
Bol. Soc. Paran. Mat. (3s.) v. 2025 (43) 2 : 1–16.
©SPM – E-ISSN-2175-1188 ISSN-0037-8712
SPM: www.spm.uem.br/bspm doi:10.5269/bspm.79205

Some Coupled Fixed Point Theorems in Partially Ordered Partial Metric Spaces and
Application to Integral Equations

Gurucharan Singh Saluja and Hemant Kumar Nashine∗

abstract: In this paper, we prove coupled fixed point theorems using ψ-contractive conditions in partially
ordered partial metric spaces. We also provide corollaries to the established conclusions. Furthermore, we
provide several examples to support the established results. An application of the nonlinear integral equation
is also provided. Several conclusions in the current literature are extended, generalized and enriched by
our findings. Our results, in particular extend and generalize the findings of Aydi [8] and Bhaskar and
Lakshmikantham [12].
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1. Introduction

Matthews [23,24] introduced the concept of partial metric spaces to study the denotational semantics
dataflow networks. In fact, a partial metric space is a generalization of usual metric spaces in which the
self-distance need not be zero. It is widely recognized that partial metric spaces play an important role
in constructing models in the theory of computation (see, e.g., [17], [22], [30], [35], [38], [39]). Later,
Matthews proved the partial metric version of Banach fixed point theorem [11]. In fact, partial metrics are
more adaptable having broader topological properties than that of metrics create partial order. Heckmann
[17] introduced the concept of weak partial metric function and established some fixed point results. Oltra
and Valero [29] generalized the Matthews results in the sense of O’Neil [31] in complete partial metric
space. Abdeljawad et al. [4] considered a general form of the weak ϕ-contraction and established some
common fixed point results. Afterwards, many authors have conducted further research on fixed point
theorems in the same class of spaces (see e.g. [2], [3], [6], [7], [9], [10], [15], [19], [20], [21], [41]).

Bhashkar and Lakshmikantham [12] (2006) established some coupled fixed point theorems on ordered
metric spaces and give application in the existence and uniqueness of a solution for periodic boundary
value problem (see, also [16]). Later on, Ćirić and Lakshmikantham [13] (2009) investigated some more
coupled fixed point theorems in partially ordered sets. Further, many authors have obtained coupled
fixed point results for mappings under various contractive conditions in the setting of metric spaces and
generalized metric spaces (see [1], [5], [8], [25], [26], [27], [32], [33], [34], [36], [40]).

Recently, Jain et al. [18] Nashine et al. [28] (2024) proved some coupled and common coupled fixed
point results by means of control function and provide some corollaries of the established results. Also
give some examples to validate the results.
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In this article, we prove some coupled fixed point theorems via ψ-contractive condition in the setting
of partially ordered partial metric spaces and give some consequences of the established result. Moreover,
we provide some illustrative examples to validate the established results. An application to the nonlinear
integral equation is also given. Our results extend, generalize and enrich several results from the existing
literature.

2. Preliminaries

In this section, we recall the notion of partial metric space and some of its properties which will be
useful in the main section to establish few results.

Definition 2.1 ( [24]) Let M be a nonempty set. A partial metric on M is a function P : M×M →
[0,+∞) such that for all r, s, t ∈ M the followings are satisfied:

(1) r = s⇔ P (r, r) = P (r, s) = P (s, s),

(2) P (r, r) ≤ P (r, s),

(3) P (r, s) = P (s, r),

(4) P (r, s) ≤ P (r, t) + P (t, s)− P (t, t).

Then P is called a partial metric on M and the pair (M, P ) is called a partial metric space (in short
PMS).

It is clear that if P (r, s) = 0, then from (1), (2), and (3), r = s. But if r = s, P (r, s) may not be 0.

If P is a partial metric on M, then the function dP : M×M → [0,+∞) given by

dP (r, s) = 2P (r, s)− P (r, r)− P (s, s), (2.1)

is a usual metric on M.

Each partial metric P on M generates a T0 topology τρ on M with the family of open P -balls
{BP (r, ε) : r ∈ M, ε > 0} where BP (r, ε) = {s ∈ M : P (r, s) < P (r, r) + ε} for all r ∈ M and ε > 0.
Similarly, closed P -ball is defined as BP [r, ε] = {s ∈ M : P (r, s) ≤ P (r, r) + ε} for all r ∈ M and ε > 0.

Example 2.1 ( [10]) Let M = [0,+∞) and P : M×M → [0,+∞) be given by P (r, s) = max{r, s} for
all r, s ∈ M. Then (M, P ) is a partial metric space.

Example 2.2 ( [10]) Let I = M, where I denote the set of all intervals [r1, s1] for any real numbers
r1 ≤ s1. Let P : M×M → [0,∞) be a function such that P

(
[r1, s1], [r2, s2]

)
= max{s1, s2}−min{r1, r2}.

Then (M, P ) is a partial metric space.

Example 2.3 ( [14]) Let M = R and P : M×M → R+ be given by P (r, s) = emax{r,s} for all r, s ∈ M.
Then (M, P ) is a partial metric space.

Definition 2.2 ( [23]) Let (M, P ) be a partial metric space.

(i) A sequence {sn} converges to a point s ∈ M if and only if limn→∞ P (s, sn) = P (s, s).

(ii) A sequence {sn} in M is called a Cauchy sequence if and only if limm,n→∞
P (sm, sn) exists (and finite).

(iii) A partial metric space (M, P ) is said to be complete if every Cauchy sequence {sn} in M
converges, with respect to τρ, to a point s ∈ M, such that, limm,n→∞ P (sm, sn) = P (s, s).

(iv) A mapping F : M → M is said to be continuous at s0 ∈ M if for every ε > 0, there exists δ > 0
such that F

(
BP (s0, δ)

)
⊂ BP

(
F (s0), ε

)
.

Definition 2.3 ( [23]) A partial metric space (M, P ) is said to be complete if every Cauchy sequence
{sn} in M converges to a point s ∈ M with respect to τρ. Furthermore,

lim
m,n→∞

P (sm, sn) = lim
n→∞

P (sn, s) = P (s, s).
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Definition 2.4 (Control function) Let Ψ be the set of all functions ψ : [0,+∞) → [0,+∞) with the
properties

(Ψ1) ψ is continuous and non-decreasing,

(Ψ2) ψ(t) < t for each t > 0.

Obviously, if ψ ∈ Ψ, then ψ(0) = 0 and ψ(t) ≤ t for all t ≥ 0.

Definition 2.5 ( [12]) Let (M,≤) be a partially ordered set. The mapping V : M × M → M is said
to have the mixed monotone property if V (x, y) is monotone non-decreasing in x and is monotone non-
increasing in y, that is, for any x, y ∈ M,

x1, x2 ∈ M, x1 ≤ x2 ⇒ V (x1, y) ≤ V (x2, y),

and

y1, y2 ∈ M, y1 ≤ y2 ⇒ V (x, y1) ≥ V (x, y2).

Definition 2.6 ( [12,13]) An element (x, y) ∈ M×M is said to be a coupled fixed point of the mapping
V : M×M → M if V (x, y) = x and V (y, x) = y.

Example 2.4 Let M = [0,+∞) and V : M×M → M be defined by V (x, y) = x+y
3 for all x, y ∈ M.

Then one can easily see that V has a unique coupled fixed point (0, 0).

Example 2.5 Let M = [0,+∞) and V : M×M → M be defined by V (x, y) = x+y
2 for all x, y ∈ M.

Then we see that V has two coupled fixed point (0, 0) and (1, 1), that is, the coupled fixed point is not
unique.

Lemma 2.1 ( [8,23,24])

(a1) A sequence {sn} is Cauchy in a partial metric space (M, P ) if and only if {sn} is Cauchy in a
metric space (M, dP ) where

dP (r, s) = 2P (r, s)− P (r, r)− P (s, s).

(a2) A partial metric space (M, P ) is complete if a metric space (M, dP ) is complete, i.e.,

lim
n→∞

dP (sn, s) = 0 ⇔ P (s, s) = lim
n→∞

P (sn, s) = lim
n,m→∞

P (sn, sm).

Lemma 2.2 ( [21]) Let (M, P ) be a partial metric space.

(b1) If r, s ∈ M, P (r, s) = 0, then r = s.

(b2) If r ̸= s, then P (r, s) > 0.

One of the characterization of continuity of mappings in partial metric spaces was given by Samet et
al. [37] as follows.

Lemma 2.3 (see [37]) Let (M, P ) be a partial metric space. The function H : M → M is continu-
ous if given a sequence {sn}n∈N and s ∈ M such that P (s, s) = limn→∞ P (s, sn), then P (Hs,Hs) =
limn→∞ P (Hs,Hsn).

Example 2.6 (see [37]) Let M = [0,+∞) endowed with the partial metric P : M × M → [0,+∞)
defined P (r, s) = max{r, s} for all r, s ∈ M. Let H : M → M be a non-decreasing function. If H is
continuous with respect to the standard metric d(r, s) = |r − s| for all r, s ∈ M, then H is continuous
with respect to the partial metric P .

Lemma 2.4 (see [14]) Let sn → s as n→ ∞ in a partial metric space (M, P ) where P (s, s) = 0. Then
limn→∞ P (sn, z) = P (s, z) for all z ∈ M.
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3. Main Results

In this section, we shall prove some coupled fixed point theorems for ψ-contractive condition in the
setting of partially ordered partial metric spaces.

Theorem 3.1 Let (M, P,≤) be a partially ordered complete partial metric space. Suppose that the
mapping V : M×M → M satisfies the following conditions:

(1)

P (V (r, s), V (t, z)) ≤ ψ
(
MV (r, s, t, z)

)
, (3.1)

for all r, s, t, z ∈ M, where

MV (r, s, t, z) = a1 P (r, t) + a2 P (s, z) + a3 P (r, V (r, s))

+a4 P (t, V (t, z)) + a5 P (t, V (r, s)),

a1, a2, a3, a4, a5 are nonnegative reals such that a1 + a2 + a3 + a4 + a5 < 1 and ψ ∈ Ψ,
(2) either V is continuous or
(3) M has the following properties
(a′) if a non-decreasing sequence {rn} in M converges to some point r ∈ M, then rn ≤ r for all n,
(a′′) if a non-increasing sequence {sn} in M converges to some point s ∈ M, then s ≤ sn for all n.
If there exist two elements r0, s0 ∈ M with r0 ≤ V (r0, s0) and s0 ≥ V (s0, r0), then V has a coupled

fixed point in M.

Proof: Let r0, s0 ∈ M be such that r0 ≤ V (r0, s0) and s0 ≥ V (s0, r0). Let r1 = V (r0, s0) and s1 =
V (s0, r0). Then r0 ≤ r1 and s0 ≥ s1. Again, let r2 = V (r1, s1) and s2 = V (s1, r1). Since V has the
mixed monotone property on M, then we have r1 ≤ r2 and s1 ≥ s2. Continuing the above process, we
get two sequences {rn} and {sn} in M such that rn+1 = V (rn, sn) and sn+1 = V (sn, rn) for all n ≥ 0
and

r0 ≤ r1 ≤ · · · ≤ rn ≤ rn+1 ≤ . . . , s0 ≥ s1 ≥ · · · ≥ sn ≥ sn+1 ≥ . . . . (3.2)

Now, using equation (3.1) with r = rn−1, s = sn−1, t = rn and z = sn, we have

P (rn, rn+1) = P
(
V (rn−1, sn−1), V (rn, sn)

)
≤ ψ

(
MV (rn−1, sn−1, rn, sn)

)
, (3.3)

where

MV (rn−1, sn−1, rn, sn) = a1 P (rn−1, rn) + a2 P (sn−1, sn) + a3 P (rn−1, V (rn−1, sn−1))

+a4 P (rn, V (rn, sn)) + a5 P (rn, V (rn−1, sn−1))

= a1 P (rn−1, rn) + a2 P (sn−1, sn) + a3 P (rn−1, rn)

+a4 P (rn, rn+1) + a5 P (rn, rn)

≤ a1 P (rn−1, rn) + a2 P (sn−1, sn) + a3 P (rn−1, rn)

+a4 P (rn, rn+1) + a5 P (rn, rn+1)

= (a1 + a3)P (rn−1, rn) + a2 P (sn−1, sn)

+(a4 + a5)P (rn, rn+1).

Using this and the property of ψ in equation (3.3), we obtain

P (rn, rn+1) ≤ ψ
(
(a1 + a3)P (rn−1, rn) + a2 P (sn−1, sn)

+ (a4 + a5)P (rn, rn+1)
)

< (a1 + a3)P (rn−1, rn) + a2 P (sn−1, sn)

+ (a4 + a5)P (rn, rn+1). (3.4)
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By similar fashion one can obtain

P (sn, sn+1) < (a1 + a3)P (sn−1, sn) + a2 P (rn−1, rn)

+ (a4 + a5)P (sn, sn+1). (3.5)

From equations (3.4) and (3.5), we obtain

P (rn, rn+1) + P (sn, sn+1) < (a1 + a3)[P (rn−1, rn) + P (sn−1, sn)]

+ a2 [P (rn−1, rn) + P (sn−1, sn)]

+ (a4 + a5)[P (rn, rn+1) + P (sn, sn+1)]. (3.6)

Let Yn = P (rn, rn+1) + P (sn, sn+1) for all n ≥ 0. Then from equation (3.6), we obtain

Yn < (a1 + a3)Yn−1 + a2Yn−1 + (a4 + a5)Yn

= (a1 + a2 + a3)Yn−1 + (a4 + a5)Yn.

This implies that

Yn <
(a1 + a2 + a3
1− a4 − a5

)
Yn−1

= γ Yn−1,

where

γ =
(a1 + a2 + a3
1− a4 − a5

)
< 1,

since by assumption a1 + a2 + a3 + a4 + a5 < 1.
Continuing in the same way, we obtain

Yn < γ Yn−1 < γ2 Yn−2 < γ3 Yn−3 < · · · < γn Y0. (3.7)

If Y0 = 0, then P (r0, r1) + P (s0, s1) = 0. Hence P (r0, r1) = 0 and P (s0, s1) = 0. Therefore by Lemma
2.2 (b1), we get r0 = r1 = V (r0, s0) and s0 = s1 = V (s0, r0). This means that (r0, s0) is a coupled fixed
point V . Now, assume that Y0 > 0. For each n ≥ m, where n,m ∈ N, by using condition (4), we have

P (rn, rm) ≤ P (rn, rn−1) + P (rn−1, rn−2) + · · ·+ P (rm+1, rm)

− P (rn−1, rn−1)− P (rn−2, rn−2)− · · · − P (rm+1, rm+1)

≤ P (rn, rn−1) + P (rn−1, rn−2) + · · ·+ P (rm+1, rm). (3.8)

Similarly, one can obtain

P (sn, sm) ≤ P (sn, sn−1) + P (sn−1, sn−2) + · · ·+ P (sm+1, sm). (3.9)

Thus,

Ynm = P (rn, rm) + P (sn, sm) ≤ Yn−1 + Yn−2 + · · ·+ Ym

≤ (γn−1 + γn−2 + · · ·+ γm)Y0

≤
( γm

1− γ

)
Y0. (3.10)

By definition of metric dP , we have dP (r, s) ≤ 2P (r, s), therefore for any n ≥ m

dP (rn, rm) + dP (sn, sm) ≤ 2[P (rn, rm) + P (sn, sm)] = 2Ynm

≤
( 2γm

1− γ

)
Y0, (3.11)
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which implies that {rn} and {sn} are Cauchy sequences in (M, dP ) since γ < 1. Since the partial metric
space (M, P ) is complete, by Lemma 2.1 (a2), the metric space (M, dP ) is also complete, so there exist
u, v ∈ M such that

lim
n→∞

dP (rn, u) = lim
n→∞

dP (sn, v) = 0. (3.12)

From Lemma 2.1 (a2), we obtain

P (u, u) = lim
n→∞

P (rn, u) = lim
n→∞

P (rn, rn), (3.13)

and

P (v, v) = lim
n→∞

P (sn, v) = lim
n→∞

P (sn, sn). (3.14)

But, from condition (2) of PMS and equation (3.7), we have

P (rn, rn) ≤ P (rn, rn+1) ≤ Yn ≤ γnY0, (3.15)

and since γ < 1, hence letting n→ ∞, we get limn→∞ P (rn, rn) = 0. It follows that

P (u, u) = lim
n→∞

P (rn, u) = lim
n→∞

P (rn, rn) = 0. (3.16)

Similarly, we obtain

P (v, v) = lim
n→∞

P (sn, v) = lim
n→∞

P (sn, sn) = 0. (3.17)

Now, we show that u = V (u, v) and v = V (v, u). We shall distinguish the following cases.
Case (1): We now show that if the assumption (2) holds, then (u, v) is a coupled fixed point of V .
As, we have

u = lim
n→∞

rn+1 = lim
n→∞

V (rn, sn) = V ( lim
n→∞

rn, lim
n→∞

sn) = V (u, v),

and

v = lim
n→∞

sn+1 = lim
n→∞

V (sn, rn) = V ( lim
n→∞

sn, lim
n→∞

rn) = V (v, u).

Thus, (u, v) is a coupled fixed point of V .
Case (2): Suppose now that the conditions (3)(a′) and (3)(a′′) of the theorem hold.
Since rn → u and sn → v as n→ ∞, then we have

P (V (u, v), u) ≤ P (V (u, v), rn+1) + P (rn+1, u)− P (rn+1, rn+1)

≤ P (V (u, v), rn+1) + P (rn+1, u)

= P (V (u, v), V (rn, sn)) + P (rn+1, u)

≤ ψ
(
MV (u, v, rn, sn)

)
+ P (rn+1, u), (3.18)

where

MV (u, v, rn, sn) = a1 P (u, rn) + a2 P (v, sn) + a3 P (u, V (u, v))

+ a4 P (rn, V (rn, sn)) + a5 P (rn, V (u, v))

= a1 P (u, rn) + a2 P (v, sn) + a3 P (V (u, v), u)

+ a4 P (rn, rn+1) + a5 P (V (u, v), rn). (3.19)

Letting n→ ∞ in equation (3.19) and using equations (3.16)-(3.17), we obtain

lim
n→∞

MV (u, v, rn, sn) = (a3 + a5)P (V (u, v), u). (3.20)
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Letting n→ ∞ in equation (3.18) and using equations (3.16), (3.20) and the property of ψ, we obtain

P (V (u, v), u) ≤ ψ
(
(a3 + a5)P (V (u, v), u)

)
< (a3 + a5)P (V (u, v), u),

which is a contradiction, since a3 + a5 < 1. Thus, P (V (u, v), u) = 0 and so by Lemma 2.2 (b1), we get
V (u, v) = u. Similarly, we can show that V (v, u) = v. This completes the proof. 2

If we take ψ(t) = kt for all t > 0 where k ∈ (0, 1), ka1 → q1, ka2 → q2, ka3 → q3, ka4 → q4 and
ka5 → q5, qi ∈ (0, 1) for i = 1, 2, . . . , 5 in Theorem 3.1, then we have the following result.

Corollary 3.1 Let (M, P,≤) be a partially ordered complete partial metric space. Suppose that the
mapping V : M×M → M satisfies the following conditions:

(1)

P (V (r, s), V (t, z)) ≤ q1 P (r, t) + q2 P (s, z) + q3 P (r, V (r, s))

+q4 P (t, V (t, z)) + q5 P (t, V (r, s)), (3.21)

for all r, s, t, z ∈ M, where q1, q2, . . . , q5 are nonnegative reals such that q1 + q2 + · · ·+ q5 < 1,
(2) either V is continuous or
(3) M has the following properties
(a′) if a non-decreasing sequence {rn} in M converges to some point r ∈ M, then rn ≤ r for all n,
(a′′) if a non-increasing sequence {sn} in M converges to some point s ∈ M, then s ≤ sn for all n.
If there exist two elements r0, s0 ∈ M with r0 ≤ V (r0, s0) and s0 ≥ V (s0, r0), then V has a coupled

fixed point in M.

If we take q1 = k, q2 = l and q3 = q4 = q5 = 0 where k, l ∈ (0, 1) in Corollary 3.1, then we have the
following result.

Corollary 3.2 Let (M, P,≤) be a partially ordered complete partial metric space. Suppose that the
mapping V : M×M → M satisfies the following conditions:

(1)

P (V (r, s), V (t, z)) ≤ k P (r, t) + l P (s, z), (3.22)

for all r, s, t, z ∈ M, where k, l are nonnegative reals such that k + l < 1,
(2) either V is continuous or
(3) M has the following properties
(a′) if a non-decreasing sequence {rn} in M converges to some point r ∈ M, then rn ≤ r for all n,
(a′′) if a non-increasing sequence {sn} in M converges to some point s ∈ M, then s ≤ sn for all n.
If there exist two elements r0, s0 ∈ M with r0 ≤ V (r0, s0) and s0 ≥ V (s0, r0), then V has a coupled

fixed point in M.

If we take k = l = n where n ∈ (0, 1) in Corollary 3.2, then we have the following result.

Corollary 3.3 Let (M, P,≤) be a partially ordered complete partial metric space. Suppose that the
mapping V : M×M → M satisfies the following conditions:

(1)

P (V (r, s), V (t, z)) ≤ n

2

[
P (r, t) + P (s, z)

]
, (3.23)

for all r, s, t, z ∈ M, where n ∈ (0, 1) is a constant,
(2) either V is continuous or
(3) M has the following properties
(a′) if a non-decreasing sequence {rn} in M converges to some point r ∈ M, then rn ≤ r for all n,
(a′′) if a non-increasing sequence {sn} in M converges to some point s ∈ M, then s ≤ sn for all n.
If there exist two elements r0, s0 ∈ M with r0 ≤ V (r0, s0) and s0 ≥ V (s0, r0), then V has a coupled

fixed point in M.
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Remark 3.1 Corollary 3.3 extends and generalizes Theorem 2.1 and Theorem 2.2 of [12] from partially
ordered complete metric spaces to partially ordered complete partial metric spaces.

Notice that if (M,≤) is a partially ordered set, we endow the product space M×M with the partial
order relation given by

(p, q) ≤ (r, s) ⇔ r ≥ p and s ≤ q.

We say that two pairs (x, y) and (u, v) are comparable, that is, every pair of elements has either a lower
bound or an upper bound.

Now, we prove the uniqueness of a coupled fixed point in the setting of partially ordered complete
partial metric spaces. Moreover, we study appropriate conditions to ensure that for a coupled fixed point
(x, y) we have x = y.

Theorem 3.2 In addition to the hypotheses of Theorem 3.1, suppose that, for every (f, g), (j, k) ∈ M×
M, there exists a pair (p, q) ∈ M×M such that (p, q) is comparable to (f, g) and (j, k). Then V has a
unique coupled fixed point. Moreover p(z, z) = 0.

Proof: Suppose that (u, v) and (r, s) are coupled fixed point of V , that is, u = V (u, v), v = V (v, u),
r = V (r, s) and s = V (s, r).

Let (n,m) be an element of M×M comparable to both (u, v) and (r, s). Suppose that (r, s) ≥ (n,m)
(the proof is similar in other cases). We consider the following two cases.

Case (A). If (u, v) and (r, s) are comparable, then we have

P (u, r) = P
(
V (u, v), V (r, s)

)
≤ ψ

(
MV (u, v, r, s)

)
, (3.24)

where

MV (u, v, r, s) = a1 P (u, r) + a2 P (v, s) + a3 P (u, V (u, v))

+a4 P (r, V (r, s)) + a5 P (r, V (u, v))

= a1 P (u, r) + a2 P (v, s) + a3 P (u, u)

+a4 P (r, r) + a5 P (r, u)

= (a1 + a5)P (u, r) + a2 P (v, s).

Putting in equation (3.24) and using the property of ψ, we obtain

P (u, r) < (a1 + a5)P (u, r) + a2 P (v, s). (3.25)

Similarly, we have

P (v, s) < (a1 + a5)P (v, s) + a2 P (u, r). (3.26)

From equations (3.25) and (3.26), we obtain

P (u, r) + P (v, s) < (a1 + a2 + a5)[P (u, r) + P (v, s)],

which is a contradiction, since a1 + a2 + a5 < 1. Hence, P (u, r) + P (v, s) = 0, that is, P (u, r) = 0 and
P (v, s) = 0 and so u = r and v = s. This shows that the coupled fixed point of V is unique.

Case (B). Suppose now that (u, v) and (r, s) are not comparable, then there exists an element (p, q) ∈
M × M is comparable to both (u, v) and (r, s). Now, since by iteration V n(r, s) = r, V n(s, r) = s,
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V n(u, v) = u, V n(v, u) = v, V n(p, q) = p and V n(q, p) = q, we have

P
((u

v

)
,

(
r

s

))
= P

((V n(u, v)

V n(v, u)

)
,

(
V n(r, s)

V n(s, r)

))
≤ P

((V n(u, v)

V n(v, u)

)
,

(
V n(p, q)

V n(q, p)

))
+P

((V n(p, q)

V n(q, p)

)
,

(
V n(r, s)

V n(s, r)

))
≤ ψ

(
MV (u, v, p, q)

)
+ ψ

(
MV (v, u, q, p)

)
+ψ

(
MV (p, q, r, s)

)
+ ψ

(
MV (q, p, s, r)

)
.

where

MV (u, v, p, q) = a1 P (u, p) + a2 P (v, q) + a3 P (u, V (u, v))

+a4 P (p, V (p, q)) + a5 P (p, V (u, v))

= a1 P (u, p) + a2 P (v, q) + a3 P (u, u)

+a4 P (p, p) + a5 P (p, u) = 0.

Similarly,
MV (v, u, q, p) = 0, MV (p, q, r, s) = 0 andMV (q, p, s, r) = 0.

Using this in the above inequality and the property of ψ, we obtain

p
((u

v

)
,

(
r

s

))
= 0.

Thus, u = r and v = s. Hence, the coupled fixed point of V is unique. This completes the proof. 2

Theorem 3.3 In addition to the hypotheses of Theorem 3.1, suppose that r0, s0 in M are comparable,
then the coupled fixed point (r, s) ∈ M×M satisfies r = s. Moreover p(z, z) = 0.

Proof: Recall that r0 ∈ M is such that r0 ≤ V (r0, s0). Now, if r0 ≤ s0, we claim that for all n ∈ N,
rn ≤ sn. Indeed, by the mixed monotone property of V ,

r1 = V (r0, s0) ≤ V (s0, r0) = s1.

Assume that rn ≤ sn for some n. Now, consider

rn+1 = V n+1(r0, s0) = V
(
V n(r0, s0), V

n(s0, r0)
)

= V (rn, sn) ≤ V (sn, rn) = sn+1.

Hence, rn ≤ sn for all n. Taking the limit as n→ ∞, we get

r = lim
n→∞

rn ≤ lim
n→∞

sn = s.

From the contractive condition (3.1), we get

P (r, s) = P (V (r, s), V (s, r))

≤ ψ
(
MV (r, s, s, r)

)
,

where

MV (r, s, s, r) = a1 P (r, s) + a2 P (s, r) + a3 P (r, V (r, s))

+a4 P (s, V (s, r)) + a5 P (s, V (r, s))

= a1 P (r, s) + a2 P (s, r) + a3 P (r, r)

+a4 P (s, s) + a5 P (s, r)

= (a1 + a2 + a5)P (r, s).
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Using this in the above inequality and the property of ψ, we get

P (r, s) < (a1 + a2 + a5)P (r, s).

Similarly, we obtain

P (s, r) < (a1 + a2 + a5)P (s, r).

From equations (3.27) and (3.27), we obtain

P (r, s) + P (s, r) < (a1 + a2 + a5)[P (r, s) + P (s, r)],

which is a contradiction, since a1+a2+a5 < 1. Hence, P (r, s)+P (s, r) = 0 and so P (r, s) = 0 = P (s, r).
Therefore, by Lemma 2.2 (b1), we get r = s.

Similarly, if r0 ≥ s0, then it is possible to show rn ≥ sn for all n and that P (r, s) = 0. This completes
the proof. 2

Remark 3.2 Theorem 3.2 and Theorem 3.3 extend and generalize Theorem 2.4 and Theorem 2.6 of [12]
from partially ordered complete metric spaces to partially ordered complete partial metric spaces.

Example 3.1 Let M = [0, 1]. Then (M,≤) is a partially ordered set with a natural ordering of real
numbers. Let P : M×M → [0, 1] be defined by P (r, s) = |r − s| for all r, s ∈ M. Consider the mapping
V : M×M → [0, 1] defined by

V (r, s) =

{
r2−s2+1

3 , if r ≤ s,
1
3 , if r > s,

for all r, s ∈ M. Then
(1) (M, P ) is a complete partial metric space since (M, dP ) is complete;
(2) V has the mixed monotone property;
(3) V is continuous;
(4) 0 ≤ V (0, 1) and 1 ≥ V (1, 0);
(5) there exists a constant 0 < n < 1 such that

P
(
V (r, s), V (t, z)

)
≤ n

2

[
P (r, t) + P (s, z)

]
,

for all r, s, t, z ∈ M with r ≤ t and s ≥ z. Thus, by Corollary 3.3, V has a coupled fixed point. Moreover,
( 13 ,

1
3 ) is the unique coupled fixed point of V .

Proof: The proofs of (1)− (4) are obvious.
For any r ≤ t and s ≥ z, we have

P (r, t) = t− r, P (s, z) = s− z.

The proof of (5) is divided into the following cases.
Case (1′). If t ≤ z. In this case, r ≤ t ≤ z ≤ s, and so

V (r, s) =
r2 − s2 + 1

3
, V (t, z) =

t2 − z2 + 1

3
.

Hence, we get

P
(
V (r, s), V (t, z)

)
= P

(r2 − s2 + 1

3
,
t2 − z2 + 1

3

)
=

1

3
(t2 − z2 − r2 + s2) =

1

3
[(t2 − r2) + (s2 − z2)]

≤ 1

3
[(t− r) + (s− z)] =

1

3
[P (r, t) + P (s, z)]

=
n

2
[P (r, t) + P (s, z)],



Some Coupled Fixed Point Theorems in Partially Ordered Partial. . . 11

with n = 2
3 < 1.

Case (2′). If t > z. In this case, r ≤ t ≤ s, and so

V (r, s) =
r2 − s2 + 1

3
, V (t, z) =

1

3
.

Hence, we get

P
(
V (r, s), V (t, z)

)
= P

(r2 − s2 + 1

3
,
1

3

)
=

1

3
(s2 − r2)

≤ 1

3
(s2 − r2 + t2 − z2) =

1

3
[(t2 − r2) + (s2 − z2)]

≤ 1

3
[(t− r) + (s− z)] =

1

3
[P (r, t) + P (s, z)]

=
n

2
[P (r, t) + P (s, z)],

with n = 2
3 < 1.

Case (3′). If r > s. In this case, t ≤ z ≤ s, and so

V (r, s) =
1

3
, V (t, z) =

t2 − z2 + 1

3
.

Hence, we get

P
(
V (r, s), V (t, z)

)
= P

(1
3
,
t2 − z2 + 1

3

)
=

1

3
(t2 − z2)

≤ 1

3
(t2 − z2 + s2 − r2) =

1

3
[(t2 − r2) + (s2 − z2)]

≤ 1

3
[(t− r) + (s− z)] =

1

3
[P (r, t) + P (s, z)]

=
n

2
[P (r, t) + P (s, z)],

with n = 2
3 < 1.

Thus, in all the above cases, the condition (5) is satisfied. Since M = [0, 1] is a totally ordered set,
by Theorem 3.3, ( 13 ,

1
3 ) is the unique coupled fixed point of V .

2

4. An Application to the Nonlinear Integral Equation

In this section, we study the existence of solution of the nonlinear integral equations, as an application
of the coupled fixed point theorem proved in the main results.

Consider the following nonlinear integral equations:

r(t) = g(t) +

∫ T

0

N(t, p)h(p, r(p), s(p))dp,

s(t) = g(t) +

∫ T

0

N(t, p)h(p, s(p), r(p))dp, (4.1)

where t ∈ I = [0, T ], with T > 0.
We consider the spaceM = C(I,R) of continuous functions defined in I. Define P : M×M → [0,+∞)

by

P (r, s) = max
t∈I

|r(t)− s(t)|,

for all r, s ∈ M. Then (M, P ) is a complete partial metric space.
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Let M = C(I,R) with the natural partial order relation, that is, r, s ∈ C(I,R),

r ≤ s ⇔ r(t) ≤ s(t), t ∈ I.

We consider the following conditions:
(1) the mapping h : I × R× R → R and g : I → R are continuous;
(2) there exists a continuous 0 ≤ n < 1 such that

|h(p, r, s)− h(p, w, z) ≤ n

2
(|r − w|+ |s− z|), (4.2)

for all r, s, w, z ∈ M and for all p ∈ I;
(3) for all t, p ∈ I, there exists a continuous N : I × R → R such that

max
t∈I

∫ T

0

N(t, p)dp < 1, (4.3)

(4) there exist r0, s0 ∈ M such that

r0(t) ≤ g(t) +

∫ T

0

N(t, p)h(p, r0(p), s0(p))dp,

s0(t) ≤ g(t) +

∫ T

0

N(t, p)h(p, s0(p), r0(p))dp, (4.4)

where t ∈ I.

Theorem 4.1 Consider the Corollary 3.3 and assume that conditions (1) - (4) are satisfied. Then
equation (4.1) has a unique solution in M = C(I,R).

Proof: Define the mapping V : M2 → M, (r, s) → V (r, s), where

V (r, s)(t) = g(t) +

∫ T

0

N(t, p)h(p, r(p), s(p))dp, t ∈ I, (4.5)

for all r, s ∈ M.
Equation (4.1) can be stated as

r = V (r, s) and s = V (s, r). (4.6)

For r, s, w, z ∈ M be such that r ≤ w and s ≤ z and

V (r, s)(t) = g(t) +

∫ T

0

N(t, p)h(p, r(p), s(p))dp

≤ g(t) +

∫ T

0

N(t, p)h(p, w(p), z(p))dp

= V (w, z)(t) for all t ∈ I. (4.7)

From equations (4.2) and (4.3) for all t ∈ I, we have

P (V (r, s), V (w, z)) = max
t∈I

|V (r, s)(t)− V (w, z)(t)|

≤ max
t∈I

∫ T

0

N(t, p)
∣∣∣h(p, r(p), s(p))− h(p, w(p), z(p))

∣∣∣dp
≤

∣∣h(p, r(p), s(p))− h(p, w(p), z(p))
∣∣

≤ n

2
(max
p∈I

|r(p)− w(p)|+max
p∈I

|s(p)− z(p)|)

=
n

2
[P (r, w) + P (s, z)],
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where 0 ≤ n < 1.
So that

P (V (r, s), V (w, z)) ≤ n

2
[P (r, w) + P (s, z)].

Which is the contractive condition in Corollary 3.3. Thus V has a coupled fixed point in M, that
is, the system of nonlinear integral equation has a solution. Finally, let (r, s) be a coupled lower and
upper solution of the integral equation (4.1), then by assumption (4) of the Theorem 4.1, we have
r ≤ V (r, s) ≤ V (s, r) ≤ s. Corollary 3.3 gives us that V has a coupled fixed point, say (u, v) ∈ M×M.
Since r ≤ s, Theorem 3.3 says us that u = v and this implies u = V (u, u) and u is the unique solution of
the integral equation (4.1). 2

The aforesaid application is illustrated by the following example.

Example 4.1 Let M = C([0, 1],R), h : I × R × R → R and g : I → R. Now consider the following
functional integral equation:

r(t) =
t2

1 + t4
+

∫ 1

0

sin p 3−pe−p

9(t+ 3)

( |r(p)|
1 + |r(p)|

+
|s(p)|

1 + |s(p)|

)
dp

s(t) =
t2

1 + t4
+

∫ 1

0

sin p 3−pe−p

9(t+ 3)

( |s(p)|
1 + |s(p)|

+
|r(p)|

1 + |r(p)|

)
dp,

for all r, s ∈ M and t ∈ I. Observe that the above equation is a special case of equation (4.1) with

g(t) =
t2

1 + t4
.

N(t, p) =
3−pe−p

t+ 3
.

h(p, r, s) =
sin p

9

( |r(p)|
1 + |r(p)|

+
|s(p)|

1 + |s(p)|

)
.

h(p, s, r) =
sin p

9

( |s(p)|
1 + |s(p)|

+
|r(p)|

1 + |r(p)|

)
.

It is also easily seen that these functions are continuous.
For arbitrary r, s, w, z ∈ M and for all p ∈ I, we have

|h(p, r, s)− h(p, w, z)| =
∣∣∣sin p

9

( |r(p)|
1 + |r(p)|

+
|s(p)|

1 + |s(p)|

)
−sin p

9

( |w(p)|
1 + |w(p)|

+
|z(p)|

1 + |z(p)|

)∣∣∣
≤ 1

9

(
|r − w|+ |s− z|

)
=
n

2

(
|r − w|+ |s− z|

)
.

Therefore, the function h satisfies equation (4.2) with n = 2
9 < 1.

For all t, p ∈ I, there exists N : I × R → R such that∫ 1

0

N(t, p)dp =

∫ 1

0

3−pe−p

t+ 3
dp

= −1

3

( e−1 − 3

(ln 3 + 1)(t+ 3)

)
=

(
1− 1

3e

) 1

(ln 3 + 1)(t+ 3)

≤ 1− 1

3e
≤ 9

10
< 1.
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We put r0(t) =
5t2

7(1+t4) , we obtain

r0(t) =
5t2

7(1 + t4)
≤ t2

1 + t4

≤ t2

1 + t4
+

∫ 1

0

sin p

9

( |r(p)|
1 + |r(p)|

+
|s(p)|

1 + |s(p)|

)
dp

= g(t) +

∫ T

0

N(t, p)h(p, r0(p), s0(p))dp.

Similarly, we have

s0(t) ≤ g(t) +

∫ T

0

N(t, p)h(p, s0(p), r0(p))dp.

This shows that equation (4.4) holds.
Hence the integral equation (4.1) has a unique solution in M with M = C([0, 1],R).

5. Conclusion

In this article, we establish some coupled fixed point theorems for ψ-contractive condition in the
setting of partially ordered partial metric spaces. Moreover, we give some corollaries of the established
results and provide an illustrative example in support of the established result. An application to the
nonlinear integral equation is also given. The results obtained in this paper extend and generalize several
previous works from the existing literature.
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