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Solving a System of Nonlinear Fractional Differential Equations via Novel Best Proximity
Pair Results in Regular Semimetric Space
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abstract: This paper is devoted to examining the existence of optimal solutions for a coupled system of
differential equations characterized by right sided-Hilfer fractional derivatives under initial conditions as form:{

HDp,q;ψ
b+

µ1(κ) = λ1(κ, µ2(κ)),
HDp,q;ψ
b+

µ2(κ) = λ2(κ, µ1(κ)),

for b < κ ≤ v. To this end, we develop a series of best proximity pair theorems for a new category of proximal
contractions, referred to as the α-generalized Geraghty proximal interpolative contraction pair, formulated
within the framework of a regular semimetric space (Q, ρ,Φ).

KeyWords: Common best proximity point, Hardy-Rogers contraction, ψ-Hilfer fractional derivative,
Proximal Geraghty contraction, interpolation, regular semimetric space.
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1. Introduction

The theory of the fixed point (FP) is extremely important and plays an indisputable role in the
progress and development of various branches of mathematical science. In essence, numerous scientific
problems can be expressed and modeled as a FP equation, that is taking the form of equation Tu = u,
where T is an application defined over a metric space (MS), a normal linear space, or another suitable
space.

In 1931, Wilson studied the theory of semimetric spaces (SMSs) [40] and then McAuley in 1956, Burke
in 1972, Galvin et al. in 1984 obtained scientific results in the space [28,10,16]. In 2014, Bessenyei et
al. [9] introduced the definition of a triangular function for a SMS, (Q, ρ) in other words they proposed
the notion of regularity of a SMS. Let us consider non-empty subsets A1 and A2 within a SMS, with
T : A1 → A2 denoting a non-self mapping. In certain scenarios, the aforementioned equation may
not possess a solution. In such cases, we can aim to find a point u that minimizes the error δ(u, Tu),
where δ denote a metric, leading to the proximity of u and Tu. Consequently, the best proximity
point (BPP) results ensures an optimal solution for globally minimizing δ(u, Tu), whenever the condition
δ(u, Tu) = dist(A1, A2) holds with an approximate solution u. These approximate solutions are referred
to as BPPs of T , providing an approximate solution to the equation Tu = u. In the context of a
Hausdorff locally convex topological vector space E, consider a nonempty convex compact subset A, and
a continuous non-self mapping T : A → E. An influential result in the form of a BPP theorem, initially
presented by Fan [15], guarantees the existence of a point u ∈ A satisfying δ(u, Tu) = δ(Tu,A). This
innovative result by Fan subsequently served as a basis for further improvements and generalizations
made by various authors, such as Prolla [34], Reich [35], Sehgal and Singh [37], who explored different
directions. Moreover, several other studies have also contributed to the establishment of the existence of
BPP theorems, as evidenced by the works referenced in [8,13,33,26,17,38].
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A BPP result for generalized proximal C contractions in MS equipped with partial orders has been
elicited in [30,31] by Mongkolkeha et al.. Generalized α-ϕ-Geraghty contraction type mapping has been
introduced by Karapinar ( [22]), Hamzehnejadi and Lashkaripour ( [18]) initiated generalized α-ϕ-Geraghty
proximal contractions. They have investigated BPPs for these types of mappings. Poom Kumam in [25],
has establish some common BPPs results for generalized α-ϕ-Geraghty contraction mappings. Addition-
ally, BPP for this class of contraction have been discussed in [4,20,21,14,27,32,36]. The Hardy-Rogers
(HR) interpolative contractions was introduced and examined by Karapinar et al. [23].

Theorem 1.1 ( [23]) Let (Q, δ) be a MS. If S : Q → Q is an interpolative HR type contraction i.e.,
there exist 0 ≤ λ < 1 and σ, θ, η ∈ (0, 1) with σ + θ + η < 1, s.t.

δ(Sµ1, Sµ2) ⩽ λ[δ(µ1, µ2)]
σ[δ(µ1, Sµ2)]

θ[δ(µ2, Sµ2)]
η
[
δ(µ1,Sµ2)+δ(µ2,Sµ1)

2

]1−σ−θ−η
, (1.1)

for all µ1, µ2 ∈ Q \ Fix(S), then S possesses a FP of Q.

Fractional calculus, which generalizes integer-order integration and differentiation to arbitrary or-
ders, has emerged as a rapidly expanding field of research, driven by the significant outcomes achieved
through the application of fractional operators in modelling various phenomena [12,19]. To enhance the
understanding of certain real-world problems, recent studies have introduced novel fractional operators,
discussed in [1,3,11] are particularly noteworthy.

Simultaneously, the existence and uniqueness of solutions to differential and integral equations involv-
ing fractional operators have been well investigated using fixed point theorems. For a deep study, one
refers to [2,5,6,7,24,29].

The content is organized as takes after: Section 1, recalls the foundational results that will be utilized
in the subsequent sections. We introduce an innovation class of contraction providing improved results at
proximity points, in Section 2. Each contraction in this class is termed a Geragthy proximal interpolative
Gpi of type HR (see Definition 2.4). We provide the necessary conditions to establish the common best
proximity points (CBPPs) for this mapping in complete regular SMS. To illustrate our results, we provide
an example. The findings of this study extend and generalize the results of Sadiq Basha in [8], Karapinar
et al. in [23] and other related works from the literature. In Section 3, we apply the result obtained
from the corollary 2.1 to investigate the existence of optimal solutions of a coupled system of fractional
differential equations (FDEs) under initial values involving a fractional ψ-Hilfer derivative.

2. Theorems, lemmas, and other proclamations

Assume that Q ̸= ∅ be an arbitrary set. A function ρ : Q2 → R≥0 is called semimetric (SM) on Q
whenever ρ(g1, g2) = ρ(g2, g1), ρ(g1, g2) = 0 ⇐⇒ g1 = g2 for each g1, g2 ∈ Q and a pair (Q, ρ), is called
a SMS if ρ is a SM on Q. A SM ρ is metric if the triangle inequality ρ(µ1, µ2) ⩽ ρ(µ1, µ3) + ρ(µ3, µ2)
holds, for each µi ∈ Q, i = 1, 2, 3. In the context of a SMS (Q, ρ), the distance between nonempty subsets
A1 and A2 can established as follows

dist(A1, A2) := inf
{
ρ(µ1, µ2) : µ1 ∈ A1, µ2 ∈ A2

}
. (2.1)

If A1 consists of a single point µ, then we denote the distance between µ and A2 as dist(µ,A2) rather
than dist({µ1}, A2). Consider a SMS (Q, ρ) and nonempty subsets E1 and E2 of Q. We can define the
following sets

E10
:=

{
µ ∈ E1 : ρ(µ, υ) = dist(E1, E2) for some υ ∈ E2

}
, (2.2)

E20
:=

{
υ ∈ E2 : ρ(µ, υ) = dist(E1, E2) for some µ ∈ E2

}
. (2.3)

A pair (µ0, υ0) ∈ E10
× E20

for which ρ(µ0, υ0) = dist(E1, E2) referred to as a ”best proximity pair” for
E1 and E2.

Definition 2.1 Let Ei ̸= ∅, i = 1, 2, be subset of SMS (Q, ρ).
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• An element a∗ ∈ A is defined as a BPP of the mapping T : E1 → E2 if ρ(a∗, Ta∗) = dist(E1, E2);

• CBPP of non-self mappings S, T : E1 → E2 are points υ ∈ Q s.t.

ρ(υ, Sυ) = ρ(υ, Tυ) = ρ(E1, E2). (2.4)

In the case where dist(E1, E2) = 0, then a common FP coincides with a CBPP of S and T .

Bessenyei et al. [9] introduced the following definition of a triangular function for a SMS (Q, ρ),

Definition 2.2 ( [9]) Consider a SMS (Q, ρ). A triangle function Φ : R2
≥0 → R>0 for ρ, is symmetric

and monotone increasing in both of its arguments, with properties Φ(0, 0) = 0 and

ρ(g1, g2) ⩽ Φ(ρ(g1, g3), ρ(g2, g3)), µi ∈ Q, i = 1, 2, 3. (2.5)

In SMSs, we say the triangular function Φ is regular whenever Φ is continuous at the origin. Let λ̃1, λ̃2 ∈
R+,

• Φ(λ̃1, λ̃2) = c(λ̃1 + λ̃2) (c-relaxed triangular inequality, c ⩾ 1);

• Φ(λ̃1, λ̃2) = cmax{λ̃1, λ̃2} (c-infrared inequality, c ⩾ 1);

• Φ(λ̃1, λ̃2) = (λ̃1p + λ̃2p)

1

p (triangular inequality of order p, where p > 0).

The topology of a regular SMS is Hausdorff and a convergent sequence in a regular SMS has a unique
limit, possesses the Cauchy property. Moreover, a SMS (Q, ρ) is regular iff lim

r→+∞
sup
p∈Q

diam(Br(p)) = 0,

where Br(g) = {y ∈ Q : ρ(y, p) < r}, g ∈ Q and r > 0 [9]. We give the same definitions of the two
articles [22](1∗) and [34](2∗) in SMSs.

Definition 2.3 Let (Q, ρ) be a SMS, α : Q2 → R≥0 be a function.

(1∗) The sequence (un)n⩾0 is said to be α-regular on Q if α(un, un+1) ⩾ 1, n ∈ N and lim
n→+∞

un = u ∈ Q,

then there exists a subsequence (unk
)k⩾0 of (un)n⩾0 s.t. for each k ∈ N, α(unk

, u) ⩾ 1;

(2∗) α is said to be triangular if α(µ1, µ2) ⩾ 1 and α(µ2, µ3) ⩾ 1 then α(µ1, µ3) ⩾ 1;

(3∗) a pair (V, S) of non-self mappings from E1 to E2 is said α-proximal admissible if condition,
α(µ1, µ2) ⩾ 1,

ρ(t, V µ1) = dist(E1, E2),

ρ(s, Sµ2) = dist(E1, E2),

=⇒ min
{
α(t, s), α(s, t)

}
⩾ 1, (2.6)

∀µ1, µ2, t, s ∈ E1, holds,

Theorem 2.1 ( [4]) Consider nonempty subsets E1 and E2 of a complete MS (Q, ρ). suppose that E10

is nonempty and E1 is closed set. Let V and S be a pair of α-ψ-proximal contraction pair of the first
kind from E1 to E2 s.t. (i) V (E10

) ⊂ E10
, S(E10

) ⊂ E10
; (ii) (V, S) is an α-proximal admissible pair;

(iii) ∃ (µ0, µ1) ∈ E1
2
0
s.t.

min
{
α(µ0, µ1), α(µ1, µ0)

}
⩾ 1, ρ(µ1, Sµ0) = dist(E1, E2); (2.7)

(iv) V and S are continuous. Then, ∃µ∗ ∈ E1 s.t. ρ(µ∗, V µ∗) = ρ(µ∗, Sµ∗) = dist(E1, E2).

Consider a SMS (Q, ρ). We assume that α : Q2 → R≥0 is triangular and consider the values of
the triangular function Φ in R>0. Denote the family of functions ψ : R≥0 → [0, 1) by Ψ, satisfying the
property as

lim sup
n→+∞

ψ(tn) = 1 =⇒ ∃(tnk
)k⩾0 ⊂ (tn)n⩾0 : lim

k→+∞
tnk

= 0. (2.8)

In what follows, we introduce a new class of proximal contractions, the so-called α-Gpi contraction
type HR.
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Definition 2.4 Let V, S : E1 → E2 be two mappings. The couple (V, S) is called a α-generalized Gpi

contraction pair type HR, if ∀ z, s, µ̆1, µ̆2 ∈ E1, the conditions

α(µ̆1, µ̆2) ⩾ 1, ρ(z, V µ̆1) = ρ(E1, E2), ρ(s, Sµ̆2) = ρ(E1, E2), (2.9)

imply that

α(µ̆1, µ̆2)Φ (ρ(z, s), ρ(z, s)) ⩽ ψ(ρ(µ̆1, µ̆2)) (ρ(µ̆1, µ̆2))
η (ρ(µ̆1, z))

θ

· (ρ(µ̆2, s))
θ [ρ(µ̆1, s) + ρ(µ̆2, z)]

1−η−2θ
, (2.10)

where 0 < θ, η < 1 with η + 2θ < 1 .

• If Φ is c-relaxed inequality triangular, then Eq. (2.10) becomes

α(µ̆1, µ̆2) 2c ρ(z, s) ⩽ ψ(ρ(µ̆1, µ̆2))(ρ(µ̆1, µ̆2))
η(ρ(µ̆1, z))

θ

· (ρ(µ̆2, s))
θ [ρ(µ̆1, s) + ρ(µ̆2, z)]

1−η−2θ
. (2.11)

We obtain

α(µ̆1, µ̆2) ρ(z, s) ⩽ ψ(ρ(µ̆1, µ̆2))(ρ(µ̆1, µ̆2))
η(ρ(µ̆1, z))

θ

· (ρ(µ̆2, s))
θ
[
ρ(µ̆1,s)+ρ(µ̆2,z)

2c

]1−η−2θ

. (2.12)

• If Φ is c-infrared inequality triangular, then Eq. (2.10) becomes

α(µ1, µ2) ρ(t, s) ⩽ ψ(ρ(µ1, µ2))(ρ(µ1, µ2))
η(ρ(µ1, t))

θ

· (ρ(µ2, s))
θ [ρ(µ1, s) + ρ(µ2, t)]

1−η−2θ
. (2.13)

In the sequel, we denote (Q, ρ,Φ), the regular SMS (Q, ρ) provided with a triangular function Φ continuous
at the point (0, 0) s.t. ∀z ∈ R>0, Φ(z, z) ⩾ z.

Theorem 2.2 Consider ∅ ̸= Ei ⊆ Q, i = 1, 2, in a regular SMS (Q, ρ,Φ) and suppose that (Q, ρ) is
complete and E110 is a closed set. Let V, S : E1 → E2 fulfilling The subsequent requirements

(i) (V, S) is a α-generalized Gpi contraction type HR pair;

(ii) any sequence (un)n⩾0 of E1 is α-regular and (V, S) is α-proximal admissible;

(iii) V (E10
) ⊂ E20

and S(E10
) ⊂ E20

;

(iv) there exists (κ0, κ1) ∈ E1
2
0
where

min
{
α(κ0, κ1), α(κ1, κ0)

}
⩾ 1, ρ(κ1, V t0) = dist(E1, E2). (2.14)

Then, there exists a point µ∗ ∈ E1 s.t. ρ(µ∗, V µ∗) = ρ(µ∗, Sµ∗) = ρ(E1, E2).

Proof: By (iv), E10
is a nonempty set and there exist κ0, κ1 ∈ E10

s.t.

min
{
α(κ0, κ1), α(κ1, κ0)

}
⩾ 1, ρ(κ1, V κ0) = dist(E1, E2). (2.15)

According to the hypothesis S(E10
) ⊂ E20

, we can conclude the existence of κ2 ∈ E10
s.t. ρ(κ2, Sκ1) =

dist(E1, E2). Since (V, S) is a pair of α-proximal admissible mappings and
min

{
α(κ0, κ1), α(κ1, κ0)

}
⩾ 1,

ρ(κ1, V κ0) = dist(E1, E2),

ρ(κ2, Sκ1) = dist(E1, E2),

⇒ min
{
α(κ1, κ2), α(κ2, κ1)

}
⩾ 1. (2.16)
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Similarly, we assert the existence of κ3 ∈ E10
where ρ(κ3, V κ2) = dist(E1, E2). Since (V, S) is a pair of

α-proximal admissible mappings and
min

{
α(κ1, κ2), α(κ2, κ1)

}
⩾ 1,

ρ(κ3, V κ2) = dist(E1, E2),

ρ(κ2, Sκ1) = dist(E1, E2),

⇒ min
{
α(κ2, κ3), α(κ3, κ2)

}
⩾ 1. (2.17)

Continuing this process, we construct a sequence (σ̃n)n⩾0 in E10
s.t.

min
{
α(σ̃n, σ̃n+1), α(σ̃n+1, σ̃n)

}
⩾ 1,

ρ(σ̃2n+1, V σ̃2n) = dist(E1, E2),

ρ(σ̃2n+2, Sσ̃2n+1) = dist(E1, E2), ∀n ∈ N,
(2.18)

(V, S) is a α-generalized Gpi contraction type HR pair and α(σ̃n, σ̃n+1) ⩾ 1, then ∀n ∈ N,

Φ(ρ(σ̃2n+1, σ̃2n+2), ρ(σ̃2n+1, σ̃2n+2))

⩽ (ρ(σ̃2n, σ̃2n+1))
η+θ(ρ(σ̃2n+1, σ̃2n+2))

θ (ρ(σ̃2n, σ̃2n+2))
1−η−2θ

⩽ (ρ(σ̃2n, σ̃2n+1))
η+θ(ρ(σ̃σ̃2n+1, σ̃2n+2))

θ

· [Φ(ρ(σ̃2n, σ̃2n+1), ρ(σ̃2n+1, σ̃2n+2))]
1−η−2θ

. (2.19)

Also, one has 
α(σ̃n, σ̃n+1) ⩾ 1,

ρ(σ̃2n+2, Sσ̃2n+1) = dist(E1, E2),

ρ(σ̃2n+3, V σ̃2n+2) = dist(E1, E2), ∀n ∈ N.
(2.20)

Hence,

Φ(ρ(σ̃2n+2, σ̃2n+3), ρ(σ̃2n+2, σ̃2n+3))

⩽ (ρ(σ̃2n+1, σ̃2n+2))
η+θ(ρ(σ̃2n+2, σ̃2n+3))

θ (ρ(σ̃2n+1, σ̃2n+3))
1−η−2θ

⩽ (ρ(σ̃2n+1, σ̃2n+2))
η+θ(ρ(σ̃2n+2, σ̃2n+3))

θ

· [Φ(ρ(σ̃2n+1, σ̃2n+2), ρ(σ̃2n+2, σ̃2n+3))]
1−η−2θ

. (2.21)

Thus, for each integer n ⩾ 0,

Φ(ρ(σ̃n+1, σ̃n+2), ρ(σ̃n+1, σ̃n+2))

⩽ (ρ(σ̃n, σ̃n+1))
η+θ(ρ(σ̃n+1, σ̃n+2))

θ [Φ(ρ(σ̃n, σ̃n+1), ρ(σ̃n+1, σ̃n+2))]
1−η−2θ

. (2.22)

Case 1: If ∃n0 ∈ N s.t. σ̃n0 = σ̃n0+1, then by Eq. (2.22),

Φ(ρ(σ̃n0+1, σ̃n0+2), ρ(σ̃n0+1, σ̃n0+2)) = 0, (2.23)

and as Φ is monotonically increasing, we obtain ρ(σ̃n0+1, σ̃n0+2) = 0. So, σ̃n0 = σ̃n0+1 = σ̃n0+2. We
follow the same procedure, we obtain σ̃n = σ̃n+1, for any integer n ⩾ n0. The sequence (σ̃n)n⩾0 being
stationary from a certain rank, it is therefore convergent.
Case 2: Let n ∈ N, σ̃n ̸= σ̃n+1. Suppose that ρ(σ̃n, σ̃n+1) < ρ(σ̃n+1, σ̃n+2), for some n ∈ N. Then,

Φ(ρ(σ̃n, σ̃n+1), ρ(σ̃n+1, σ̃n+2)) < Φ(ρ(σ̃n+1, σ̃n+2), ρ(σ̃n+1, σ̃n+2)). (2.24)

From inequality (2.10), one has

Φ(ρ(σ̃n+1, σ̃n+2), ρ(σ̃n+1, σ̃n+2))

< (ρ(σ̃n, σ̃n+1))
η+θ(ρ(σ̃n+1, σ̃n+2))

θ (Φ(ρ(σ̃n+1, σ̃n+2), ρ(σ̃n+1, σ̃n+2)))
1−η−2θ

. (2.25)
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We obtain

(Φ(ρ(σ̃n+1, σ̃n+2), ρ(σ̃n+1, σ̃n+2)))
η+2θ

(ρ(σ̃n+1, σ̃n+2))
−θ < (ρ(σ̃n, σ̃n+1))

η+θ, (2.26)

As by hypothesis, for all s ∈ R>0, Φ(s, s) ⩾ s, then thanks to Eq. (2.26),

(ρ(σ̃n+1, σ̃n+2))
η+θ < (ρ(σ̃n, σ̃n+1))

η+θ. (2.27)

Hence, ρ(σ̃n+1, σ̃n+2) < ρ(σ̃n, σ̃n+1), which is a contradiction. Thus, ρ(σ̃n+1, σ̃n+2) ⩽ ρ(σ̃n, σ̃n+1), for
n ∈ N. Therefore, (ρ(σ̃n, σ̃n+1))n⩾0 is non-increasing sequence and bounded below. There exists τ ⩾ 0
s.t. lim

n→+∞
ρ(σ̃n, σ̃n+1) = τ . Assuming that ϖ > 0, we can find ℵ ∈ N s.t. for all positive integers n ⩾ ℵ,

ρ(σ̃n, σ̃n+1) > 0. Additionally, ∀n ∈ N, one has

Φ(ρ(an+1, σ̃n+2), ρ(σ̃n+1, σ̃n+2))

⩽ ψ(ρ(σ̃n, tn+1))(ρ(σ̃n, σ̃n+1))
η+2θ [Φ(ρ(σ̃n, σ̃n+1), ρ(σ̃n+1, σ̃n+2))]

1−η−2θ
, (2.28)

in other words,

[Φ(ρ(σ̃n, σ̃n+1), ρ(σ̃n, σ̃n+1))]
η+2θ

Φ(ρ(σ̃n+1, σ̃n+2), ρ(σ̃n+1, σ̃n+2))

⩽ ψ(ρ(σ̃n, σ̃n+1))(ρ(σ̃n, σ̃n+1))
η+2θΦ(ρ(σ̃n, σ̃n+1), ρ(σ̃n, σ̃n+1)). (2.29)

And consequently,

(ρ(σ̃n, σ̃n+1))
η+2θΦ(ρ(σ̃n+1, σ̃n+2), ρ(σ̃n+1, σ̃n+2))

⩽ ψ(ρ(σ̃n, σ̃n+1))(ρ(σ̃n, σ̃n+1))
η+2θΦ (ρ(σ̃n, σ̃n+1), ρ(σ̃n, σ̃n+1)) . (2.30)

Since ρ(σ̃n, σ̃n+1) > 0, for all n ⩾ ℵ,

Φ(ρ(σ̃n+1, σ̃n+2), ρ(σ̃n+1, σ̃n+2)) ⩽ ψ(ρ(σ̃n, σ̃n+1))Φ(ρ(σ̃n, σ̃n+1), ρ(σ̃n, σ̃n+1)). (2.31)

We have,

lim sup
n→+∞

Φ(ρ(σ̃n+1, σ̃n+2), ρ(σ̃n+1, σ̃n+2)) ⩾ lim sup
n→+∞

ρ(σ̃n+1, σ̃n+2) = r > 0, (2.32)

and so

lim sup
n→+∞

Φ(ρ(σ̃n+1, σ̃n+2), ρ(σ̃n+1, σ̃n+2))

⩽ lim sup
n→+∞

ψ(ρ(σ̃n, σ̃n+1)) lim sup
n→+∞

Φ (ρ(σ̃n, σ̃n+1), ρ(σ̃n, σ̃n+1)) , (2.33)

which shows that

1 ⩽ lim sup
n→+∞

ψ(ρ(σ̃n, σ̃n+1)) =⇒ lim sup
n→+∞

ψ(ρ(σ̃n, σ̃n+1)) = 1. (2.34)

Since, ψ ∈ Ψ, we consider a subsequence (ρ(σ̃nk
, σ̃nk+1))k⩾0 of (ρ(σ̃n, σ̃n+1))n⩾0 s.t.

lim
k→+∞

ρ(σ̃nk
, σ̃nk+1) = 0, (2.35)

so ϖ = 0, which is a contradiction. Hence, lim
n→+∞

ρ(σ̃n, σ̃n+1) = 0.

• Suppose that (an)n⩾0 is not a Cauchy sequence. Therefore, there ∃ ε > 0 s.t. we can find two
subsequences (mk)k⩾0 and (nk)k⩾0 of positive integers satisfying nk > mk > k s.t.

ζk := ρ(σ̃mk
, σ̃nk

) ⩾ ε, ρ(σ̃mk
, σ̃nk−1) < ε, k ∈ N. (2.36)
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Set νn := ρ(xn+1, xn), ∀n ∈ N. We notice that, ∀ k ∈ N,

ρ(σ̃mk+2, σ̃nk
) ⩽ Φ(νmk+1, ρ(σ̃mk+1, σ̃nk

)) ⩽ Φ(νmk+1,Φ(νmk
, ρ(σ̃mk

, σ̃nk
)))

⩽ Φ(ρ(σ̃0, σ̃1),Φ(ρ(σ̃0, σ̃1), ζk)),

ρ(σ̃mk+1, σ̃nk+2) ⩽ Φ(νmk
,Φ(ρ(σ̃mk

, σ̃nk+2)) ⩽ Φ(νmk
,Φ(ζk,Φ(νnk

, νnk+1)))

⩽ Φ(ρ(σ̃0, σ̃1),Φ(ζk,Φ(ρ(σ̃0, σ̃1), ρ(σ̃0, σ̃1)))) ,

ρ(σ̃mk+1, σ̃nk+1)) ⩽ Φ(νmk
, ϕ(ζk, νnk

)) ⩽ Φ(ρ(σ̃0, σ̃1), ϕ(ζk, ρ(σ̃0, σ̃1))),

ρ(σ̃mk+1, σ̃nk
) ⩽ Φ(νmk

, ζk) ⩽ Φ(ρ(σ̃0, σ̃1), ζk). (2.37)

Since ζk ⩽ Φ(ρ(σ̃mk
, σ̃nk−1), ρ(σ̃nk−1, σ̃nk

)) < Φ(ε, ρ(σ̃0, σ̃1)), then lim sup
k→+∞

ζk < +∞,

lim sup
k→+∞

ρ(σ̃mk+1, σ̃nk+1), lim sup
k→+∞

ρ(σ̃mk+1, σ̃nk
), lim sup

k→+∞
ρ(σ̃mk

, σ̃nk+1), (2.38)

lim sup
k→+∞

ρ(σ̃mk+2, σ̃nk
) and lim sup

k→+∞
ρ(σ̃mk+1, σ̃nk+2) are also finite. α being triangular, one has

α(ank
, σ̃mk+1) ⩾ 1, for all k ∈ N, and as

ρ(σ̃nk+1, V σ̃nk
) = dist(E1, E2), ρ(σ̃mk+2, Sσ̃mk+1) = dist(E1, E2), (2.39)

then

Φ(ρ(σ̃nk+1, σ̃mk+2), ρ(σ̃nk+1, σ̃mk+2))

⩽ ψ(ρ(σ̃nk
, σ̃mk+1))(ρ(σ̃nk

, σ̃mk+1))
η(ρ(σ̃nk

, σ̃nk+1))
θ

· (ρ(σ̃mk+1, σ̃mk+2))
θ [ρ(σ̃nk+1, σ̃mk+1) + ρ(σ̃nk

, σ̃mk+2)]
1−η−2θ

. (2.40)

As, lim
k→+∞

ρ(σ̃nk
, σ̃nk+1) = 0 = lim

k→+∞
ρ(σ̃mk

, σ̃mk+1), and η, θ > 0 and η + 2θ < 1, then

lim sup
k→+∞

ρ(σ̃nk+1, σ̃mk+2) = 0. We have

ε ⩽ ζk < Φ(ρ(σ̃nk
, σ̃nk+1),Φ(ρ(σ̃nk+1, σ̃mk+1), ρ(σ̃mk+1, σ̃mk

))) . (2.41)

Hence, taking the limit as k → +∞, will have ε ⩽ lim
k→+∞

ζk ⩽ Φ(0,Φ(0, 0))) = Φ(0, 0) = 0. We reach a

contradiction by observing that ε = 0. Consequently, (σ̃n)n⩾0 is a Cauchy sequence in E10
. Since E10

is
a closed set, the sequence (σ̃n)n⩾0 converges to an element κ∗ ∈ E10

.
• V E10

⊂ E20
, SE10

⊂ E20
and κ∗ ∈ E10

, there exists (µ1, µ2) ∈ E2
1 s.t.

ρ(µ1, V κ
∗) = dist(E1, E2), ρ(µ2, Sκ

∗) = dist(E1, E2). (2.42)

As the sequence (σ̃n)n⩾0 is α-regular and α(σ̃n, σ̃n+1) ⩾ 1, there exists a subsequence (σ̃nk
)k⩾0 of (σ̃n)n⩾0

s.t. min{α(σ̃nk
, κ∗), α(κ∗, σ̃nk

) ⩾ 1, ∀ k ∈ N. Furthermore,

ρ(σ̃nk+1, V σ̃nk
) = dist(E1, E2), ρ(µ2, Sκ

∗) = dist(E2, E2), (2.43)

for any k ∈ N and as (V, S) is an α-generalized Gpi contraction pair type HR, one has

Φ(ρ(σ̃nk+1, µ2), ρ(σ̃nk+1, µ2)) ⩽ (ρ(σ̃nk
, κ∗))

η
(ρ(σ̃nk

, σ̃nk+1))
θ

· (ρ(κ∗, µ2))
θ [ρ(σ̃nk

, µ2) + ρ(κ∗, σ̃nk+1)]
1−η−2θ

. (2.44)

As ρ(σ̃nk
, µ2) ⩽ Φ(ρ(σ̃nk

, κ∗), ρ(κ∗, µ2)), for all k ∈ N, then lim sup
k→+∞

ρ(σ̃nk
, µ2) < +∞. By taking the limit

as k → +∞ in the previous inequality, we deduce that

lim
k→+∞

Φ(ρ(σ̃nk+1, µ2), ρ(σ̃nk+1, µ2)) = 0. (2.45)
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Because

Φ(ρ(σ̃nk+1, µ2), ρ(σ̃nk+1, µ2)) ⩾ ρ(σ̃nk+1, µ2), k ∈ N, (2.46)

then µ2 = lim
k→+∞

σ̃nk+1 = κ∗. Thus, υ = κ∗ and ρ(κ∗, Sκ∗) = dist(E1, E2). Similarly, one can show that

ρ(κ∗, V t∗) = dist(E1, E2). 2

Corollary 2.1 Consider a complete regular SMS (Q, ρ,Φ), and let E be a non-empty closed subset of
Q. Let V, S : E → E be two mappings satisfying

α(κ, s)Φ(ρ(Sκ, V s), ρ(Sκ, V s)) ⩽ ψ(ρ(κ, s))(ρ(κ, s))η(ρ(κ, Sκ))θ(ρ(s, V s))θ

· [ρ(κ, V s) + ρ(s, Sκ)]
1−η−2θ

, (2.47)

for all κ, s ∈ E, where 0 < η, θ < 1 with η + 2θ < 1, and the same conditions (ii), (iii) and (iv) of
Theorem 2.2. Then, there exists a point κ∗ ∈ A s.t. Sκ∗ = κ∗ = V κ∗.

Proof: Thanks to Eq. (2.47), the pair (V, S) is a α-generalized Gpi contraction type HR with E1 = E2 =
E. 2

The following represents an illustration of the previous result.

Example 2.1 Let Q = R2 with the following distance

ρ((σ̃1, s1), (σ̃2, s2)) = |σ̃1 − σ̃2|+ |s1 − s2|, (2.48)

and assume that

E1 =
{(

0, 12
) (

0, 13
) (

0, 14
) (

0, 15
) (

0, 16
) (

0, 17
) (

0, 19
)}

∪
{
(0, n) : n ∈ N

}
,

E2 =
{
(1, 0)

(
1, 12

) (
1, 13

) (
1, 14

) (
1, 15

) (
1, 16

) (
1, 17

) (
1, 19

)}
∪
{
(1, n) : n ∈ N, n ⩾ 5

}
. (2.49)

It is easily verified that (Q, ρ) is a complete MS and dist(E1, E2) = 1. Consider the mappings V, S :
E1 → E2 as follow

S(0, 0) = (1, 0),

S(0, 1k ) = (1, 0),

S(0, 1) = (1, 0),

S(0, 2) = (1, 12 ),

S(0, 3) = (1, 14 ),

S(0, 4) = (1, 16 ),

S(0, n) = (1, 0),



V (0, 0) = (1, 0),

V (0, 1k ) = (1, 0), k ∈ {2, 3, 4, 5, 6, 7, 9},
V (0, 1) = (1, 19 ),

V (0, 2) = (1, 13 ),

V (0, 3) = (1, 15 ),

V (0, 4) = (1, 17 ),

V (0, n) = (1, n), n ∈ N, n ⩾ 5.

(2.50)

Also, define a function α : Q2 → R≥0 by

α((σ̃1, s1), (σ̃2, s2))

=


1 + 1

9 = 10
9 (σ̃1, s1), (σ̃2, s2) ∈ {(0, k) : k ∈ {1, 2, 3, 4}},

(σ̃1, s1) ̸= (σ̃2, s2),

1, (σ̃1, s1), (σ̃2, s2) ∈
{
(0, 0),

(
0, 1k

)
: k ∈ {2, 3, 4, 5, 6, 7, 9}

}
,

0 otherwise .

(2.51)
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The function α is triangular and any sequence of E1 is α-regular. One can check that S(E10
) ⊂ E20

and
V (E10

) ⊂ E20
, where

E10
=

{
(0, 0)

(
0, 12

) (
0, 13

) (
0, 14

) (
0, 15

) (
0, 16

) (
0, 17

) (
0, 19

)}
∪
{
(0, n) : n ∈ N, n ⩾ 5

}
,

E20
=

{
(1, 0)

(
1, 12

) (
1, 13

) (
1, 14

) (
1, 15

) (
1, 16

) (
1, 17

) (
1, 19

)}
∪
{
(1, n) : n ∈ N, n ⩾ 5

}
. (2.52)

Choose η = 1
3 and θ = 1

4 , then η + 2θ = 5
6 < 1.

• First task is to demonstrate that (V, S) fulfills the properties of being an α-generalized Gpi contraction
pair type HR, with ψ : R≥0 → [0, 1) defined by ψ(κ) = 3

3+κ whenever κ ∈]0,+∞[ and ψ(0) = 0. We
notice that ψ ∈ Ψ, because if lim sup

n→+∞
ψ(σ̃n) = 1, then there exists a subsequence (σ̃nk

)k⩾0 of (σ̃n)n⩾0 s.t.

lim
k→+∞

ψ(σ̃nk
) = 0. We mention that ψ(1), ψ(2), ψ(3), ψ( 32 ) belong to [ 12 ,+∞[, which we will use later.

Take κ = (0, σ̃2), s = (0, s2), µ = (0, µ2), υ = (0, v2) four elements of E1 s.t.
α ((0, σ̃2), (0, s2)) ⩾ 1,

ρ((µ, V κ) = dist(E1, E2) = 1,

ρ(υ, Ss) = dist(E1, E2) = 1,

(2.53)

verifying that

ψ(ρ(κ, s))(ρ(κ, s))η(ρ(κ, µ1))
θ(ρ(s, µ2))

θ [ρ(κ, µ2) + ρ(s, µ1)]
1−η−2θ

⩾ α(κ, s) Φ(ρ(µ1, µ2), ρ(µ1, µ2)), (2.54)

where Φ(u, v) = u + v, for all u, v ∈ R>0. Table 2.1 summarizes the calculations to verify that (V, S) is
a α-generalized Gpi contraction pair type HR. Denote

G = ψ(ρ(κ, s))(ρ(κ, s))η(ρ(κ, µ1))
θ(ρ(s, µ2))

θ [ρ(κ, µ2) + ρ(s, µ1)]
1−η−2θ

,

F = α(κ, s) Φ(ρ(µ1, µ2), ρ(µ1, µ2)). (2.55)

κ s µ1 µ2 G ⩾ F

(0, 1) (0, 2) (0, 0)
(
0, 1

3

)
ψ(1)

(
5
3

) 1
4
(
8
3

) 1
6 ≈ 1.0035 20

27
=

(
10
9

) (
2
3

)
= 2α(κ, s) ρ(µ1, µ2)

(0, 1) (0, 3) (0, 0)
(
0, 1

5

)
ψ(2) 2η

(
14
5

)θ (
19
5

)1−η−2θ ≈ 1.22155 20
45

=
(
10
9

) (
2
5

)
= 2α(κ, s) ρ(µ1, µ2)

(0, 1) (0, 4) (0, 0)
(
0, 1

7

)
ψ(3) 3η

(
27
7

)θ ( 34
7

)1−η−2θ ≈ 1.31514 20
63

=
(
10
9

) (
2
7

)
= 2α(a, b) ρ(µ1, µ2)

(0, 2) (0, 1)
(
0, 1

2

) (
0, 1

9

)
ψ
(
3
2

) (
3
2

)η (
8
9

)θ ( 25
9

)1−η−2θ ≈ 0.87855 70
81

=
(
10
9

) (
7
9

)
= 2α(κ, s) ρ(µ1, µ2)

(0, 2) (0, 3)
(
0, 1

2

) (
0, 1

5

)
ψ
(
3
2

) (
3
2

)η (
14
5

)θ ( 43
10

)1−η−2θ ≈ 1.25884 2
3
=

(
10
9

) (
6
10

)
= 2α(κ, s) ρ(µ1, µ2)

(0, 2) (0, 4)
(
0, 1

2

) (
0, 1

7

)
ψ(2)2η

(
3
2

)θ (
27
7

)θ ( 75
14

)1−η−2θ ≈ 1.55086 50
63

=
(
10
9

) (
5
7

)
= 2α(κ, s) ρ(µ1, µ2)

(0, 3) (0, 1)
(
0, 1

4

) (
0, 1

9

)
ψ(2)2η

(
11
4

)θ (
8
9

)θ ( 131
36

)1−η−2θ ≈ 1.17228 25
162

=
(
10
9

) (
5
18

)
= 2α(κ, s) ρ(µ1, µ2)

(0, 3) (0, 2)
(
0, 1

4

) (
0, 1

3

)
ψ(1)

(
11
4

)θ (
5
3

)θ ( 53
12

)1−η−2θ ≈ 1.40563 5
27

=
(
10
9

) (
1
6

)
= 2α(κ, s) ρ(µ1, µ2)

(0, 3) (0, 4)
(
0, 1

4

) (
0, 1

7

)
ψ(1)

(
11
4

)θ (
27
7

)θ ( 185
28

)1−η−2θ ≈ 1.85408 5
21

=
(
10
9

) (
3
14

)
= 2α(κ, s) ρ(µ1, µ2)

(0, 4) (0, 1)
(
0, 1

6

) (
0, 1

9

)
ψ(3)3η

(
23
6

)θ (
8
9

)θ ( 255
54

)1−η−2θ ≈ 1.26903 10
81

=
(
10
9

) (
3
27

)
= 2α(κ, s) ρ(µ1, µ2)

(0, 4) (0, 2)
(
0, 1

6

) (
0, 1

3

)
ψ(2)2η

(
23
6

)θ (
5
3

)θ ( 11
2

)1−η−2θ ≈ 1.59677 10
27

=
(
10
9

) (
1
3

)
= 2α(κ, s) ρ(µ1, µ2)

(0, 4) (0, 3)
(
0, 1

6

) (
0, 1

5

)
ψ(1)

(
23
6

)θ (
14
5

)θ ( 199
30

)1−η−2θ ≈ 1.86080 4
27

=
(
10
9

) (
2
15

)
= 2α(κ, s) ρ(µ1, µ2)

Table 1: Calculations of (V, S).

Moreover, for κ = (0, σ̃1) and s = (0, s2), where σ̃1, s2 ∈ {0, 1k}, with k ∈ {2, 3, 4, 5, 6, 7, 9}, one has
µ = υ = (0, 0), so

2α(κ, s)ρ(µ1, µ2) = 0 ⩽ ψ(ρ(κ, s))(ρ(κ, s))η

· ρ(κ, µ1)
θ(ρ(s, µ2))

θ [ρ(κ, µ2) + ρ(s, µ1)]
1−η−2θ

. (2.56)
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Thus, (V, S) is a α-generalized Gpi contraction pair type HR. We confirm that (V, S) is α-proximal
admissible. For example, if one takes (0, 2) and (0, 3). Moreover, if µ1 = (0, u2) ∈ E1 and µ2 = (0, v2) ∈
E1 s.t. 

α((0, 2), (0, 3)) ⩾ 1,

ρ((µ1, V (0, 2)) = dist(E1, E2) = 1,

ρ(µ2, S(0, 3)) = dist(E1, E2) = 1,

=⇒ µ1 =
(
0, 12

)
, υ =

(
0, 15

)
. (2.57)

Then, min{α(µ1, µ2), α(µ2, µ1)} = 10
9 > 1. If one takes (0, 0) and (0, 12 ). Moreover, if µ1 = (0, u2) ∈ E1

and µ2 = (0, v2) ∈ E1 s.t.
α
(
(0, 0),

(
0, 12

))
⩾ 1,

ρ(µ1, V (0, 0)) = dist(E1, E2) = 1,

ρ
(
µ2, S

(
0, 12

))
= dist(E1, E2) = 1,

=⇒ µ1 = µ2 = (0, 0). (2.58)

Then, min{α(µ1, µ2), α(µ2, µ1)} = 1. For condition (iv), take (σ̃0, σ̃1) = ((0, 1k ), (0, 0)) ∈ E2
1 , where

k ∈ {2, 3, 4, 5, 6, 7, 9}. Then,

min
{
α(σ̃0, σ̃1), α(σ̃1, σ̃0)

}
⩾ 1, ρ(σ̃1, V σ̃0) = dist(E1, E2). (2.59)

Thus, the hypotheses of Theorem 2.2 are fulfilled and

ρ((0, 0), V (0, 0)) = ρ((0, 0), S(0, 0)) = dist(E1, E2). (2.60)

For the uniqueness of the CBPP of V and S in Theorem 2.2 and Corollary 2.1, we introduce the following
necessary condition CB(V, S): for all κ, s ∈ E1,{

ρ(κ, V κ)) = ρ(κ, Sκ) = dist(E1, E2),

ρ(s, V s)) = ρ(s, Ss) = dist(E1, E2),
=⇒ α(κ, s) ⩾ 1. (2.61)

Theorem 2.3 Adding the condition CB(V, S) to the hypothesis of Theorems 2.2 (resp. Corollary 2.1),
there exists an unique CBPP of V and S.

Proof: Suppose (V, S) is a α-generalized Gpi contraction pair type HR. Let σ̃1, σ̃2 ∈ E1 s.t.

ρ(σ̃1, V σ̃1) = ρ(σ̃1, Sσ̃1) = dist(E1, E2), ρ(σ̃2, V σ̃2) = ρ(σ̃2, Sσ̃2) = dist(E1, E2). (2.62)

By the condition CB(V, S), one has α(σ̃1, σ̃2) ⩾ 1. Then

Φ(ρ(σ̃1, σ̃2), ρ(σ̃1, σ̃2)) = α(σ̃1, σ̃2) Φ(ρ(σ̃1, σ̃2), ρ(σ̃1, σ̃2))

⩽ ψ(ρ(σ̃1, σ̃2))(ρ(σ̃1, σ̃2))
η(ρ(σ̃1, σ̃1))

θ

· [ρ(σ̃1, σ̃2) + ρ(σ̃2, σ̃1)]
1−η−2θ

, (2.63)

which give σ̃1 = σ̃2. 2

3. Application to FDEs

Let b, v ∈ R with b < v. Consider the complete regular SMS (Q, ρ,Φ), where Q = C1(I), I := [b, v].
The SM, ρ is defined by

ρ(w1, w1) = ∥w1 − w2∥2∞ =
(
sup
κ∈I

|w1(κ)− w2(κ)|
)2

, (3.1)

and the regular map Φ associated with ρ is given ∀ (r1, r2) ∈ R2
>0, by Φ(r1, r2) = 2(r1 + r2). We consider

an increasing and positive monotone function ψ on I s.t. ψ′ is continuous on I \ {b, v}.
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Definition 3.1 ( [39] ) Let h ∈ Q.

(i) The integral

Ip;ψb+ h(κ) =

∫ κ

b

(ψ(κ)−ψ(s))p−1

Γ(p) ψ′(s)h(s) ds, κ > b, (3.2)

is referred to as the left-sided fractional integral of h of order p > 0 on I, with respect to function
ψ;

(ii) If for each κ ∈ I, ψ′(κ) ̸= 0, then left-sided-Hilfer fractional derivative of order p and type 0 ⩽ q ⩽ 1
of h is expressed as follows

HDp,q;ψb+ h(κ) = Iq(1−p);ψb+

(
1

ψ′(κ)
d
dκ

)
I(1−q)(1−p);ψ
b+ h(κ), κ > b, 0 < p < 1. (3.3)

It can be written as
HDp,q;ψb+ h(κ) = Iγ−p;ψb+ Dγ;ψ

b+ h(κ), γ = p+ q(1− p), (3.4)

where Dγ;ψ
b+ is the ψ-Riemann-Liouville (RL) fractional derivative

Dγ;ψ
b+ h(κ) =

(
1

ψ′(κ)
d
dκ

)
I1−γ;ψ
b+ h(κ). (3.5)

Theorem 3.1 ( [33]) If h ∈ Q, 0 < p < 1 and 0 ⩽ q ⩽ 1, then

Ip;ψb+
HDp,q;ψb+ h(κ) = h(κ)− (ψ(κ)−ψ(b))γ−1

Γ(γ) I(1−p)(1−q);ψ
b+ h(b), γ = p+ q(1− p). (3.6)

The following results pertain to fractional derivatives.

Lemma 3.1 ( [39]) . For all p, q ⩾ 0 and h ∈ L1(b, v),

Ip;ψb+ Iq;ψb+ h(κ) = Ip+q;ψb+ h(κ), κ ∈ [b, v]. (3.7)

Lemma 3.2 ( [39]) For κ > 0, p > 0 and δ > 0, we have

Ip;ψb+ (ψ(κ)− ψ(b))δ−1 = Γ(δ)
Γ(p+δ) (ψ(κ)− ψ(b))p+δ−1. (3.8)

Theorem 3.2 ( [33]) Let h ∈ Q, p > 0 and 0 ⩽ q ⩽ 1. Also, HDp,q;ψb+ Ip;ψb+ h(κ) = h(κ).

We consider a coupled system of right sided-Hilfer FDE with arbitrary order under initial conditions
as form {

HDp,q;ψb+ µ1(κ) = λ1(κ, µ2(κ)),
HDp,q;ψb+ µ2(κ) = λ2(κ, µ1(κ)),

(3.9)

for b < κ ≤ v, under conditions

I(1−p)(1−q);ψ
b+ µ1(b) = I(1−p)(1−q);ψ

b+ µ2(b) = a0, (3.10)

where µ1 ∈ Q, a0 ∈ R≤0 and λ1, λ2 ∈ C(I × R). Set γ = p+ q − pq.

Lemma 3.3 The system (3.9) is equivalent to the integral equations, κ ∈ I,
µ1(κ) =

(ψ(κ)−ψ(b))γ−1

Γ(γ) a0 +

∫ κ

b

ψ′(r) (ψ(κ)−ψ(r))
p−1

Γ(p) λ1(r, µ2(r)) dr,

µ2(κ) =
(ψ(κ)−ψ(b))γ−1

Γ(γ) a0 +

∫ κ

b

ψ′(r) (ψ(κ)−ψ(r))
p−1

Γ(p) λ2(r, µ1(r)) dr.

(3.11)
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Proof: The maps κ 7→ λ1(κ, µ2(κ)) and κ 7→ λ2(κ, µ1(κ)) are continuous on I. Taking the integral

operator Ip;ψb+ (·) on (3.9), for κ ∈ I \ {b}, one has{
Ip;ψb+

HDp,q;ψb+ µ1(κ) = Ip;ψb+ λ1(κ, µ2(κ)),

Ip;ψb+
HDp,q;ψb+ µ2(κ) = Ip;ψb+ λ2(κ, µ1(κ)).

(3.12)

According to [33, Theorem 7],Ip;ψb+
HDp,q;ψb+ µ1(κ) = µ1(κ)− (ψ(κ)−ψ(b))γ−1

Γ(γ) I1−γ;ψ
b+ µ1(b),

Ip;ψb+
HDp,q;ψb+ µ2(κ) = µ2(κ)− (ψ(κ)−ψ(b))γ−1

Γ(γ) I1−γ;ψ
b+ µ2(b).

(3.13)

Then, µ1(κ) =
(ψ(κ)−ψ(b))γ−1

Γ(γ) I1−γ;ψ
b+ µ1(b) + Ip;ψb+ λ1(κ, µ2(κ)),

µ2(κ) =
(ψ(κ)−ψ(b))γ−1

Γ(γ) I1−γ;ψ
b+ µ2(b) + Ip;ψb+ λ2(κ, µ1(κ)).

(3.14)

The two initial conditions (3.10), for κ ∈ I \ {b}, lead to
µ(κ) = (ψ(κ)−ψ(b))γ−1

Γ(γ) a0 +

∫ κ

b

ψ′(r) (ψ(κ)−ψ(r))
p−1

Γ(p) λ1(r, µ2(r)) dr,

µ2(κ) =
(ψ(κ)−ψ(b))γ−1

Γ(γ) a0 +

∫ κ

b

ψ′(r) (ψ(κ)−ψ(r))
p−1

Γ(p) λ2(r, µ1(r)) dr.
(3.15)

Furthermore, thanks to the ψ-Hilfer fractional derivative HDp,q;ψb+ (·) on Eqs. (3.9) and since

HDp,q;ψb+

[
(ψ(κ)−ψ(b))γ−1

Γ(γ) I1−γ;ψ
v+ a0

]
= 0, (3.16)

one has {
HDp,q;ψb+ µ1(κ) =

HDp,q;ψb+ Ip;ψb+ λ1(t, µ2(κ)),
HDp,q;ψb+ µ2(κ) =

HDp,q;ψb+ Ip;ψb+ λ2(κ, µ1(κ)).
(3.17)

Using [33, Theorem 2], we obtain {
HDp,q;ψb+ µ1(κ) = λ1(κ, µ2(κ)),
HDp,q;ψb+ µ2(κ) = λ1(κ, µ1(κ)).

(3.18)

2

The set M =
{
µ ∈ Q : µ is increasing on I and I(1−p)(1−q);ψ

b+ µ(b) = a0
}
is non-empty. Consider the

maps S and V defined on M, for κ ∈ I, by
Sµ1(κ) =

(ψ(κ)−ψ(b))γ−1

Γ(γ) a0 +

∫ κ

b

ψ′(r) (ψ(κ)−ψ(r))
p−1

Γ(p) λ1(r, µ1(r)) dr,

V µ2(κ) =
(ψ(κ)−ψ(b))γ−1

Γ(γ) a0 +

∫ κ

b

ψ′(r) (ψ(κ)−ψ(r))
p−1

Γ(p) λ2(r, µ2(r)) dr.
(3.19)

Lemma 3.4 If λ1 and λ1 are increasing with respect to each variable, then for all µ1, µ2 ∈ M, we have
Sµ1 ∈ M and V µ2 ∈ M.

Proof: Let µ1, µ2 ∈ M and set γ = p + q − pq. The mappings Sµ1 and V µ2 belong to the class C1 on
I, because µ1, µ2 are in Q. Taking I1−γ;ψ

b+ on both sides and applying Lemmas 3.1, 3.2, we get

I1−γ;ψ
b+ Sµ1(κ) =

a0
Γ(γ)I

1−γ;ψ
b+ (ψ(κ)− ψ(b))γ−1 + I1−γ;ψ

b+ Ip;ψb+ λ1(κ, µ1(κ))

= a0 + I1−q(1−p);ψ
b+ λ1(κ, µ1(κ)),

I1−γ;ψ
b+ V µ2(κ) =

a0
Γ(γ)I

1−γ;ψ
b+ (ψ(κ)− ψ(b))γ−1 + I1−γ;ψ

b+ Ip;ψb+ λ2(κ, µ2(κ))

= a0 + I1−q(1−p);ψ
b+ λ2(κ, µ2(κ)), (3.20)
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for κ ∈ I. Since
lim
κ→b+

I1−q(1−p);ψ
b+ λ1(κ, µ1(κ)) = lim

κ→b+
I1−q(1−p);ψ
b+ λ2(κ, µ2(κ)) = 0, (3.21)

then
I(1−p)(1−q);ψ
b+ Sµ1(b) = a0, I(1−p)(1−q);ψ

b+ V µ2(b) = a0. (3.22)

Let b < κ1 < κ2 < v. Given that µi is increasing and λi is increasing with respect to each variable, for
i = 1, 2, it follows that µ1(κ1) ⩽ µ1(κ2) and λ1(κ1, µ1(κ1)) ⩽ λ1(κ2, µ1(t2)). Similarly, λ2(κ1, µ2(κ1)) ⩽
λ2(κ2, µ2(κ2)). Therefore, Sµ1(κ1) ⩽ Sµ1(κ2) and Sµ2(κ1) ⩽ Sµ2(κ2). 2

We introduce the following assumptions

(H1) λi(·, µi(·)), i = 1, 2 is continuous and increasing with respect to each variable;

(H2) ∀κ ∈ I and ui ∈ R, i = 1, 2,

|λ1(κ, u1)− λ2(κ, u2)| ⩽ β |u1 − u2|η|u1 −Kλ1(κ, u1)|θ|u2 −Kλ2(κ, u2)|θ

·
[
|u1 −Kλ2(κ, u2)|+ |u2 −Kλ1(κ, u1)|

]1−η−2θ

, (3.23)

where K = (ψ(v)−ψ(b))q
qΓ(q) , 0 < β < qΓ(q)

2
√
2(ψ(v)−ψ(b))q and η, θ ∈]0, 1[ with η + 2θ < 1;

(H3) ∀κ ∈ I and ui ∈ R, i = 1, 2,

|λ1(κ, u1)− λ1(κ, u2)| ⩽ |u1 − u2|, |λ2(κ, u1)− λ2(κ, u2)| ⩽ |u1 − u2|. (3.24)

(H4) Kλ1(κ, u1) ⩽ u1 and Kλ2(κ, u1) ⩽ u1, for all κ ∈ I and u1 ∈ R.

Theorem 3.3 If (H1)-(H4) hold, then the system (3.9) admits a unique solution µ∗ ∈ A = Md
verifying

Tµ∗ = Sµ∗ = µ∗.

Proof: Step 1: Let (µ1, µ2) ∈ M2 and κ ∈ I \ {b}. Then, assumption (H2) yields

|Sµ1(κ)− Sµ2(κ)| =
∣∣∣∣∫ κ

b

ψ′(s) (ψ(κ)−ψ(r̃))
p−1

Γ(p) (λ1(r̃, µ1(r̃))− λ2(r̃, µ2(r̃))) dr̃

∣∣∣∣
⩽

∫ κ

b

ψ′(r̃) (ψ(κ)−ψ(r̃))
p−1

Γ(p) |λ1(r̃, µ1(r̃))− λ2(r̃, µ2(r̃))|dr̃

⩽ β
Γ(p)

∫ κ

b

ψ′(r̃)(ψ(κ)− ψ(r̃))p−1|µ1(r̃)− µ2(r̃)|η

· |µ1(r̃)−Kλ1(r̃, µ1(r̃))|θ|µ2(r̃)−Kλ2(r̃, µ2(r̃))|θ

·
[
|µ1(r̃)−Kλ2(r̃, µ2(r̃))|

+ |µ2(r̃)−Kλ1(r̃, µ1(r̃))|
]1−η−2θ

dr̃. (3.25)

Let s ∈]b, κ]. By assumptions (H1) and (H4), µ1 is increasing, λ1 is increasing with respect to each
variable and a0 ⩽ 0, then

|µ1(s)−Kλ1(s, µ1(s))| = µ1(s)− (ψ(v)−ψ(b))p
pΓ(q) λ1(s, µ1(s))

⩽ µ1(s)−
(ψ(s)− ψ(b))p

pΓ(q)
λ1(s, µ1(s))

= µ1(s)−
∫ s

b

ψ
′
(r̃) (ψ(s)−ψ(r̃))

p−1

Γ(p) λ1(s, µ1(s)) dr̃

⩽ µ1(s)− a0
Γ(γ)I

1−γ;ψ
b+ (ψ(κ)− ψ(b))γ−1

−
∫ s

b

ψ
′
(r̃) (ψ(s)−ψ(r̃))

p−1

Γ(p) λ1(r̃, µ1(r̃)) dr̃

= µ1(s)− Sµ1(s) ⩽ ∥µ1 − Sµ1∥∞. (3.26)
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Likewise, we justify that |µ2(s)−Kλ2(s, µ2(s))| ⩽ ∥µ2 − V µ2∥∞ and

|µ1(s)−Kλ2(s, µ2(s))|+ |µ2(s)−Kλ1(s, µ1(s))| ⩽ ∥µ1 − V µ2∥∞ + ∥µ2 − Sµ1∥∞. (3.27)

Thus, ∀κ ∈ I \ {b},

|Sµ1(κ)− V µ2(κ)| ⩽
(

β
Γ(p)

∫ κ

b

ψ′(r̃)(ψ(κ)− ψ(r̃))p−1 dr̃

)
∥µ1 − µ2∥η∞∥µ1 − Sµ1∥θ∞

· ∥µ2 − V µ2∥θ∞ [ ∥µ1 − V µ2∥∞ + ∥µ2 − Sµ1∥∞ ]
1−η−2θ

= β
pΓ(q) (ψ(t)− ψ(b))p∥µ1 − µ2∥η∞∥µ1 − Sµ1∥θ∞
· ∥µ2 − V µ2∥θ∞ [ ∥µ1 − V µ2∥∞ + ∥µ2 − Sµ1∥∞ ]

1−η−2θ
. (3.28)

Hence,

∥Sµ1 − V µ2∥2∞ ⩽
(

β
pΓ(p) (ψ(κ)− ψ(b))p

)2

∥µ1 − µ2∥2η∞∥µ1 − Sµ1∥2θ∞

· ∥µ2 − V µ2 |2θ∞ [ ∥µ1 − V µ2∥∞ + ∥µ2 − Sµ1∥∞ ]
2(1−η−2θ)

⩽
(

β
pΓ(p) (ψ(κ)− ψ(b))p

)2

∥µ1 − µ2∥2η∞∥µ1 − Sµ1∥2θ∞

· ∥µ2 − V µ2∥2θ∞
[
2(∥µ1 − V µ2∥2∞ + ∥µ2 − Sµ1∥2∞)

]1−η−2θ
. (3.29)

Therefore,

ρ(Sµ1, V µ2) ⩽ 2
(

β
pΓ(p) (ψ(v)− ψ(b))q

)2

ρ(µ1, µ2)
ηρ(µ1, Sµ1)

θ

· ρ(µ2, V µ2)
θ [ ρ(µ1, V µ2) + ρ(µ2, Sµ1) ]

1−η−2θ
. (3.30)

Step 2: Consider the functions ϕ defined on R>0 by

ϕ(t) = 8
[

β
qΓ(q) (ψ(v)− ψ(b))q

]2
, (3.31)

and α : Q2 → R≥0 defined as α(µ1, µ2) = 1 whenever (µ1, µ2), (µ2, µ1) ∈ A2 and α(µ1, µ2) = 0 otherwise.

By the assumption (H2), 2
√
2β

pΓ(p) (ψ(v)−ψ(b))
p < 1, then ϕ ∈ Ψ. The function α is triangular, any sequence

(µn)n⩾0 of A is α-regular, (V, S) is α-proximal admissible and the condition (iv) of Theorem 2.2 is verified.
Let µ1, µ2 ∈ A. There exist two sequences (µ1n)n⩾0 and (µ2n)n⩾0 of M s.t. lim

n→+∞
∥µ1n − µ1∥∞ = 0 =

lim
n→+∞

∥µ2n − µ2∥∞. Let κ ∈ I. Thanks to the assumption (H3), we get

|Sµ1n(κ)− Sµ1(κ)| ⩽
∫ κ

b

ψ′(r̃) (ψ(κ)−ψ(r̃))
p−1

Γ(p) |λ1(r̃, µ1(r̃))− λ1(r̃, µ2(r̃))|dr̃

⩽
∫ κ

b

ψ′(r̃) (ψ(κ)−ψ(r̃))
p−1

Γ(p) |µ1n(s)− µ1(r̃)|dr̃

⩽ (ψ(v)−ψ(b))p
pΓ(p) ∥µ1n − µ1∥∞. (3.32)

Hence,
∥Sµ1n − Sµ1∥∞ ⩽ 1

pΓ(p) (ψ(v)− ψ(b))p∥µ1n − µ1∥∞, (3.33)

and so lim
n→+∞

∥Sµ1n − Sµ1∥∞ = 0. Similarly, lim
n→+∞

∥Sµ2n − Sµ2∥∞ = 0. And since (Sµ1n , Sµ2n) ∈ M2,

∀n ∈ N, then, (Sµ1, Sµ2) ∈ A2. By Eq. (3.30), for all n ∈ N,

∥Sµ1n − V µ2n∥∞ ⩽ 2
(

β
pΓ(p) (ψ(v)− ψ(b))q

)2

ρ(µ1n , µ2n)
ηρ(µ1n , Sµ1n)

θ

· ρ(µ2n , V µ2n)
θ [ ρ(µ2n , V µ2n) + ρ(µ2n , Sµ1n) ]

1−η−2θ
. (3.34)
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Thus, we get

∥Sµ1 − V µ2∥∞ ⩽ 2
(

β
pΓ(p) (ψ(v)− ψ(b))q

)2

ρ(µ1, µ2)
ηρ(µ1, Sµ1)

θ

· ρ(µ2, V µ2)
θ [ ρ(µ1, V µ2) + ρ(µ2, Sµ1) ]

1−η−2θ
. (3.35)

Thus, the couple (V, S) is α-generalized Gpi contraction pair type HR on A,

α(Sµ1, V µ2)Φ (ρ(Sµ1, V µ2), ρ(Sµ1, V µ2)) ⩽ ϕ(ρ(µ1, µ2))ρ(µ1, µ2)
ηρ(µ1, Sµ1)

θ

· ρ(µ2, V µ2)
θ [ ρ(µ1, V µ2) + ρ(µ2, Sµ1) ]

1−η−2θ
, (3.36)

∀ (µ1, µ2) ∈ A2. Moreover, the condition CB(V, S) is verified, because α(Sµ1, V µ2) ⩾ 1, for each
(µ1, µ2) ∈ A2. Hence, all conditions of Corollary 2.1 are fulfilled. This concludes the proof. 2
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