy+2) = 0. We have
k—+4o0
e < Ck <® (p(a-nk75-nk+1)7 (b(p(a—nk+17 5—mk+1)7p(&mk+175-mk))) . (241)

Hence, taking the limit as k — 400, will have ¢ < klir+n Cr < ©(0,9(0,0))) = ©(0,0) = 0. We reach a
—+00

contradiction by observing that ¢ = 0. Consequently, (6,),>0 is a Cauchy sequence in E; . Since Ey, is
a closed set, the sequence (6,,)n>0 converges to an element k* € Ey .
e VE,, C Es,, SE|, C By, and k* € Ey, there exists (p1, 12) € Ef s.t.

plu1, VE*) = dist(E1, Es), p(pe, Sk™) = dist(Eq, Es). (2.42)

As the sequence (65, )r >0 is a-regular and (6, 6,41) > 1, there exists a subsequence (&, )k>0 of (Gn)n>0
s.t. min{a(6y,, k%), a(k*,6n,) = 1, Vk € N. Furthermore,

p(&nk“l‘l? Va—nk) = diSt(Ela E2)7 p(/‘% SH*) = diSt(E27 E2)7 (243)
for any k € N and as (V, ) is an a-generalized Gp,; contraction pair type HR, one has
(I)(p(&nkJrlv M2)7 p(&nkJrl» /~L2)) < (p(énk ’ 5*))’] (p(&nk ’ &nkJrl))G
(P, 12))° (G p2) + PR, Gy 1)) 77 (2.44)
As p(Gn,, p2) < P(p(Gn,, K*), p(K*, u2)), for all k € N, then lim sup p(6,, , p2) < +o0o. By taking the limit

k—+o00
as k — 400 in the previous inequality, we deduce that

lim ®(p(Gn,+1, p2), p(Ony+1, p2)) = 0. (2.45)

k—+oco
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Because
q)(p(&nk-l-lvMQ)ap(5nk+17/1'2)) = P(5nk+1,l$2)7 ke N7 (246)

then po = kginoo Gnp+1 = K*. Thus, v = k* and p(k*, Sk™) = dist(F1, E2). Similarly, one can show that
p(k*, Vt*) = dist(Ey, Es). O

Corollary 2.1 Consider a complete reqular SMS (Q, p, ®), and let E be a non-empty closed subset of
Q. Let V, S : E — E be two mappings satisfying

a(r,8)®(p(Sk, Vs), p(Sk, Vs)) < ¢(p(k, 5))(p(5,9))" (p(r, SK))’ (p(s, Vs))’
p(k, V) + p(s, Sk)) 72 (2.47)

for all k,s € E, where 0 < 1,0 < 1 with n + 20 < 1, and the same conditions (ii), (ili) and (iv) of
Theorem 2.2. Then, there exists a point k* € A s.t. Sk* = k* = VK*.

Proof: Thanks to Eq. (2.47), the pair (V,S) is a a-generalized Gp; contraction type HR with By = Ey =
E. O

The following represents an illustration of the previous result.

Example 2.1 Let Q = R? with the following distance
p((61,51), (G2,82)) = |61 — Ga| + |51 — 52, (2.48)

and assume that

eN,n> } (2.49)

It is easily verified that (Q,p) is a complete MS and dist(Ey, E3) = 1. Consider the mappings V, S :
FEy — E5 as follow

S5(0,0) = (1,0), V(0,0) = (1,0),
5(0,1) = (1,0), V(0,+) =(1,0), ke{2,3,4,56,7,9},
S(Oal) (170)a V(Ovl) = (17$)7
$(0,2) = (1, 3), V(0,2) = (1, 3), (2.50)
5(073) = (1’i)7 V<073) (17%)7
5(0’4) - (1’%)’ V(074) (L%)a
S(0,n) = (1,0), V(0,n)=(1,n), neN,n>5.
Also, define a function o : Q% — Rxq by
a((61,51), (62, 52))
1+ 3 =1 (5),51),(62,52) € {(0,k) : k€ {1,2,3,4}},
_ (G1,51) # (02,92), (2.51)

1, (5’1,51), (5’2,52) S {(0,0), (0, %) NS {2,3,4,5,6, 7,9}},
0 otherwise .
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The function o is triangular and any sequence of Ey is a-regular. One can check that S(E1,) C Ea, and
V(E,,) C Es,, where

Br, = {(0,0)(0.3) (0.4) (0.4) (0.8) (0.) (0.3) (0.8)} U {(0.m) s m € N.m > 51,
Boy = {(1,O) (L) (LY (LH (L H (L H LY L HIu{n) neN n>5}. (2.52)

C’hoosenz% and 0 = i, then n + 20 = % < 1.

e First task is to demonstrate that (V, S) fulfills the properties of being an a-generalized Gp; contraction

pair type HR, with v : RZ% — [0,1) defined by (k) = m whenever k €]0,+oo[ and ¥(0) = 0. We

notice that 1 € ¥, because if limsup ¥ (6,) = 1, then there exists a subsequence (6, )k>0 of (Gn)ns0 S-t.
n—4oo

kll:l_l ¥(6y,) = 0. We mention that ¢(1),9(2),1(3),9(2) belong to [%,+oo[, which we will use later.
5

Take k = (0,62), s = (0,82), = (0, p2), v = (0,v2) four elements of Ey s.t.

a((0,52),(0,82)) =
p(( Vi ) = dlSt(El, EQ) (253)
p(v, Ss) = dist(En, E2) =

verifying that

ol (9ot 1)) ol 4 )+ e )7

(p
a(k,s) D(p(p1, p2), p(prs p2)), (2.54)

where ®(u,v) = u + v, for all u,v € Rsg. Table 2.1 summarizes the calculations to verify that (V,S) is
a a-generalized Gp; contraction pair type HR. Denote

G = ¥(p(r,s))(p(k,5))"(p(k, 1)) (p(5, 12))? [p(k, p2) + p(s, 1)) "7,

F = (s, 8) D(p(p1, p2), p(p, p2))- (2.55)
K 5 M1 2 G>F
(0,1)  (0,2) (0,00 (0,3) wgl) (2)s (%2)9g ~1.0035 20 = (10) (2) =2a(k,s) p(u1, p2)
(0,1)  (0,3) (0,00 (0,%) P(2) 27 (L) , (1)t~ |~ 122155 20 = (1) (2) =2a(k,5) p(p1, u2)
(0,1) (0,4) (0,00 (0,%) ¥(3) 3777(%)0(%)1’:’:;%1.31514 20 = (19) (2) = 2a(a,b) p(u1, p2)
0,2 (01 (0,3) (0,5) v(3) ()" (5), () "~ 08785 = () (5)=2a(ks) plu1, )
(0,2)  (0,3) (0,%) (0,%) ¥ () (%)Z Eﬁ)a(ﬁ)l : L, L2588 %0: (%?g (%) 20(k, 8) p(p1, p2)
0.2) 0,4 (0,3) (0,7) w227 (5) (F)7 (7)) 7~ 155086 &3 = () (3) =2a(s,5) plu, p2)
03 O (0,5 (05 | w@2 () (5)° () "~ 5= () () =2a0m9) el )
03 02 (©01) (01 o) ()’ (3)° (3)' " mna0s6s = (38) (3) = 2a(s.9) plr. a)
03 04 05 03| e () E) G 08 5= () () = 2006.5) o)
04 01 01 01| e () () (2 xi00 8= (12) () = 2a009) pluro)
0,4 (0.2 (05 (0.3) P(2)27 (é) (%2} (%)1 ! gy 109077 37 = (9) (3) =2a(k,5) p(u1, p2)
04 03 (01 ©01) ] w0 () () (45R) 7 x1s0080 & = (X) () = 2a(k,9) p(u, p2)

Table 1: Calculations of (V, S).

Moreover, for k = (0,61) and s = (0,s2), where 61,52 € {0, £}, with k € {2,3,4,5,6,7,9}, one has
p=v=1(0,0), so

2a(k,5)p(p1, p2) = 0 < P(p(k,5))(p(k,5))"
(ks 111)? (p(s, p12))° [, p2) + pls, )] 7% (2.56)
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Thus, (V,S) is a a-generalized Gp; contraction pair type HR. We confirm that (V,S) is a-proximal

admissible. For example, if one takes (0,2) and (0,3). Moreover, if 1 = (0,uz) € Ey and pa = (0,v3) €
E1 s.t.

p((p1,V(0,2)) = dist(B1, Eo) =1, = 1= (0,3),v=1(0,1). (2.57)

Then, min{a (1, p2), a(pz, )} = 22 > 1. If one takes (0,0) and (0,%). Moreover, if i1 = (0,uz) € Ey
and py = (0,v9) € Eq s.t.

a ((0,0),(0,3)) > 1,
p(p1,V(0,0)) = dist(Ey, E2) = = w1 = p2 = (0,0). (2.58)
(/1,27 ( %)) = dlSt El,EQ) =

Then, min{a(p, p2), o(p2, p1)} = 1. For condition (iv), take (5o,51) = ((0,1),(0,0)) € E}, where

ke{2,3,4,5,6,7,9}. Then,
min {a(&o,&l), (51, &0)} >1,  p(61, Vo) = dist(Ey, Es). (2.59)
Thus, the hypotheses of Theorem 2.2 are fulfilled and
p((0,0),V(0,0)) = p((0,0), S(0,0)) = dist(E, Es). (2.60)
For the uniqueness of the CBPP of V' and S in Theorem 2.2 and Corollary 2.1, we introduce the following

necessary condition CB(V, S): for all x,s € Ey,

= a(k,s) > 1. (2.61)

p(k, V) = p(k, Sk) = dist(F1, Es),
P(57 VS)) = 10(57 55) = diSt(Ela Eg),

Theorem 2.3 Adding the condition CB(V,S) to the hypothesis of Theorems 2.2 (resp. Corollary 2.1),
there exists an unique CBPP of V' and S.
Proof: Suppose (V,5) is a a-generalized Gp; contraction pair type HR. Let 61,52 € E; s.t.

p(&l,Vél) = p((}l,S&l) :diSt(El,EQ), p(&Q,V&Q) :p(52,55'2) :diSt(El,EQ). (262)

By the condition CB(V,S), one has a(d1,52) > 1. Then

®(p(01,02), p(01,02)) = (G1,02) ®(p(01,52), p(51,52))
< P(p(61,52))(p(51,52))"(p(61,61))°
[p(61,52) + p(&2,50)] ", (2.63)
which give 1 = 9. O

3. Application to FDEs

Let b,v € R with b < v. Consider the complete regular SMS (£, p, ®), where Q = C1(Z), T := [b,v].
The SM, p is defined by

—wl—w22: sSup (w1 lkK) — W2k 2, .
plwrswn) = llwn = wallZ = (sup fon () = wa()]) (3.1)

and the regular map ® associated with p is given V (t1,t3) € R2 ), by ®(v1,t2) = 2(r; +t2). We consider
an increasing and positive monotone function ¢ on Z s.t. v’ is continuous on Z \ {b,v}.
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Definition 3.1 ([39] ) Let h € Q.
(i) The integral

I () = /b WUV i (h(s)ds, > b, (3.2)

s referred to as the left-sided fractional integral of h of order p > 0 on Z, with respect to function
¥;

(ii) If for each k € T, ' (k) # 0, then left-sided-Hilfer fractional derivative of order p and type 0 < ¢ < 1
of h is expressed as follows

DL R() = T (G ) T A, kb 0<p <L (3.3)
It can be written as
MDP9Y (k) = T} 7PV D)V h(k), y=p+q(l-Dp), (3.4)

where Dlﬁw is the 1-Riemann-Liouville (RL) fractional derivative

DY h(r) = (b k) T h(k). (3.5)

Theorem 3.1 ([33]) Ifh€Q,0<p<1and0<q<1, then

. . ®)— —1 _ —q);
7 MR (k) = h(r) — CETERE_TEmPTDYRG) -y = p 4 g(1 - p). (3.6)

The following results pertain to fractional derivatives.

Lemma 3.1 ([39]) . For all p,q > 0 and h € L*(b,v),
IPYTIEY h(k) = IV Y h(k), & € [b,0]. (3.7)

Lemma 3.2 ([39]) For k>0, p>0 and § > 0, we have

T (k) — ()" = sy (W (R) — 0 (B))7F0, (3.8)

Theorem 3.2 ([33]) Let heQ, p>0 and 0 < g < 1. Also, H]D)g;q;w Igfbh(ﬂ) = h(k).

We consider a coupled system of right sided-Hilfer FDE with arbitrary order under initial conditions

as form
HDPEY 1y (k) = A (5, iz (K)), (3.9)
HDPE (k) = Aok, 1 (R)),
for b < k < v, under conditions
Iéi-?)(l—tﬁﬂb'ul(b) _ Ié}._p)(l_q);w,ug(b) = ag, (3.10)
where p1 € 9, ag € R<g and A1, Ay € C(Z x R). Set v =p+ ¢ — pq.
Lemma 3.3 The system (3.9) is equivalent to the integral equations, k € T,
K)— 71 " K)—(r))P L
(1) = QIO g / W/ (r) L ON ) (1, o (1))
b (3.11)

K)— -1 " K)—(r))P~ 1t
pia (k) = (RO a0+/b () QLD (7))
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Proof: The maps x — Ai(k, p2(k)) and k — Aa(k, p1(k)) are continuous on Z. Taking the integral
operator I{:rb(-) on (3.9), for k € T\ {b}, one has

TP MDY () = T M, ra(), (312)
VY MDDV 15 (k) = T No (K, pa (K)).

According to [33, Theorem 7],
. . K)— e PN
I{)’jf HID)ff’wm(/f) = pi (k) — @ () =(b)) Ibl+ 'mbm(b)’

p W (( )i(ljy()b))”_1 1—39p (3.13)
Iy MDY pa (k) = pa(r) — SR T, 7 o (b).
Then,
®)— y—1 A
() = BRI TI0 1 (8) + TN (1, o (), _
K)— =1 _ 1~ .
pa(s) = TR T 15 (0) + T Mo, 11 ().
The two initial conditions (3.10), for k € Z \ {b}, lead to
K)— -1 " Kk)—p(r))P !
() = L —ag + / o () T (o) -
3.15
K)— y—1 e K)— p—1
pa(r) = WELZEONT g 4 / ! () LEOT s (1, i (7)) i,
Furthermore, thanks to the ¢-Hilfer fractional derivative HD? 9% () on Eqgs. (3.9) and since
R e A B (3.16)
one has
HJD?Fq!wul(H) = H]:D)gqu”tngjrw)‘l(ta /J/Q(K))7 (3 17)
DR o (k) = MDY Ag (k, pa ().
Using [33, Theorem 2], we obtain
DI (k) = Ak, pa(R)), (3.18)
DDV i (k) = M, pa ().
O

(1-p)(1—q);

The set M = {p € Q : p is increasing on Z and Z,, p(b) = ag} is non-empty. Consider the

maps S and V defined on M, for k € Z, by
K)— V-1 " K)— p—1
Spa(x) = LELOI g +/ W (r) )rﬁff)) M (r, () dr,
(3.19)
~—1 F))P—1
Vi) = SOOI aq 4 [ (1) S o1, 1)

Lemma 3.4 If Ay and A1 are increasing with respect to each variable, then for all py1, ue € M, we have
Spr € M and Vg € M.

Proof: Let py, 2 € M and set v = p + ¢ — pq. The mappings Sy; and Vs belong to the class C! on
7T, because i1, fio are in £. Taking Ilpr on both sides and applying Lemmas 3.1, 3.2, we get

L S (k) = F Ty (W) = w0 + L I A (s, i ()

= ag + I, " TNk, pa (),

T pa(k) = (5T (k) — ()7 + T VI Ao, a2())

= ag + I, TP Mo (k, pa (k) (3.20)
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for k € Z. Since

lim I1 a(1- p)w)\l(li p1(k)) = lim Il a=phvy, (K, n2(k)) =0, (3.21)
k—bt K—bt
then
Ié}r*p)(lfq);wsm(b) — ao, Iéifp)(lfq);wvuz(b) = ag. (3.22)

Let b < k1 < k2 < v. Given that y; is increasing and \; is increasing with respect to each variable, for
1 =1,2, it follows that p; (k1) < p1(k2) and Ay (K1, H1(81)) < A1(K2, pa(tz)). Similarly, Az (K1, p2(k1)) <
A2(Ka, p2(k2)). Therefore, Spi(k1) < Sui(ke) and Spa(k1) < Spa(ke). O
We introduce the following assumptions
(H1) A;(-, (), i = 1,2 is continuous and increasing with respect to each variable;
(H2) VkeZ and u; e R, i=1,2,

|)\1(I€, Ul) — )\Q(H,UQ)| < ﬂ |U1 — UQ‘TI|U1 — K)\l(n,ul)|9|u2 — KAQ(KJ,UQ”O

1—-n—26
Jur — Ko (k, uz) | + w2 = KA (s, )| , (3.23)
where K = W 0<p< ﬁ and 7,0 €]0, 1] with n + 20 < 1;
k€Zand u; €Ri=1,2,
(H3) v Z and R,i=1,2
|/\1(I€,U,1) - )\1(/6,U2)| S |U1 — UQl, |/\2(I€,U1) — )\Q(KZ,UQ)| S |U1 — U2|. (324)

(H4) KXi(k,u1) <up and KXg(k,u1) < ug, for all k € Z and vy € R.

Theorem 3.3 If (H1)-(H4) hold, then the system (3.9) admits a unique solution p* € A = M verifying
Proof: Step 1: Let (u1,pu2) € M? and k € Z\ {b}. Then, assumption (H2) yields

1S (k) — Spa()| = ‘/ w/(s)%M(Al(fvﬂl (7)) = A2 (7, pa (7)) dF
/[ v rfﬁf”p B (7, 1y (7)) — Ao (F, o ()] dF

\np/‘w — 9P () - el
Npa (7) = KM (F, pa (7)) |2 (F) — KXo (7, pa(7))[°
[l () = Ko o (7))

+ |/142(’F) — K)\1(7:7/141(7:))‘

Let s €]b,k]. By assumptions (H1) and (H4), up is increasing, A is increasing with respect to each
variable and ag < 0, then

11 (5) = KM (s, (9)] = pa(s) = BTN (5, 111 (5))

(v(s) —¥(b)?
TM(& p(s))

p
(9= [ o0 (5 (5) 07
< p(s) = FS5 T (W(k) — (b))
= [ O ) o
= pa(s) = Spa(s) < [lpr = Spaloo- (3.26)

1—-n—260
} dr. (3.25)

<pa(s) —




14 K. CHAIRA, N. EL. HARMOUCHI AND M. E. SAMEI

Likewise, we justify that |pa(s) — KXa(s, p2(s))| < ||p2 — Vipz|oo and

11 (s) = KAa(s, pa(s))| + |pa(s) = KAi(s, pa ()] < llpa = Vipzlloo + 2 = Spa e (3.27)
Thus, V& € T\ {b},

i) — Vol ( / W w<f>>P-1df)||u1—u2||zo||u1—smzo

—n—20
Nz = Vil [ i1 — Viszlloo + 2 — Spafloo ]

= o (W©) = D(0)) 1 — p2 %l = SpallS
Nz = Visa||% [l = Vislloo + iz = Spalloe 17" (3.28)

Hence,

2
1S = Vil < (575 (05) = $O)F) Nl — 2|22l — Spn |2

e = Vo 2] |7(==20)
2
< (W 0) = $O)) Nl — a2 n — Sy

1—n—20
Nz = Vol [2( 1 — Vol + e — Sp]2)] "

I — Vialloo + ||M2 - S,UIHOO

(3.29)

Therefore,

p(Sp1, Via) < 2 (5 (010 - w(b))q>2 Pl p2)"p(pr, Sprn)?
plpa, Vi) [ plper, Viz) + plpa, Spa) 1720 (3.30)

Step 2: Consider the functions ¢ defined on R+ by

2
6(t) = 8 [ () - )], (3.31)

and a : Q% — R defined as a(u1, p2) = 1 whenever (u1, p2), (12, 1) € A? and a(p1, p2) = 0 otherwise.

By the assumption (H2), ;2>1\“/(§p€ ((v) —¢(b))P < 1, then ¢ € ¥. The function « is triangular, any sequence
(tin)n>o0 of Ais a-regular, (V, S) is a-proximal admissible and the condition (iv) of Theorem 2.2 is verified.

Let p1, uo € A. There exist two sequences (u1, )n>0 and (p2, Jn>o0 of M s.t. lirf llge1, — pilleo =0 =
n—-+0oo

lim |2, — p2lles- Let k € Z. Thanks to the assumption (H3), we get
n—+4o0o )

Span, (%) — Sy (s \</w B\ (7)) — Ma(F, pa(7) dF

</ W(f)%mln(s)—m(ﬂldf

< O, = p e (3.32)
Hence,
1811, = Sutllos < prgy (W (v) = »(0)P [, — pualloc, (3.33)

and so ll}r_{l ISu1, — Splleo = 0. Similarly, ll)rf |Sua, — Spzlleo = 0. And since (Suy, , Sus,) € M2,
Vn €N, then, (Sui, Sps) € A2. By Eq. (3.30), for all n € N,

2
111, = Virz, loo <2 (585 0(0) = 0®)) plrar, p2,)" plin, s S, )
Ptz Vit2,)’ [ (g2, Visa,) + plpa,, Spa, ) )"0 (3.34)
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Thus, we get

2
i1 = Vialloo < 2 (52857 (0(0) = w(6)*) " pliar, pi2) " plps1, Sp)?

2, Vio)? [ p(pin, Vo) + plpaa, Spa) 172 (3.35)

Thus, the couple (V,S) is a-generalized Gp; contraction pair type HR on A,

(S, V)@ (p(Spa, Viz), p(Spa, Viz)) < dp(pn, p2)p(pa, p2)"p(p, Spa )’

ppz, Vi)’ [ plpn, Visz) + plpz, Spn) 1772 (3.36)

Y (u1, ) € A% Moreover, the condition CB(V,S) is verified, because a(Spui,Vus) > 1, for each

(p1, o) € A% Hence, all conditions of Corollary 2.1 are fulfilled. This concludes the proof. O
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