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A Note on Type 2 Degenerate Changhee Numbers and Polynomials
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abstract: In this paper, we introduce type 2 degenerate Changhee numbers and polynomials and in-
vestigate some properties of these numbers and polynomials. We introduce higher-order type 2 degenerate
Changhee polynomials and numbers and derive their explicit expressions and some identities involving them.
In addition, we give some new relations between the type 2 degenerate Changhee polynomials and degenerate
Euler polynomials.
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1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp and Cp will denote the ring of
p-adic integers, the filed of p-adic rational numbers and the completion of an algebraic closure of Qp. The
p-adic norm | . |p is normalized by | p |p= 1

p . Let C(Zp) be the space of continuous function on Zp. For

f ∈ C(Zp), the fermionic p-adic integral on Zp is defined by Kim as follows

I(f) =

∫
Zp

f(x)dµ−1(x) = lim
N→∞

pN−1∑
x=0

f(x)µ−1(x+ pNZp)

= lim
N→∞

pN−1∑
x=0

f(x)(−1)x, (see [3, 21, 22]) (1.1)

From (1.1), we note that

I(fn) + (−1)n−1I(f) = 2

n−1∑
a=0

(−1)n−1−af(a), (see [21, 22]), (1.2)

where fn(x) = f(x+ n), (n ∈ N).

Let the Changhee polynomials are defined by the generating function as follows (see [5, 6])

2

2 + t
(1 + t)x =

∞∑
n=0

Chn(x)
tn

n!
. (1.3)
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Letting x = 0, Chn = Chn(0), (n ≥ 0) are called the Changhee numbers. From (1.3), we note that∫
Zp

(1 + t)x+ydµ−1(y) =
2

2 + t
(1 + t)x =

∞∑
n=0

Chn(x)
tn

n!
. (1.4)

Thus, by (1.4), we have ∫
Zp

(x+ y)ndµ−1(y) = Chn(x), (n ≥ 0), (see [6]), (1.5)

where (x)0 = 1, (x)n = x(x− 1) · · · (x− n+ 1), (n ≥ 1),
As well known, the type 2 Euler polynomials are defined by

2

et + e−t
ext =

∞∑
n=0

E∗
n(x)

tn

n!
. (1.6)

In the case x = 0, E∗
n = E∗

n(0) are called the type 2 Euler numbers.

By using (1.1) and (1.6), we note that∫
Zp

e(2y+x+1)tdµ−1(y) =
2

et + e−t
ext =

∞∑
n=0

E∗
n(x)

tn

n!
. (1.7)

By (1.7), we get ∫
Zp

(2y + x+ 1)ndµ−1(y) = E∗
n(x), (n ≥ 0), (see [8, 9, 10]), (1.8)

For n ≥ 0, the Stirling numbers of the first kind are defined by

(x)n =

n∑
l=0

S1(n, l)x
l, (see [1-10]), (1.9)

where (x)0 = 1, and (x)n = x(x− 1) · · · (x− n+ 1), (n ≥ 1). From (1.9), it is easily to see that

1

k!
(log(1 + t))k =

∞∑
n=k

S1(n, k)
tn

n!
, (k ≥ 0), (see [11-20]). (1.10)

In the inverse expression to (1.9), the Stirling numbers of the second kind are defined by

xn =

n∑
l=0

S2(n, l)(x)l, (see [21-26]). (1.11)

From (1.11), it is easily to see that

1

k!
(et − 1)k =

∞∑
n=l

S2(n, l)
tn

n!
, (see [1-15]). (1.12)

From (1.3), (1.6), (1.9) and (1.10), we get

Chn(x) =

n∑
l=0

E∗
l (x)S1(n, l), (1.13)

and

E∗
n(x) =

n∑
l=0

Chn(x)S2(n, l), (see [6]) (1.14)
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Recently, Kim-Kim [12] introduced the type 2 Changhee polynomials are defined by∫
Zp

(1 + t)2y+x+1dµ−1(y) =
2

(1 + t) + (1 + t)−1
(1 + t)x

=

∞∑
n=0

cn(x)
tn

n!
, (1.15)

When x = 0, cn = cn(0) are called the type 2 Changhee numbers.

For any λ ∈ R, degenerate version of the exponential function exλ(t) is defined as follows (see [16-26])

exλ(t) := (1 + λt)
x
λ =

∞∑
n=0

(x)n,λ
tn

n!
, (1.16)

Kim introduced the degenerate Stirling numbers of the second kind (see [24]) are given by

1

k!
(eλ(t)− 1)k =

∞∑
n=k

S2,λ(n, k)
tn

n!
, (k ≥ 0). (1.17)

It is clear that limλ→0 S2,λ(n, k) = S2(n, k), where S2(n, k) are called the Stirling numbers of the
second.

Recently, Kim [23] introduced the degenerate Changhee polynomials of the second kind are defined
by ∫

Zp

(1 + λ log(1 + t))
x+y
λ dµ−1(y) =

2

1 + (1 + λ log(1 + t))
(1 + λ log(1 + t))

x
λ

=

∞∑
n=0

Chn,λ(x)
tn

n!
, (1.18)

where λ ∈ Cp with | λ |p≤ 1.

When x = 0, Chn,λ = Chn,λ(0) are called the degenerate Changhee numbers of the second kind.

This paper is organized as follows. In Sect 2, we consider type 2 degenerate Changhee numbers and
polynomials and investigate some properties of these numbers and polynomials. In Sect 3, we introduce
higher-order type 2 degenerate Changhee polynomials and numbers which can be represented in terms
of p-adic integrals on Zp. We derive their explicit expressions and some other polynomials. Moreover, we
obtain identities involving those polynomials and some other special numbers and polynomials.

2. Type 2 degenerate Changhee numbers and polynomials

In this section, let us assume that λ ∈ Cp and t ∈ Cp with the condition | λt |p< p−
1

p−1 . As is
well-known, the type 2 degenerate Euler polynomials are defined by the generating function∫

Zp

e2y+x+1
λ (t)dµ−1(y) =

2

eλ(t) + e−1
λ (t)

exλ(t)

=

∞∑
n=0

En,λ(x)
tn

n!
, (see [8]). (2.1)

From (2.1), we have ∫
Zp

(2y + x+ 1)n,λdµ−1(y) = En,λ(x), (n ≥ 0). (2.2)
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When x = 0, En,λ = En,λ(0) are called the type 2 degenerate Euler numbers.

Inspired by (1.15) and (2.1), we introduce type 2 degenerate Changhee polynomials are defined by∫
Zp

(1 + λ log(1 + t))
2y+x+1

λ dµ−1(y) =
2

(1 + λ log(1 + t))
1
λ + (1 + λ log(1 + t))−

1
λ

(1 + λ log(1 + t))
x
λ

=

∞∑
n=0

Ĉn,λ(x)
tn

n!
. (2.3)

Note that, limλ→0 Ĉn,λ(x) = cn(x), (n ≥ 0), (see [12]). We note that x = 0, Ĉn,λ = Ĉn,λ(0) are
called the type 2 degenerate Changhee.

Theorem 2.1. For n ≥ 0, we have

C̃n,λ(x) =
n∑

l=0

S1(n, l)

∫
Zp

( 2y+x+1
λ

l

)
l!dµ−1(y)λ

l

=

n∑
l=0

∫
Zp

(2y + x+ 1)l,λdµ−1(y)λ
lS1(n, l), (2.4)

where (x)0,λ = 1 and (x)n,λ = x(x− λ) · · · (x− (n− 1)λ) for n ≥ 1.
Proof. Using (2.3), we note that∫

Zp

(1 + λ log(1 + t))
2y+x+1

λ dµ−1(y) =

∞∑
l=0

∫
Zp

( 2y+x+1
λ

l

)
dµ−1(y)λ

l(log(1 + t))l

=

∞∑
n=0

(
n∑

l=0

S1(n, l)

∫
Zp

( 2y+x+1
λ

l

)
l!dµ−1(y)λ

l

)
tn

n!
. (2.5)

Comparing the coefficients of on both sides of (2.3) and (2.5), we obtain the result (2.4).
Theorem 2.2. For n ≥ 0, we have

En,λ(x) =

n∑
m=0

Ĉm,λ(x)S2(n,m). (2.6)

Proof By replacing t by et − 1 in (2.3) and using (1.12), we get

∞∑
m=0

Ĉm,λ(x)
(et − 1)m

m!
=

2

eλ(t) + e−1
λ (t)

exλ(t)

=

∞∑
n=0

En,λ(x)
tn

n!
. (2.7)

On the other hand,

∞∑
m=0

Ĉm,λ(x)
(et − 1)m

m!
=

∞∑
m=0

Ĉm,λ(x)

∞∑
n=m

S2(n,m)
tn

n!

=

∞∑
n=0

(
n∑

m=0

Ĉm,λ(x)S2(n,m)

)
tn

n!
. (2.8)

By (2.7) and (2.8), we get the result.
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Theorem 2.3. For n ≥ 0, we have

Ĉn,λ(x) =

n∑
k=0

k∑
m=0

(
n

k

)
(x)m,λS1,λ(k,m)Ĉn−k,λ. (2.9)

Proof. From (2.3), we note that

∞∑
n=0

Ĉn,λ(x)
tn

n!
=

2

(1 + λ log(1 + t))
1
λ + (1 + λ log(1 + t))−

1
λ

(1 + λ log(1 + t))
x
λ

=

( ∞∑
n=0

Ĉn,λ
tn

n!

)( ∞∑
m=0

( x
λ

m

)
(log(1 + t))m

)

=

( ∞∑
n=0

Ĉn,λ
tn

n!

)( ∞∑
m=0

(x)m,λ

∞∑
k=m

S1(k,m)
tk

k!

)

=

( ∞∑
n=0

Ĉn,λ
tn

n!

)( ∞∑
k=0

(
k∑

m=0

(x)m,λS1(k,m)

)
tk

k!

)

=

∞∑
n=0

(
n∑

k=0

k∑
m=0

(
n

k

)
(x)m,λS1,λ(k,m)Ĉn−k,λ

)
tn

n!
. (2.10)

Therefore, by (2.4) and (2.10), we obtain at the required result.
Theorem 2.4. For n ≥ 0, we have

Ĉn,λ(1) + Ĉn,λ =

 2, if n = 0,

0, if n ≥ 1,
(2.11)

Proof. By (1.2), we easily get∫
Zp

f(x+ 1)dµ−1(x) +

∫
Zp

f(x)dµ−1(x) = 2f(0). (2.12)

Now, equation (2.12) can be written as∫
Zp

(1 + λ log(1 + t))
2y+2

λ dµ−1(y) +

∫
Zp

(1 + λ log(1 + t))
2y+1

λ dµ−1(y) = 2. (2.13)

From (2.3) and (2.13), we have

2

(1 + λ log(1 + t))
1
λ + (1 + λ log(1 + t))−

1
λ

(1 + λ log(1 + t))
1
λ

+
2

(1 + λ log(1 + t))
1
λ + (1 + λ log(1 + t))−

1
λ

= 2. (2.14)

From (2.11) and (2.14), we have
∞∑

n=0

(
Ĉn,λ(1) + Ĉn,λ

) tn

n!
= 2. (2.15)

In view of (2.15), we complete the proof.
Theorem 2.6. For n ≥ 0, we have

Ĉn,λ(x+ 1) + Ĉn,λ(x) =

n∑
k=0

(
n

k

) k∑
m=0

Ĉn−k,λ(x)(1)m,λS1(k,m). (2.16)



6 W. A. Khan

Proof. Suppose that

2

(1 + λ log(1 + t))
1
λ + (1 + λ log(1 + t))−

1
λ

(1+λ log(1+t))
x+1
λ +

2(1 + λ log(1 + t))
x
λ

(1 + λ log(1 + t))
1
λ + (1 + λ log(1 + t))−

1
λ

=
2

(1 + λ log(1 + t))
1
λ + (1 + λ log(1 + t))−

1
λ

(1 + λ log(1 + t))
x
λ (1 + λ log(1 + t))

1
λ . (2.17)

Thus, by (2.3) and (2.17), we get

∞∑
n=0

(
Ĉn,λ(x+ 1) + Ĉn,λ(x)

) tn

n!

=

( ∞∑
n=0

Ĉn,λ(x)
tn

n!

)( ∞∑
m=0

(1)m,λ
1

m!
(log(1 + t))m

)

=

( ∞∑
n=0

Ĉn,λ(x)
tn

n!

)( ∞∑
k=0

k∑
m=0

(1)m,λS1(k,m)
tk

k!

)

=

∞∑
n=0

(
n∑

k=0

(
n

k

) k∑
m=0

Ĉn−k,λ(x)(1)m,λS1(k,m)

)
tn

n!
. (2.18)

By comparing the coefficients of t, we get (2.16).

3. Type 2 higher-order degenerate Changhee polynomials

In this section, we introduce type 2 degenerate Changhee polynomials of order r which are derived
from the multivariate fermionic p-adic integral on Zp.

For r ∈ N, we define the type 2 degenerate Changhee polynomials of order r which are given multi-
variate fermionic p-adic integral on Zp as follows:∫

Zp

· · ·
∫
Zp

(1 + λ log(1 + t))
2(x1+···+xr)+x+1

λ dµ−1(x1) · · · dµ−1(xr)

=

(
2

(1 + λ log(1 + t))
1
λ + (1 + λ log(1 + t))−

1
λ

)r

(1 + λ log(1 + t))
x
λ

=

∞∑
n=0

Ĉ
(r)
n,λ(x)

tn

n!
. (3.1)

When x = 0, Ĉ
(r)
n,λ = Ĉ

(r)
n,λ(0) are called the type 2 degenerate Changhee numbers of order α.

Theorem 3.1. For n ≥ 0 and r ∈ N, we have

Ĉ
(r)
n,λ(x) =

n∑
m=0

∫
Zp

· · ·
∫
Zp

(2(x1 + · · ·+ xr) + x+ 1)λ,mdµ−1(x1) · · · dµ−1(xr)S1(n,m)

Proof. From (3.1), we note that∫
Zp

· · ·
∫
Zp

(1 + λ logλ(1 + t))
2(x1+···+xr)+x+1

λ dµ−1(x1) · · · dµ−1(xr)

=

∞∑
m=0

∫
Zp

· · ·
∫
Zp

( 2(x1+···+xr)+x+1
λ

m

)
dµ−1(x1) · · · dµ−1(xr)λ

m(log(1 + t)))m
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=

∞∑
m=0

∫
Zp

· · ·
∫
Zp

(2(x1 + · · ·+ xr) + x+ 1)λ,mdµ−1(x1) · · · dµ−1(xr)
1

m!
(log(1 + t)))m

=

∞∑
n=0

(
n∑

m=0

∫
Zp

· · ·
∫
Zp

(2(x1 + · · ·+ xr) + x+ 1)λ,mdµ−1(x1) · · · dµ−1(xr)S1(n,m)

)
tn

n!
. (3.2)

For r ∈ N, we have ∫
Zp

· · ·
∫
Zp

(1 + λt)
2(x1+···+xr)+x+1

λ dµ−1(x1) · · · dµ−1(xr)

=

(
2

(1 + λt)
1
λ + (1 + λt)−

1
λ

)r

(1 + λt)
x
λ . (3.3)

Now, we define the type 2 degenerate Euler polynomials of order r which are given by(
2

(1 + λt)
1
λ + (1 + λt)−

1
λ

)r

(1 + λt)
x
λ =

∞∑
n=0

E
(r)
n,λ(x)

tn

n!
. (3.4)

Thus, by (3.3) and (3.4) we get∫
Zp

· · ·
∫
Zp

(2(x1 + · · ·+ xr) + x+ 1)λ,mdµ−1(x1) · · · dµ−1 = E
(r)
n,λ(x), (m ≥ 0). (3.5)

Theorem 3.2. For n ≥ 0, we have

Ĉ
(r)
n,λ(x) =

n∑
m=0

E
(r)
m,λS1(n,m).

Proof. By using (3.2), (3.4) and (3.5), we obtain the result.

Theorem 3.3. For n ≥ 0, we have

E
(r)
n,λ(x) =

n∑
m=0

Ĉ
(r)
m,λ(x)S2(n,m).

Proof. By changing t by et − 1 in (3.1), we have∫
Zp

· · ·
∫
Zp

(1 + λt)
2(x1+···+xr)+x+1

λ dµ−1(x1) · · · dµ−1(xr)

=

∞∑
m=0

Ĉ
(r)
m,λ(x)

(et − 1)m

m!

=

∞∑
n=0

(
n∑

m=0

Ĉ
(r)
m,λ(x)S2(n,m)

)
tn

n!
. (3.6)

Therefore, by (3.3) and (3.6), we get the result.
Theorem 3.4. For n ≥ 0, we have

Ĉ
(r)
n,λ(x) =

n∑
l=0

(
n

l

)
Ĉ

(r)
n−l,λĈ

(r−k)
l,λ (x).

Proof. From (3.1), we have

∞∑
n=0

Ĉ
(r)
n,λ(x)

tn

n!
=

(
2

(1 + λ log(1 + t))
1
λ + (1 + λ log(1 + t))−

1
λ

)r

(1 + λ log(1 + t))
x
λ
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=

(
2

(1 + λ log(1 + t))
1
λ + (1 + λ log(1 + t))−

1
λ

)r

×
(

2

(1 + λ log(1 + t))
1
λ + (1 + λ log(1 + t))−

1
λ

)r−k

(1 + λ log(1 + t))
x
λ

=

( ∞∑
n=0

Ĉ
(r)
n,λ

tn

n!

)( ∞∑
l=0

Ĉ
(r−k)
l,λ (x)

tl

l!

)

=

∞∑
n=0

(
n∑

l=0

(
n

l

)
Ĉ

(r)
n−l,λĈ

(r−k)
l,λ (x)

)
tn

n!
. (3.7)

In view of (3.7), we complete the proof.
Theorem 3.5. For n ≥ 0, we have

Ĉ
(r)
n,λ(x) =

n∑
k=0

k∑
m=0

(
n

k

)
(x)m,λS1,λ(k,m)Ĉ

(r)
n−k,λ. (3.8)

Proof. From (3.1), we note that

∞∑
n=0

Ĉ
(r)
n,λ(x)

tn

n!
=

(
2

(1 + λ log(1 + t))
1
λ + (1 + λ log(1 + t))−

1
λ

)r

(1 + λ log(1 + t))
x
λ

=

( ∞∑
n=0

Ĉ
(r)
n,λ

tn

n!

)( ∞∑
m=0

( x
λ

m

)
(log(1 + t))m

)

=

( ∞∑
n=0

Ĉ
(r)
n,λ

tn

n!

)( ∞∑
m=0

(x)m,λ

∞∑
k=m

S1(k,m)
tk

k!

)

=

( ∞∑
n=0

Ĉ
(r)
n,λ

tn

n!

)( ∞∑
k=0

(
k∑

m=0

(x)m,λS1(k,m)

)
tk

k!

)

=

∞∑
n=0

(
n∑

k=0

k∑
m=0

(
n

k

)
(x)m,λS1,λ(k,m)Ĉ

(r)
n−k,λ

)
tn

n!
. (3.9)

Therefore, by (3.1) and (3.9), we obtain at the required result.
Theorem 3.6. For n ≥ 0, we have

n∑
m=0

Ĉ
(r)
m,λ(x)S2(n,m) =

n∑
m=0

S2,λ(n,m)C(r)
m (x).

Proof. Now, we observe that

(1 + λt)
2(x1+···+xr)+x+1

λ =
(
(1 + λt)

1
λ − 1 + 1

)2(x1+···+xr)+x+1

=

∞∑
m=0

(
2(x1 + · · ·+ xr) + x+ 1

m

)
((1 + λt)

1
λ − 1)m

=

∞∑
m=0

(2(x1 + · · ·+ xr) + x+ 1)m

∞∑
n=m

S2,λ(n,m)
tn

n!

=

∞∑
n=0

(
n∑

m=0

S2,λ(n,m)(2(x1 + · · ·+ xr) + x+ 1)m

)
tn

n!
. (3.10)
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Thus, by (3.5) and (3.10), we get∫
Zp

· · ·
∫
Zp

(1 + λt)
2(x1+···+xr++x+1

λ dµ−1(x1) · · · dµ−1(xr)

=

∞∑
n=0

(
n∑

m=0

S2,λ(n,m)

∫
Zp

· · ·
∫
Zp

(2(x1 + · · ·+ xr) + x+ 1)mdµ−1(x1) · · · dµ−1(xr)

)
tn

n!

=

∞∑
n=0

(
n∑

m=0

S2,λ(n,m)C(r)
m (x)

)
tn

n!
. (3.11)

Therefore, by (3.5) and (3.11), we obtain the result.
Theorem 3.7. For n ≥ 0, we have

Ĉ
(r)
n,λ(x) =

n∑
m=0

E
(r)
m,λ(x)S1(n,m).

Proof. By replacing t by log(1 + t) in (3.4), we have(
2

(1 + λ log(1 + t))
1
λ + (1 + λ log(1 + t))−

1
λ

)r

(1 + λ log(1 + t))
x
λ =

∞∑
m=0

E
(r)
m,λ(x)

(log(1 + t))m

m!

=

∞∑
m=0

E
(r)
m,λ(x)

∞∑
n=m

S1(n,m)
tn

n!

=

∞∑
n=0

(
n∑

m=0

E
(r)
m,λ(x)S1(n,m)

)
tn

n!
. (3.12)

On the other hand, we have(
2

(1 + λ log(1 + t))
1
λ + (1 + λ log(1 + t))−

1
λ

)r

(1 + λ log(1 + t))
x
λ =

∞∑
n=0

Ĉ
(r)
n,λ(x)

tn

n!
. (3.13)

In view of (3.12) and (3.13), we obtain the result.
Theorem 3.8. For n ≥ 0, we have

Ĉ
(r)
n,λ(x+ y) =

n∑
k=0

k∑
m=0

(
n

k

)
(y)m,λS1(k,m)Ĉ

(r)
n−k,λ(x).

Proof. From (3.1), we have

∞∑
n=0

Ĉ
(r)
n,λ(x+ y)

tn

n!
=

(
2

(1 + λ log(1 + t))
1
λ + (1 + λ log(1 + t))−

1
λ

)r

(1 + λ log(1 + t))
x+y
λ

=

( ∞∑
n=0

Ĉ
(r)
n,λ(x)

tn

n!

)( ∞∑
m=0

( y
λ

m

)
(log(1 + t))m

)

=

( ∞∑
n=0

Ĉ
(r)
n,λ

tn

n!
(x)

)( ∞∑
m=0

(y)m,λ

∞∑
k=m

S1(k,m)
tk

k!

)

=

( ∞∑
n=0

Ĉ
(r)
n,λ(x)

tn

n!

)( ∞∑
k=0

(
k∑

m=0

(y)m,λS1(k,m)

)
tk

k!

)

=

∞∑
n=0

(
n∑

k=0

k∑
m=0

(
n

k

)
(y)m,λS1(k,m)Ĉ

(r)
n−k,λ(x)

)
tn

n!
. (3.14)

Thus, by (3.14), we obtain at the required result.
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4. Conclusion

In this article, we introduced type 2 degenerate Changhee numbers and polynomials and investi-
gated some properties of these numbers and polynomials. We introduced higher-order type 2 degenerate
Changhee polynomials and numbers and derived their explicit expressions and some identities involving
them. In addition, we given some new relations between the type 2 degenerate Changhee polynomials
and degenerate Euler polynomials.

References

[1] M. S. Alatawi, W. A. Khan, New type of degenerate Changhee-Genocchi polynomials, Axioms, 2022, 11, 355. https://
doi.org/10.3390/axioms11080355.

[2] D. V. Dolgy, W. A. Khan, A note on type two degenerate poly-Changhee polynomials of the second kind, Symmetry.
13(579)(2021), 1-12.

[3] L. C. Jang, D. S. Kim, T. Kim, H. Lee, p-Adic integral on Zp associated with degenerate Bernoulli polynomials of the
second kind, Adv. Diff. Equ. 2020, 278, 1-20.

[4] H.-I. Kwon, T. Kim, J. J. Seo, A note on degenerate Changhee numbers and polynomials, Proc. Jangjeon Math. Soc.,
18(3)(2015), 295-305.

[5] D. S. Kim, T. Kim, J. J. Seo, A note on Changhee polynomials and numbers, Adv. Studies Theo. Phys., 7(20)(2013),
993-1003.

[6] D. S. Kim, J. J. Seo, S.-H. Lee, Higher-order Changhee numbers and polynomials, Adv. Studies Theo. Phys., 8(8)(2014),
365-373.

[7] D. S. Kim, H. Y. Kim, D. Kim, T. Kim, Identities of symmetry for type 2 Bernoulli and Euler polynomials, Symmetry
613(11)(2019).

[8] D. S. Kim, T. Kim, C. S. Ryoo, Generalized type 2 degenerate Euler numbers, Adv. Stud. Contemp. Math., 30(2)(2020),
165-169.

[9] D. S. Kim, T. Kim, A note on new type of degenerate Bernoulli numbers, Russ. J. Math. Phys. 27(2)(2020), 227-235.

[10] G. W. Jang, T. Kim, A note on type 2 degenerate Euler and Bernoulli polynomials, Adv. Stud. Contemp. Math.,
29(1)(2019), 147-159.

[11] T. Kim, D. S. Kim, Degenerate central factorial numbers of the second kind, Rev. R. Acad. Cienc. Exactas. Fs. Nat.
Ser. A Mat. RACSAM, 113(4) (2019), 3359-3367.

[12] T. Kim, D. S. Kim, A note on type 2 Changhee and Daehee polynomials, Rev. R. Acad. Cienc. Exactas. Fs. Nat. Ser.
A Mat. RACSAM, 113(3) (2019), 2783-2791.

[13] W. A. Khan, M. S. Alatawi, A note on modified degenerate Changhee-Genocchi polynomials of the second kind,
Symmetry, 15:136 (2023) , 1-12.

[14] W. A. Khan, V. Yadav, A study on q-analogue of degenerate Changhee numbers and polynomials, Southeast Asian
Journal of Mathematics and Mathematical Sciences, 19(1) (2023), 29-42.

[15] W. A. Khan, A note on q-analogues of degenerate Catalan-Daehee numbers and polynomials, Journal of Mathematics,
2022, Volume 2022, Article ID 9486880, 9 pages.

[16] W. A. Khan, A note on q-analogue of degenerate Catalan numbers associated p-adic integral on Zp, Symmetry,
14(119)(2022), 1-10.

[17] W. A. Khan, A study on q-analogue of degenerate 1
2
-Changhee numbers and polynomials, Southeast Asian Journal of

Mathematics and Mathematical Sciences, 18(2) (2022), 1-12.

[18] W. A. Khan, H. Haroon, Higher-order degenerate Hermite-Bernoulli arising from p-adic integral on Zp, Iranian
Journal of Mathematical Sciences and Informatics, 17(2) (2022), 171-189.

[19] W. A. Khan, J. Younis, U. Duran, A. Iqbal, The higher-order type Daehee polynomials associated with p-adic integrals
on Zp, Applied Mathematics in Science and Engineering, 30(1) (2022) , 573-582.

[20] W. A. Khan, M. Acikgoz, U. Duran, Note on the type 2 degenerate multi-poly-Euler polynomials, Symmetry. 12(2020),
1-10.

[21] T. Kim, Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic
integral on Zp, Russ. J. Math. Phys., 16(4), (2009), 484-491.

[22] T. Kim, Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on Zp, Russ. J.
Math. Phys., 16(1) (2009), 93-96.

[23] T. Kim, Degenerate Changhee numbers and polynomials of the second kind, arXiv:1707.09721v1 [math.NT] 31 Jul
2017.

[24] T. Kim, A note on degenerate Stirling numbers of the second kind, Proc. Jangjeon Math. Soc.. 20(3)(2017), 319-331.



A Note on Type 2 Degenerate Changhee Numbers and Polynomials 11

[25] S. K. Sharma, W. A. Khan, S. Araci, S. S. Ahmed, New type of degenerate Daehee polynomials of the second kind,
Adv. Differ. Equ. 428(2020), 1-14.

[26] S. K. Sharma, W. A. Khan, S. Araci, S. S. Ahmed, New construction of type 2 of degenerate central Fubini polynomials
with their certain properties, Adv. Differ. Equ. 587(2020), 1-11.

Waseem Ahmad Khan,

Department of Electrical Engineering,

Prince Mohammad Bin Fahd University,

P.O Box 1664, Al Khobar 31952

Saudi Arabia.

E-mail address: wkhan1@pmu.edu.sa


	Introduction
	Type 2 degenerate Changhee numbers and polynomials
	Type 2 higher-order degenerate Changhee polynomials 
	Conclusion

