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Difference of Convex Functions Optimization for Feature Selection in Granular Ball
Support Vector Machine

Najoua Aafar∗ , Abdellatif El Ouissari and Bouchaib Ferrahi

abstract: Feature selection constitutes a critical optimization problem within the domain of supervised
pattern classification. It involves selecting an optimal subset of features that maximizes the retention of the
data’s salient information. Granular Ball Support Vector Machine (GBSVM) has proven to be a powerful
technique for enhancing the predictive accuracy and computational tractability of classification models, by
exploiting the concept of granular structures in the feature space, through the generation of a set of granular
balls, enabling complex decision boundary modeling and adaptability to data variability. This paper presents
a novel embedded feature selection approach in the context of granular ball SVM, directly enhancing classifier
performance. Our approach to the resulting optimization problem is to apply Difference of Convex (DC)
functions programming to effectively handle the non-convex nature of the problem. Genetic algorithm is used
to tune the model’s parameters. Experimental results on UCI datasets show the efficiency of the proposed
method.

Key Words:DC Programming, non-convex optimization, feature selection, Support Vector Machine
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1. Introduction

Support Vector Machines (SVMs) [1] is among the most recognized machine learning algorithms for
classification. This method demonstrated strong predictive accuracy due to its capaciy to reduce the
model complexity [1]. In contrast to models that chase every data nuance and might overfit, support
vector machine tries to find the simplest, most robust hypothesis that can explain the data clearly.
This is achieved through three core mechanisms: The pursuit of the maximum margin: support vector
machine classifier isn’t just about finding any decision boundary that separates classes. It specifically
seeks the optimal hyperplane that maximizes the margin. Using the Kernel Trick : The data is often not
linearly separable specially the real-world data. The SVM gets around this pitfall with a mathematical
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workaround called the kernel trick. Instead of going through the computationally expensive hassle of
transforming all the data points into a high-dimensional space (which is computationally expensive), the
kernel function calculates the similarity (or dot product) between pairs of points as if they had been
transformed. The most common kernels are the Polynomial Kernel and the Radial Basis Function (RBF)
Kernel. Built-in regularization: A parameter C in SVM dictates the penalty for each data point that
end up falling on the wrong side of the margin (a misclassification or a violation of the margin). If the
value of C value is low, the model prioritizes maximizing the overall margin above all else, even if it
means tolerating a few misclassified training points, and if C takes high values, that means the model
would avoid misclassifying training points. This can lead to a narrower margin and a more complicated
decision boundary. Because of its widespread use, a broad range of SVM extensions and applications
have been presented in the literature [2,3,4,5,6,7]. Within supervised pattern recognition frameworks,
feature selection focuses on choosing a subset of the original input dimensions (features) for different
purposes such as performance problems through enabling easier data gathering and minimizing storage
requirements and classification time, feature selection also helps conducting semantics analysis and yet
understanding the problem, it also helps to avoid the “curse of dimensionality” which leads to a better
prediction accuracy. Feature selection methods may be classified into filters, wrappers and embedded
approaches [8,9,10]. Filter methods represent the most prevalent approach, it operates as a preprocessing
stage independent of the classifier [11,12]. On the other hand, wrappers treat the classifier as a black box
[9,13]. For embedded approaches, they jointly optimize both feature selection and classifier parameters
during model training. SVM classifiers is limited by its inability to perform embedded feature selection
during the classifier construction [14,15]. Researchers have proposed various methods to integrate feature
selection with SVM frameworks [14] such as penalty functions e.g. LASSO (Least Absolute Shrinkage
and Selection Operator) and concave approximations of the zero norm [10,16], and several studies have
adopted a balancing methodology with double regularizers to address this same issue [17,18].

Granular Ball Computing [19] proposed by Xia et al. is the approach based on the generation of
granular balls of different sizes from raw datasets, completelty or partially covering the data manifold
while conserving the essential characteristics of the data, enabling the treatement of problems with limited
noise robustness. Granular Ball Support Vector Machine (GBSVM) [20] is a new extension of SVM based
on granular ball computing, founded on the generation of granular balls to use as the input instead of
individual data points. Notwithstanding its novel introduction, GBSVM proved its resilience in terms of
computational efficiency, system scalability, model adaptability and algorithmic robustness, and showed
promising potential for future development through several works and extensions e.g. [21,22].

The present work aims to explore the idea of double regularized SVM classifiers to granular ball sup-
port vector machine using l2-norm and l0-”norm”. The first objective of our work is to combine between
the benefits of the new adoption of input data gained by GBSVM and the double regularization approach,
by adding an other regularization term to the l2-norm, and yet gaining a simultanious classification and
attributes selection, in the aim of creating a classifier that benefits from both sides. Our approach re-
quires the solution of a non-convex optimisation problem, we hence implement a Difference-of-Convex
(DC) programming approach [23,24] with appropriate problem decomposition. The remainder of this
paper is structured as follows: we give in section 2 an overview of related works. In section 3, we introduce
our approach. The results of the experiments are presented in section 4.

2. Related work

2.1. Support Vector Machines (SVM)

SVM are a class of supervised learning algorithms, they represent a standard technique for classifica-
tion and regression tasks. The primary goal of SVM is to determine the optimal partitioning hyperplane
of different classes by maximizing the margin. Given a set of training data:

(x1, y1), . . . , (xd, yd) ∈ Rn × {±1}

where xi represents an n-dimensional input variable and yi are their labels, SVM seeks to find a hyperplane
f(x) = wTx + b that maximizes the margin between the two classes, where w, x ∈ Rn, b ∈ R. A
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hyperplane f(x) = wTx + b = 0 linearly separates the training instances of the two classes, if and only
if, yi(w

Txi + b) ≥ 1, i = 1, . . . , d. The SVM optimization problem is defined as [27,28]:

min
w,b

1

2
∥w∥2

s.t. yi(w
⊤xi + b) ≥ 1, i = 1, . . . , d

(2.1)

For non-separable cases, slack variables ξ are introduced to allow for misclassifications, and the optimiza-
tion problem becomes:

min
w,b,ξi

1

2
∥w∥2 + C

d∑
i=1

ξi

s.t. yi(w
⊤xi + b) ≥ 1− ξi, i = 1, . . . , d

ξi ≥ 0, i = 1, . . . , d

(2.2)

where C > 0 is a regularization parameter that controls the trade-off between maximizing the margin
and minimizing classification errors.

2.2. Granular ball computing

Drawing on granular computing principles, Xia [29] et al. introduced granular ball computing in the
aim of enhancing system robustness and reduce uncertainty [25]. This approach is based on transforming
the original sample into granular balls that either completely or partially cover the sample and use them
as input for the model instead of individual sample points, leading to a reduction in training samples and
significantly improving algorithm efficiency. Let consider a dataset D ∈ Rd, and let GBi be a granular
ball that has a center si and a radius ri. GB1, GB2, . . . , GBN is the list of granular balls. The center si
of each ball denotes the centroid of all data points in GBi, and ri is the mean distance from the centroid
to all points in GBi. The label of GBi is selected based on which label occurs the most within GBi. It’s
worth noting that as ri decreases, the granular ball becomes finer, and if it increases the granular ball
becomes coarser. The coverage of a granular ball can be formally modeled in the following model. Given
a dataset D = {x1, x2, . . . , xd}. Granular ball list T = {GB1, GB2, . . . , GBN} denotes the set of granular
balls constructed from dataset D. The corresponding optimization problem is formulated as follows:

g(x, β) → h(GB, γ)

s.t. min

(
d∑N

j=1 |GBj |
+N

)
Quality(GBj) ≥ pur

(2.3)

where β and γ are the parameter vectors and pur is the purity threshold.

2.3. Granular Ball Support Vector Machines (GBSVM)

Introduced by Xia et al. [26], based on granular ball computing, and in the purpose of enhancing
robustness and adressing uncertainties in classification problems, Granular Ball Support Vector Machines
(GBSVM) represents a recent extension of the baseline SVM. The core concept of GBSVM is to model
data points as granular balls (clusters of data points) instead of individual points. This approach yields a
classification model that is both robust and efficient, particularly useful in situations involving noisy data
or outliers. This method enables the model to consider the internal structure of data clusters, ending up
with accurate and stable classification boundaries. The primal optimization problem for an inseparable
GBSVM is as follows:

min
w,b,ξi

1

2
∥w∥2 + C

m∑
i=1

ξi

s.t. yi(w
⊤si + b)− ∥w∥ri ≥ 1− ξi, ∀i ∈ {1, . . . ,m}

ξi ≥ 0, ∀i ∈ {1, . . . ,m}

(2.4)
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m is the number of granular balls, ξi are slack variables, C is a penalty coefficient, si is the center, and
ri is the radius of the granular ball GBi.

3. Feature Selection for Granular Ball Support Vector Machine

3.1. l2-l0-GBSVM

While the l2 regularization is crucial for achieving high predictive accuracy in the SVM models, l0
penalty term is employed to induce sparsity and perform feature selection [30]. Inspired by the work
of Neumann et al. [17], we suggest to combine these terms in Granular Ball Support Vector Machine
to atain double income. It is important to note that the l0-”norm,” ∥w∥0 = |{i : wi ̸= 0}| is actually
a pseudo-norm because, when lp-norms (p > 0) verify the triangle inequality, the former does not. The
optimization problem is written as follows:

min
w,b,ξi

1

2
∥w∥2 + µ

m

m∑
i=1

ξi + ν∥w∥0

s.t. yi(w
⊤si + b)− ∥w∥ri ≥ 1− ξi, ∀i ∈ {1, . . . ,m}

ξi ≥ 0, ∀i ∈ {1, . . . ,m}

(3.1)

where µ, ν ∈ R+ are two weight parameters

The associated unconstrained optimization problem is written this way:

min
w,b

1

2
∥w∥2 + µ

m

m∑
i=1

(
1− yi(w

⊤si + b) + ∥w∥ri
)
+
+ ν∥w∥0 (3.2)

where x+ := max(x, 0).

Over the years, three approaches have emerged to adress the discontinuity at the origin of the l0-
“norm”, these pertain to convex approximation, nonconvex approximation and nonconvex exact refor-
mulation. Since the l0-“norm” is non-smooth, we are going to use the concave approximation proposed
in [10] for the sake of the method thereon:

∥w∥0 ≈ eT (e− exp(−α|w|)) (3.3)

α ∈ R+ is an approximation parameter and e is the vector of ones. And the problem we name l2 − l0-
GBSVM reads:

min
w,b,ξi,v

1

2
∥w∥2 + µ

m

m∑
i=1

ξi + νeT (e− exp(−αv))

s.t. yi(w
⊤si + b)− ∥w∥ri ≥ 1− ξi, ∀i ∈ {1, . . . ,m}

ξi ≥ 0, ∀i ∈ {1, . . . ,m}
− v ≤ w ≤ v

(3.4)

So, this yields the mathematical program:

min
w,b,v

1

2
∥w∥2 + µ

m

m∑
i=1

(
1− yi(w

⊤si + b) + ∥w∥ri
)
+
+ νeT (e− exp(−αv)) + χ[−v;v](w) (3.5)

here χΩ is given by χΩ(x) = 0 if x ∈ Ω, and +∞ otherwise.

The resulting problem is a non-convex problem that can be written as difference of convex (DC)
functions programming problem.
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3.2. DC programming and DCA

At its core, DC (Difference of Convex functions) programming involves decomposing a function f(x)
into difference of convex functions for tractable optimization. DC programming represents a powerful
optimization framework [31,32,33,34], notably, for training Support Vector Machine, especially for for-
mulations deviating from classical convexity assumptions. To handle these nonconvex problems, DC
programming and DCA are often utilized, see e.g. [35,36,37,38]. DCA [39] is an iterative numerical
procedure designed to address challenging non convex optimization problems. It works by breaking down
the problem into a series of simpler convex optimizations. Extensive related research contributions have
been presented in the litterature by Le Thi Hoai An, Pham Dinh Tao, see e.g. [24,23,40,41]. For more
details of the uses of DC programming and DCA in the context of SVM see [42].

We denote Γ0(Rn) the set of functions u : Rn → R ∪ {+∞} such that u is a lower-semicontinuous,
proper and convex function, Consider the following optimization problem:

min
x∈Rn

{
f(x) = g(x)− h(x)

}
(3.6)

Definition 3.1 Let C be a subset of Rn, and C is convex. And let f be a function that maps from Rn to
the real numbers R. We call this function a DC -that’s short for Difference of Convex - function on C,
if there exists a pair of convex functions g and h (also from Rn to R), such that f can be expressed as:

f(x) = g(x)− h(x) (3.7)

Any function that can be expressed in the form of equation (3.7) is is called a DC decomposition of the
original function f .

Definition 3.2 We say a function f : Rn → R is a locally DC function, if for any given point x0 in Rn,
you can always find a ball B(x0; ϵ) = {x ∈ Rn : ∥x− x0∥ ≤ ϵ} where the function f is DC.

A DC problem, such that x ∈ Ω is a convex contraint, can be rewritten in the following form:

min
x∈Ω

{f(x) = g(x)− h(x)} = min
x∈Rn

{g(x) + χΩ(x)− h(x)},

with χΩ is the indicator function of Ω.

For ϕ ∈ Γ0(Rn), the following notations are used : [43,44]

• domϕ = {x ∈ Rn | ϕ(x) < ∞} is the domain of ϕ .

• ϕ∗(x̃) = supx∈Rn{⟨x, x̃⟩ − ϕ(x)} is the conjugate function of ϕ.

• ∂ϕ(z) = {x̃ ∈ Rn | ϕ(x) ≥ ϕ(z) + ⟨x− z, x̃⟩,∀x ∈ Rn} is the subdifferential of ϕ.

for z, x̃ ∈ Rn. Given a differentiable function, we have ∂ϕ(z) = {∇ϕ(z)}. The necessary local optimality
condition for DC programming 3.6 is :

∅ ̸= ∂h(x∗) ⊂ ∂g(x∗).

A point x∗ ∈ dom(f) is a critical point of 3.6 if it verifies ∂h(x∗)∩∂g(x∗) ̸= ∅. If the function f is locally
convex at x∗, or if the DC program is polyhedral, then for local optimality, the necessary condition is
also sufficient.

[Theorem 23.5] in [43] assures:

∂f(x) = arg max
x̃∈Rd

{xT x̃− f∗(x̃)}, ∂f∗(x̃) = arg max
x∈Rd

{x̃Tx− f(x)} (3.8)
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Difference of Convex functions Algorithm (DCA) (g, h, tol)

1: Initialize x0 ∈ dom g
2: for k ∈ N0 do
3: Select yk ∈ ∂h(xk)
4: Select xk+1 ∈ ∂g∗(yk)

5: if min
(
|xk+1

i − xk
i |,

|xk+1
i −xk

i |
|xk

i |

)
≤ tol ∀i = 1, . . . , d then

6: return (xk+1)
7: end if
8: end for

Theorem 3.1 (DCA convergence) For g, h ∈ Γ0(Rn) so that dom g ⊂ domh and domh∗ ⊂ dom g∗,
then for the DC algorithm the following holds true:

• The sequence (xk)k∈N0
, (yk)k∈N0

are well defined.

• The sequence (f(xk) = g(xk)− h(xk))k∈N0
is monotonously decreasing.

• Every limit point of the sequence (xk)k∈N0
is a critical point of f = g − h. Furthermore, if the

algorithm stalls such that f(xk+1) = f(xk), then the iterate xk is itself a critical point in 3.6.

The algorithm’s convergence leads to a local minimum influenced by both the initial point x0 and the
specific DC decomposition of the objective function 3.6. When the solution obtained is not global, the
DC algoritm can be reinitialized with different starting points. Empirical evidence from Pham and Hoai’s
1998 [45] research suggests that DCA implementations frequently achieve global optimal solutions despite
the local convergence properties.

3.3. DCA for l2-l0-GBSVM

It is clear that the problem studied can be written as a difference of convex programming problem.
A viable DC decomposition reads:

g(w, b, v) =
1

2
∥w∥2 + µ

m

m∑
i=1

(
1− yi(w

⊤si + b) + ∥w∥ri
)
+
+ χ[−v;v](w)

and

h(v) = νeT (e− exp(−αv))

h is a differentiable function, so the first step of DCA iteration (k ∈ N0) becomes:

yk = ∇h(xk)

By combining the two steps of DCA and using 3.8 for each k, we have:

xk+1 ∈ ∂g∗(∇h(xk)) = argmax
x

{
∇h(xk)Tx− g(x)

}
This gives us the constrained convex quadratic problem:

min
w,b,ξi,v

1

2
∥w∥2 + µ

m

m∑
i=1

ξi + ναvT exp(−αvk)

s.t. yi(w
⊤si + b)− ∥w∥ri ≥ 1− ξi, ∀i ∈ {1, . . . ,m}

ξi ≥ 0, ∀i ∈ {1, . . . ,m}
− v ≤ w ≤ v

(3.9)

The function f is bounded below, therefore by using Theorem 3.1, the sequence generated by solving these
quadratic programs (QPs) is guaranteed to converge. Since yk ∈ ∂h(xk) and consequently yk−1 ∈ ∂g(xk),
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since g∗(yk−1) = ⟨xk, yk−1⟩−g(xk) then f(xk) = ⟨xk, yk−1⟩−g∗(yk−1)−h(xk) ≤ f∗(yk−1) ≤ h∗(yk−1)+
g(xk−1) − ⟨xk−1, yk−1⟩ ≤ g(xk−1) − h∗∗(xk−1) ≤ f(xk−1). In case the convergence is not attained in
finitely many iterations, having f(x) bounded from below, this assures convergence as there exists a
such that limk→∞ f(xk) = a. Take x̃, ỹ to be two accumulation points of xk and yk respectively, then
f(x̃) = f∗(x̃). Similarly ⟨x̃, ỹ⟩ = h(x̃) + h∗(x̃), this gives us the desired results x̃ ∈ ∂g(xk) ∩ ∂h(xk).

4. Experimental results

4.1. Genetic Algorithm for Parameter Optimization

Genetic Algorithms (GAs) are evolutionary computation techniques inspired by biological evolution,
employing concepts such as selection, crossover, and mutation to optimize solutions to complex problems
[46]. Genetic Algorithms are population-based metaheuristics, they maintain a set of candidate solu-
tions (individuals) that evolve iteratively through the strategic application of genetic operations. Each
individual’s fitness is evaluated according to an objective function, and the better solutions have higher
probabilities of being selected for reproduction. The fundamental components are as follows: Representa-
tion in which the solutions are encoded as chromosomes (typically binary strings or real-valued vectors),
Selection where fitter individuals are chosen to pass their genes to the next generation, Crossover where
pairs of selected individuals combine their genetic material to produce offspring, and Mutation in which
random modifications introduce diversity into the population. We used Genetic Algorithms for hyperpa-
rameter optimization as they are effictive in exploring large parameter spaces without requiring gradient
information, besides the fact that they can escape local optima thanks to their stochastic nature [47].

Table 1: Datasets used
Dataset Number of samples Number of features Classes Class distribution

Breast Cancer 569 30 2 (357, 212)
Ionosphere 351 57 2 (225, 126)
Heart 1025 13 2 (499, 526)
Credit Approval 690 46 2 (383, 307)
Statlog (Heart) 270 13 2 (150, 120)
Parkinson’s 195 22 2 (147, 48)
SPECT Heart 349 44 2 (254, 95)

4.2. Experimental Setup

For parameter optimization, we implemented a genetic algorithm with the following configuration:
for selection, we used tournament selection with size 3, and employed blend crossover with (β = 0.5),
as for mutation, we applied Gaussian mutation (σ = 0.1). We used a population size of 20 individuals.
This balance between exploration and computational efficiency was chosen based on common practices
in medium-dimensional optimization problems [48]. In addition, we used 10 generations, given that
optimization showed convergence within this number of iterations. The crossover probability (CXPB),
and the mutation probability were set repectively to 0.7 and 0.2. The parameter search space was
constrained as follows:

For l2 − l0-GBSVM and l2 − l0-SVM, µ is explored in [0.01, 1.0], as for α in [0.001, 10.0] and ν in
[0.001, 0.1]. For l2−l0-GBSVM the purity threshold (pur) is chosen in [0.7, 1.0] and the minimal number of
samples within a granular ball (num) is in {2, ..., 10}. The tolerance of DCA is is set to 10−5. For l1-SVM,
C is explored in [0.01, 10.0]. The number of features is determined as |{j = 1, . . . , d : |wj | ≥ 10−8}|. For
each dataset, we conducted training and testing in an 7:3 ratio. The fitness function used 3-fold stratified
cross-validation accuracy to evaluate each candidate solution, with class weights fixed at 2.0 for the
minority class and 1.0 for the majority class to address imbalance.

4.3. Results and discussion

The numerical results for the algorithm are presented in this section. The experiments were conducted
on a computer running with Windows 11 operating system with the configuration of 11th Gen Intel(R)



8 N. Aafar et al.

Table 2: Parameters selected by the genetic algorithm and average accuracy
Dataset l1-SVM l2 − l0-SVM l2 − l0 −GBSVM

Average accuracy Average accuracy Average accuracy
(C) (µ, α, ν) (pur, µ, α, ν, num)

Breast Cancer 0.9708 0.9520 0.9333
(0.0448) (0.9385, 0.4789, 0.0126) (0.7971, 0.6339, 2.5616, 0.0248, 4)

Ionosphere 0.8981 0.8660 0.8708
(2.0304) (0.9130, 0.2088, 0.0098) (0.7278, 0.4051, 8.7220, 0.0553, 6)

Heart 0.8364 0.8273 0.8398
(7.9070) (0.4341, 3.9421, 0.0287) (0.7301, 0.7905, 0.1594, 0.0370, 6)

Credit Approval 0.8773 0.8213 0.8980
(0.7507) (0.1796, 2.9025, 0.0061) (0.6378, 0.6808, 8.5460, 0.1331, 5)

Statlog (Heart) 0.8395 0.8494 0.8247
(1.8902) (0.7232, 6.1031, 0.0052) (0.7393, 0.4134, 2.9088, 0.1683, 8)

Parkinson’s 0.8475 0.8203 0.7458
(7.1263) (0.0284, 0.6341, 0.0063) (0.7060, 0.6418, 0.2013, 0.0673, 6)

SPECT Heart 0.8076 0.7238 0.8138
(0.7557) (0.5570, 1.0529, 0.0566) (0.7916, 0.3837, 2.2876, 0.0996, 7)

Core(TM) i5-1145G7 @ 2.60GHz 1.50 GHz, 8 GB RAM memory. We conducted our experiments on 7
benchmark datasets: Breast Cancer, Ionosphere, Heart, Credit approval, Statlog (Heart), Parkinson’s
[49] and SPECT Heart see Table 1. We compare the results of our model with two other models that
apply embedded feature selection, which are l1-SVM [50] and l2− l0-SVM presented in [17]. The genetic
algorithm was used to tune all the parameters for the three models to gain fair comparison.

Table 3: Average number and percentage of selected features
Dataset l1-SVM l2 − l0-SVM l2 − l0-GBSVM

Breast Cancer 9.2 28.6 14.8
30.66% 95.33 % 49.33 %

Ionosphere 31.0 32.4 19.6
54.38 % 56.84 % 34.38%

Heart 13.0 12.3 11.8
100 % 94.61 % 90.77%

Credit Approval 31.4 35.2 33.2
68.26% 76.52 % 72.17 %

Statlog (Heart) 13 11.8 12.8
100 % 90.78% 98.46 %

Parkinson’s 20.6 21.4 2.4
93.64 % 97.27 % 10.91%

SPECT Heart 36.2 28.0 4.5
82.27 % 63.64 % 12.27%

The best parameters for each model are represented in table 2. The best parameters are applied for 5
times run, the average values of several metrics for each model are presented in tables 2, 3 and 4, including
average accuray, average number and average percentage of selected features and average training time.

According to table 2, the three models show very good performance in terms of average accuracy,
with comparable results, for example, for the credit approval dataset l2 − l0-GBSVM has the best results
(89.80%) versus 87.73% and 82.13% respectively for l1-SVM and l2− l0-SVM, similarly it has the highest
accuracy for heart and SPECT heart datasets 83.98% and 81.38% respectively. For breast cancer, iono-
sphere and parkinson’s datasets, l1-SVM has the highest accuracy with 89.81% followed by l2 − l0-SVM
and l2 − l0-GBSVM with very close outputs (86.60% and 87.08% respectively) for ionosphere, 97.08%
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for breast cancer and 84.75% for parkinson’s. According to table 3, l2 − l0-GBSVM selects the lowest
number of features for most of the datasets including ionosphere, heart, parkinson’s and SPECT heart,
with respective percentages of 19.6%, 11.8%, 10.91% and 12.27%. while the l1-SVM and l2− l0-SVM have
the following respective percentages for these same datasets (54.38% and 56.84% for ionosphere, 100%
and 94.61% for Heart , 93.64% and 97.27% for parkinson’s and 82.27% and 63.64% for spect heart). As
for breast cancer and credit approval l1-SVM has the best feature selection results (30.66% and 31.4%
respectively) versus 95.33% and 76.52% respectively for breast cancer and credit apprival for l2 − l0-
SVM, and for l2− l0-GBSVM, the respective percentages of selected features for breast cancer and credit
approval are 49.33% and 72.17%. As for statlog dataset, l2 − l0-SVM has the the minimum number of
selected features 90.78% , whereas l2 − l0-GBSVM selected 98.46% and l1-SVM 100%. Over all, and
based on the aforementionned results, we can say that l2 − l0-GBSVM model makes a good compromise
between accuracy and number of selected features despite the use of just the centers of the balls as the
input data.

Table 4: Average Training Time
Dataset l1-SVM l2 − l0-SVM l2 − l0-GBSVM

Breast Cancer 0.0082s 0.1485s 0.0552s
Ionosphere 0.0453s 0.1006s 0.1398s
Heart 0.0016s 0.4746s 0.1365s
Credit Approval 0.0661s 0.1684s 0.0472s
Statlog (Heart) 0.0022s 0.2988s 0.0305s
Parkinson’s 0.1575s 0.1954s 0.0265s
SPECT Heart 0.0233s 0.6481s 0.0913s

Table 4 shows the average training time results for the three models, the output results demonstrate
that l1-SVM has the shortest training time followed by the two other models for all datasets except credit
approval and parkinson’s in favor of l0 − l2-GBSVM (0.0472s and 0.0265s respectively). For example for
breast cancer, the average training time is 0.0082s, for ionosphere, 0.0453s, for heart dataset 0.0016s and
0.0233s for the SPET heart dataset. The advantage of the l1-SVM algorithm in training time is due to
the fact that l2 − l0-SVM and l2 − l0-GBSVM both solve an iterative algorithm, which is the difference
of convex functions algorithm, to make classification and specifically for the l2 − l0-GBSVM model that
necessities a prestep of generation of granular balls before going through training the model; 2-means
clustering, calculation of the radius and the center, assigning a label to each generated ball, ... , and then
using these information as input for the model. Overall, in contrast to the two other models that use
the whole data points as input, and despite the use of a small number of data as input (the centers of
the balls), l2− l0-GBSVM model guarantees a good compromise between the number of selected features
and the average accuracy and all in a short amount of time.

5. Conclusion

In this paper, we presented a new embedded feature selection approach that combines Granular ball
support vector machine variant with the double regularizaion approach combining l2 and l0 norms to
attain two simultanious purposes; a good classfification and a good feature selection, l2 norm is responsible
for the good classification outputs, while l0-”norm” is dedicated for feature selection. By adding the
approximation of the l0-”norm (concave approximation) to the problem winds it up being non convex.
Despite the non convexity nature of the problem formulated, it could be written in the form of a difference
of convex functions and solved using the difference of convex functions algoritm. The choice of the models’
parameters was conducted using a genetic algorithm and the results were obtained on some benchmark
datasets. The overall output shows that our approach presented in this paper could attain good results
and have a favorable trade-off between accuracy, feature selection and training time, despite the fact that
it uses a very small sized sample (the centers of granular balls). Several promising directions for future
research emerge from this work, first there are several l0 approximations that could be used instead of
the approximation presented in this paper, other embedded feature selection approaches could be used
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instead of the combination of l0 and l2. The granular ball generation algorithm can be replaced by other
alternatives. The problem can be solved by other approaches, other than DC programming, besides the
possibility to explore the feature selection for multi-class GBSVM. l2 − l0-GBSVM has many prameters
to be tuned, therefore the choice of their values strongly affects the classifier, hence a much stronger way
to select parameters would be an important investigation point. In future work, we will explore these
directions, and initiatives will be performed on more datasets, from synthetic to real datasets, these being
from different repositories, and with higher sized datasets. In addiion, different statistical analytics will
be done to assert the efficiency of this method.
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