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ABSTRACT: In this paper, we propose a new modified proximal point algorithm for solving minimization
problems and common fixed point problem in CAT(0) spaces. We prove A and strong convergence of the
proposed algorithm. Our results extend and improve the corresponding recent results in the literature.
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1. Introduction

Let (X', d) be a geodesic metric space and f : X — (—o0, oo] be a proper and convex function. One
of the major problem in optimization is to find p € X such that

f(p) = min £(q). (1.1)

Ggex
We denote by

argmin f(q),
Gex

the set of a minimizer of a convex function. One of the most effective way of solving problem (1.1) is the
Proximal Point Algorithm (for short term, PPA). Its origin goes back to Martinet [3], Rockafellar [4], and
Brézis and Lions [5]. Martinet studied the PPA for variational inequalities whereas Rockafellar showed
the weak convergence of the sequence generated by the proximal point algorithm to a zero of the maximal
monotone operator in Hilbert spaces. Giiler’s counterexample [6] showed that the sequence generated
by the proximal point algorithm does not necessarily converge strongly even if the maximal monotone
operator is the subdifferential of a convex, proper, and lower semicontinuous function. Kamimura and
Takahashi [7] combined the PPA with Halpern’s algorithm [8] so that the strong convergence is guar-
anteed. The proximal point algorithm can be used in numerous problems such as equilibrium problems,
saddle point problems, convex minimization problems, and variational inequality problems.

Recently, many convergence results for the PPA for solving optimization problems have been extended
from the classical linear spaces such as Euclidean spaces, Hilbert spaces and Banach spaces to the setting
of manifolds ([9,10,11,12]). The minimizers of the objective convex functionals in the spaces with non-
linearity play a crucial role in the branch of analysis and geometry. Numerous applications in computer
vision, machine learning, electronic structure computation, system balancing and robot manipulation can
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be considered as solving optimization problems on manifolds (see [13,14,15,16]).

In 2014, Bacdk [17] obtained few results using the proximal point algorithm in CAT(0) spaces. Also,
he employed a splitting version of the PPA to find minimizer of a sum of convex functions, thereby ex-
tending the results of Bertsekas [18] into Hadamard spaces. Following this, many mathematicians have
obtained numerous results involving the proximal point algorithm in the framework of CAT(0) spaces
(see [19,20,21,22,23]).

Fascinated by the ongoing research, in this paper, we propose a new modified proximal point algorithm
for finding a common element of the set of fixed points of three single-valued nonexpansive mappings,
the set of fixed points of three multi-valued nonexpansive mappings and the set of minimizers of convex
and lower semi-continuous functions. We prove few convergence results for the proposed algorithm under
some mild conditions.

2. Preliminaries

In this section, we present some fundamental concepts, definitions, and some results, which will be
used in the next section.
A metric space (X,d) is said to be a CAT(0) space if it is geodesically connected, and if every geodesic
triangle in X is at least as thin as its comparison triangle in the Euclidean plane (see more details in
[24]). A complete CAT(0) space is then called a Hadamard space. Euclidean spaces, Hilbert spaces,
the Hilbert ball [25], hyperbolic spaces [26], R-tress [27] and a complete, simply connected Riemannian
manifold having non-positive sectional curvature are some examples of a CAT(0) space.

Definition 1 A subset E of a CAT(0) space X is said to be conver zfli? includes every geodesic segment
joining ant two of its points, that is, for any p,q € E, we have [p,q] C E, where [p,q] := {ap® (1 —a)q :
0 < a < 1} is the unique geodesic joining p and .

Definition 2 A single-valued mapping G : E — E is said to be
(i) Nonezpansive if J(éﬁ, Gj) < J(ﬁ, q) for all p, G € E;
(ii) Semi-compact if for any sequence {p,} in E such that
tli>ngo d(Gptapt) = 07
there exist a subsequence {pr,} of {P:} such that {p:,} converges strongly to p* € E.

We denote the set of all fixed points of G is denoted by F(G). Now, we state the following Lemma
to be used later on.

Lemma 2.1 ([28]) Let (X,d) be a CAT(0) space, then the following assertions hold:
(i) For p,G € X and n € [0,1], there exists a unique 7 € [p,q] such that
d(p,7) = nd(p,q) and d(q,7) = (1 —n)d(5,q).
(ii) For p,4,7 € X and n € [0,1], we have
d((1 —n)p & ng,7) < (1 —n)d(p,7) + nd(q,7)
and
(1= n)p @ ng,7) < (1= n)d*(p,7) +nd*(g,7) = n(1 = n)d*(p,q).

We use the notation (1 —n)p @ ng for the unique point 7 of the above Lemma.
Now, we collect some basic geometric properties which are instrumental throughout the discussions.
Let {p:} be a bounded sequence in a complete CAT(0) space X. For p € X we write:

r(p, {pe}) = limsup d(p, pr)-
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The asymptotic radius r({p:}) is given by
r({pe}) = inf{r(p, pr) : p € X}
and the asymptotic center A({p;:}) of {p:} is defined as:

A{p) ={pe X :r(p.p) = r({pe})}-

It is well known that, in a complete CAT(0) space, A({p:}) consists of exactly one point [29]. We now
present the definition and some basic properties of the A- convergence which will be fruitful for our
subsequent discussion.

Definition 3 (/30]) A sequence {p;} in a CAT(0) space X is said to be A-convergent to a point p € X
if D is the unique asymptotic center of {u:} for every subsequence {u:} of {p+}. In this case, we write
A —limy oo pr = P and call p the A-limit of {p}.

Lemma 2.2 ([30]) Every bounded sequence in a complete CAT(0) space admits a A-convergent subse-
quence.

Lemma 2.3 ([31]) If E is a closed conver subset of a complete CAT(0) space X and if {p:} is a bounded
sequence in E, then the asymptotic center of {p:} is in E.

Lemma 2.4 (/28]) Let E be a nonempty closed convex subset of a complete CAT(0) space (X,d) and
G : E — E be a nonezpansive mapping. If {pt} is a bounded sequence in E such that A —lim; p; = p and
hm d(Gpt,pt) =0, then p is a fized point of G.

Lemma 2.5 ([28]) If {P+} is a bounded sequence in a complete CAT(0) space with A({p:}) = {p}, {us}
is a subsequence of {p:} with A({u:}) = {u} and the sequence {d(ps,u)} converges, then p = u.

Lemma 2.6 ([32]) Let E be a nonempty closed and convex subset of a CAT(0) space X. Then, for any
{pi}i_, € E and o; € (0,1), i = 1,2,....t with 22:1 a; = 1, we have the following inequalities:

t
d( 1= laipla Z dplv b €E (21)

and
d* (B iy, T Z 2 (i, Z P(pi,p;), ¥ TeE. (2.2)

A function f : E — (—00,00] defined on a convex subset E of a CAT(0) space is convex if, for any
geodesic 7 : [a,b] — E, the function foy is convex, i.e., f(ap® (1 —a)§) < af( 5) + (1 — a)f(q) for all
p,q € E. For some important examples one can refer [33]. Now, a function f defined on F is said to be
lower semi-continuous at p € E if

f(p) < lim inf f(p,)

for each sequence {p;} such that p; — p as t — co. A function f is said to be lower semi-continuous on
E if it is lower semi-continuous at any point in E.

For any A > 0, define the Moreau-Yosida resolvent of f in CAT(0) space as follows:

I3(7) = argminlF(@) + < (d.)

for all p € E. Now, we list few results which will be used in the sequel.
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Lemma 2.7 ([93]) Let (X,d) be a complete CAT(0) space and f : E — (—o0,00] be a proper, convex
and lower semi-continuous function, then the set F(J5) of the fized point of the resolvent J5 associated
with f coincides with the set argmin f(§) of minimizers of f.

Gek
Lemma 2.8 (/34]) For any A > 0, the resolvent J5 of f is nonezpansive.

Lemma 2.9 ([35]) Let (X,d) be a complete CAT(0) space and f:E — (—o0,00] be a proper, convex
and lower semi-continuous function, then for all p,G € X and A > 0, we have

- 1 ~ o ~ _ - B ~
Xd2(JAp, st *(p,q) + adQ(p, J5p) + f(J50) < f(@).

Lemma 2.10 ([%/,36]) Let (X,d) be a complete CAT(0) space and f : E — (—o0,00] be a proper,
convez and lower semi-continuous function. Then the following identity holds:

7R

) AN—p o
J5p = J/L(TJXP @ Xp)

forallpe X and5\>u>0,

Let CB(E), CC(E) and KC(E) denote the families of nonempty closed bounded subsets, closed convex
subsets and compact convex subsets of E, respectively. The Pompeiu-Hausdorff distance [37] on CB(F)
is defined by

H(A, B) = max{sup dist(p, B), sup dist(g, A)}
peA geB

for A,B e CB(FE ) where dist(p, E) = inf{d(p,q) : § € E} is the distance from a point P to a subset E.

An element p € F is said to be a fixed point of a multi-valued mapping S:E— CB(E)if p € Sp. We
denote the set of all fixed points of S by F(S).

Definition 4 A multi-valued mapping S : E — CB(E) is said to be
(i) Nonexpansive if H(Sp, Sq) < d(p,q) for all p,G € E;
(i) Hemi-compact if for any sequence {p:} in E with flim dist(Spy, pr) = 0, there exist a subsequence
L— 00

{pe,} of {pe} such that {p,} converges strongly to p* € E.
3. Main Results
Theorem 3.1 Let E be a nonempty closed and convex subset of a complete C’AT(O) space X. Let

G, :E— E,n=1,2,3 be single-valued nonerpansive mappings, Sp :E — CB(E), n =1,2,3 be multi-

valued nonexpansive mappings and f E~ — (—00,00] be a proper convexr and lower semi-continuous

function. Suppose that Q = F(G1) N F(G2) N F(G3) N F(S1) N F(S2) N F(S3) Nargmin f(3) # 0 and
qeE

Spi={&}, n=1,2,3 for & € Q. Forp, € E, let the sequence {p,} is generated in the following manner:

w; = argmin[f(q) + 35-d*(@. 5.)],

qeE
Tt = Pt @ Brwy & yewy, (3.1)
Gt = VPt © Krwy” O oG 1Py,

Dre1 = 0GPy ® 0 Gopy ® §,Gady, for all tEN
where {ai}, {Be}, {1}, {Wi}, {ke}, {de}, {6:}, {m} and {&} are sequences in (0,1) such that
0 < a S Oéta5t7’7t7¢t7f‘€t,¢t,5t777taft S B < 17

o+ B+ =L Y F+r+ o =160+ +& =1,

for allt € N and {S\t} is a sequence such that Ay > X > 0 for allt € N and some X. Then, the following
statements hold:
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(i) tlim d(py, &) exists for all & € Q;
— 00
(i1) Jim d(p,w) = 0;
(iii) lim dist(p:. Spp) =0,n=1,2,3;
—00
(iv) lim d(py, Grpy) = 0,n =1,2,3;
—00
(v) Jim d(pe, J5pe) = 0.
Proof 1 Let & € Q, then

and

Therefore, we have

or all G € E and hence & = J;7.
b
(1) Note that wy = J5,pe and Jy, is nonexpansive map for each t € N. So, we have

d(wy, ®) = d(J5,pr, J5, %) < d(pr, 7).

S, (&) forn=1,2,3, using Lemma 2.6 and (3.2) we have

d(F,3) = d(%ﬁt © Brw; © yewy, T)
< oud(Pr, T) + 5t@(7€£ai)f ’Ytd(wt ,7)
< ud(pr, @) + Bed(Sipr, S17) + 1d(Sawy, S27)
< d(ﬁtv ‘%)
and
A(Gn,®) = dWipr ® kew)” ® 9Gipr, )
< ’l/)t (pt7 ) + /th(wél/7 ~) + ¢t (~ } ~)
< d(Pr, T) + Ked(SaT, )+¢td(G1pt7 )
< d(ﬁtv i‘)
Now, consider
d(pri1, %) d(6,G1pr & mGapy © &Gy, 7)

8¢d(G1pt, ) + ned(Gapy, T) + &rd (GBQt)
d(p, ).

This shows that tlim d(ﬁt,i) exists and so we assume that
— o0

IAIA

lim d(p;, %) =4 > 0.

t—o0

(#4) Next, we show that tlim d(py,w;) = 0. By Lemma 2.9 , we get
— o0

2)\t P (wy, #) — d*(pr, &) + d> (P, wi) } < (&) — flwy).

(3.2)

(3.3)

(3.4)

(3.5)
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Since f(:i) < f(wt) for each t € N, it follows that
d* (e, we) < d*(py, &) — d*(wy, 7). (3.7)
So, in order to show that tlim (Z(ﬁt,wt) =0, it is sufficient to show that
— 00
tll>rg<> d(we, &) = 9.

From (3.3), we have

lim sup d(7y, &) < limsup d(py, Z) = 7. (3.8)
t—o0 t—o0
Also, using (3.4), we get ) }
limsup d(G, ) < limsupd(p, T) = . (3.9)
t—o0 t—o00

Using (3.5) along with the fact that 6 + n: + & =1 for all t > 1, we obtain

d(pri1, %) < 6,d(Gipy, &) + md(Gapr, &) + &d(Gadr, &)
< (1 —=&)d(pe, @) + &d(Gr, @),
which is same as
-~ 1 - . } .
d(pe,z) < g[d(pt, z) — d(Pe41,T)) + d(G, T)
1.~ . ~ - 7P
S E[d(phx) - d(pt"rl?x)} + d(Qt, x)v

which gives

T 7 NS IS 5 - .
llggf d(pe, T) < hgloglf{é[d(pt,i’?) — d(Pt41,7)] + d(Gr, T) }-

On using (5.6), we get

§ < liminf d(G:, 7). (3.10)
t—o0
From (3.9) and (3.10), we obtain }
lim d(d,,7) = . (3.11)

Similarly, (3.4) yields

d(q, 7) Urd(Pe, &) + ked(Fr, B) + $ed(py, 7)

d(pe, T) — ked(Dr, T) + ke d(T4, T),

INIA

which results into

d(ps, T) —[d(ps, T) — d(Gr, T)] + d(7, T)

Rt

IN

[d(ﬁta ‘%) - d((jt, SE)] + d(,’zh j)?

IN

a

which on using (3.6) and (3.11) gives R

§ < liminf (7, ). (3.12)
—00

From (3.8) and (3.12), we get )
lim d(7y, %) = §. (3.13)

t—o00

Now, on using (3.3), we have

d(ﬁta jf) S

[d(pt, ) — d(7t, )] + d(w, T),

ISR
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which along with (3.6) and (3.13) gives
§ < lim inf d(wy, &).

Also, (3.2) results into 3 3
lim sup d(wy, ) < limsup d(py, &) = §.

t—o00 t—o0

On using (3.14) and (3.15), we obtain
lim d(wy, T) = 7.

t—00
From (5.6), (3.7) and (3.16), we get R

tllglo d(pe,wt) = 0.
(iti) Now, we prove tlgglo cf(ﬁt, S'nﬁt) =0 forn=1,2,3.
Consider

d* (7, &) d? (atpt ® Brw; & ’tht , )

IA I

d (pta ) + ﬁt (wt7 ) + ’7td2(wtltlv N)
_at/Bt (pmwt) —Olt%d (ptawt) Bﬂtd (wt7 )
< & (P, 7) — B d* (B, wh) — cwyed® (i, w)) —

which is equivalent to

s Bid? (pr, w}) + cvnd® (i, w) + Biyd® (w), wy') < d*(py, )
On using (3.6) and (3.8), we obtain
tlgn d(py, w)) =0,
. ~ "o
Ji ) =1
and

"o
tlgn d(w},w]') = 0.

Now, triangle inequality gives

dist(pe, S1pe) < d(pr, w}) + dist(w}, S1pt),

which on using (3.18) results into 3
thm d’LSt(ﬁt, Slﬁt) =0.
—00

Again, consider

dist(py, Sop) <
< d(p,wy') + d(we, pr),

which on using (3.17) and (3.19) gives
lim dist(p;, Sapy) = 0.
t—o0

Now, we have

d*(G,7) < ud (pt, )+/€t622(w1/s"7~)+¢t (G, )

ﬁt%d (w£7 wg)a

— (74, ).

d(pr, w)) + dist(wy, Sap)

*wmt (ptth )~ wtéf’t (pthlpt)*Htébt (wtaGlpt)

IN

which is equivalent to

d(ptv) T/thitd (ptv I) Yiged (ptaGlpt)—fiﬂbt

wtﬁt (ptth/)+wt¢t (ptaGlpt)+Ht¢t (w,/g”,élﬁt) < CF(ﬁt, ) d?

(wgll’ élﬁt)7

(qta )7

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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this on using (3.6) and (3.11) gives
Jim d) =0
tlgglo J(ﬁt, élﬁt) =0
and
Jim d(G1pr,w]") = 0.

On using (3.18) and (3.19), we have

d(F.pe) < owd(Be, Br) + Bed(wy, Br) + ved(w), pr)
— 0 as t— oo.

Thus, with the help of (3.23) and (3.26), we obtain

dist(py, S3pr) < d(pr,w)”) + dist(w]), Spr)
S d(ﬁh wylf//) + d(ftaﬁt)
— 0 as t— oo

(iv) Next, we show that tlim d~(]5t, élﬁt) = tli}m J(ﬁt, égﬁt) = tl_i}m d(ﬁt, égﬁt) =0.
— 00 o oo
In (5.24), we have already proved that tli}m J(ﬁt, élﬁt) =0.
o0

So, consider
A (Prs1, %) < d*(Pr, ) — 6med®(Gipr, Gapr) — 0:640d* (Gapr, Gadi) — ni&rd*(Gapy, Gsdr),

which results into

lim d(G1pr, Gopr) = 0,
t—o00

lim d(G1p¢, Gsg) =0
t—o0

and

lim d(Gapy, Gsgy) = 0.
t—o0

Now, from (3.24) and (3.28), we have

d(pe, Gopr) < d(

+, G1p¢) + d(G1pt, Gapy)
- 0

as t— oo.

On using (5.23) and (3.24), we obtain

d(Ge,pe) < ed(Pr, pr) + ked(w)’, pr) + ¢ed(Grpe, Pr)
— 0 as t— o0.

Now, (3.530), (3.31) and (3.32) yields

d(pe, Gspr) < d(pr, Gapr) + d(Gapy, G3dt) + d(Gadr, Gapr)
0 as t— oo.

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)
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(v) Now, as wy = J5 pt, from Lemma 2.10 we have

d(Jspepe) < d(J5pr, we) + d(we, pr)
= d(Jspr, 5, Pe) + d(we, pr)

S M= A A o
= d(J5pr, J5(F—LT5, 00 © =) + d(we, Br)
At At
- D W
d(pe, (1 = =)J5, bt ® —pr) + d(we, pr)
A At

IA

M- N
— =)d(p¢, J. 3 Pt) + =d(Pe, pr) + d(we, pr)
A¢ At

IN

A~ ~ -
= (1 - T)d(phwt) + d(wtapt)
t

- 0 as t— .

Theorem 3.2 Let E be a nonempty closed and conver subset of a complete CAT(0) space X. Let
G,:E— E,n=1,23 be single-valued nonerpansive mappings, S, FE— KC(E), n=1,2,3 be multi-
valued nmonexpansive mappings, and f E — (—o0,00] be a proper_convezr and lower semi-continuous
function. Suppose that Q = F(G1) N F(Gs) N F(Gg) N F(S1) N F(Sy) N F(S3) N arg mln (@) # 0 and

Wi ={Z}, n=1,2,3 forz € Q. Forp; € E, let the sequence {pt} is generated by (3.1), where {az},
{Be}, {n}, {0}, {ke}, {@¢}, {0t}, {m} and {&} are sequences in (0,1) such that

0 < a < ay, B, Ve, Vi, Kty Gt O, M, E¢ < b<1,

o+ B+ =L Y +r+ o =16+ +& =1,

for allt € N and {S\t} is a sequence such that M >A>0 for allt € N and some . Then, the sequence
{p:} A-converges to a point in ).

Proof 2 Let W,({p:}) = UA({us}), where union is taken over all subsequences {us} over {p;}. In order
to show the A-convergence of {p;} to a point of Q, firstly we will prove W,({p:}) C Q and thereafter
argue that W,,({p:}) is a singleton set.

To show W,({p:}) C Q, let T € W,({p:}). Then, there exists a subsequence {u} of {pi} such that
A({u:}) = &. By Lemma 2.2 and 2.3, there exists a subsequence {v:} of {us} such that A — li¥n v =

and v € E. From Theorem 3.1, we have
lim d(vy, Gpvy) =0, n=1,2,3
t—o00

and ~
tl_l)rgo d(ve, Jgv) = 0.

Since G, n=1,2,3 and J5 are nonexpansive mappings, with the use of Lemma 2.4, we obtain
v = G’lv = égv = ég’l} = J;v.

So, we have 5 5 5 R
v € F(G1)NF(G2) N F(G3) Nargmin f(§). (3.34)
GeE
Since S,,, n = 1,2,3 is compact valued for each n € N, there exist rj € S,v and py € S,v, n=123
such that ~ 5
d(ve,ry) = dist(vg, Spve), n=1,2,3

and

d(r?, pi) = dist(r?', Syv), n=1,2,3.
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From Theorem 3.1, we get ~
lim d(ve, ) =0, n=1,2,3.

t—o0
By using the compactness of Spv, n = 1,2, 3, there exists a subsequence {p;‘J} of {p?'} such that lim P =
j—oo
p" € Spv, n=1,2,3. With the help of Opial condition, we have
lim sup J(vt],,p”) < lim sup(ci(vt, )+ d(r{i Py + ci(pz , "))

J—00 J—00

IN

lim sup(d(vy;, !
j—o0

i + dist(ry, Spv) + d(p} . p"))
lim sup(c?(
I(

)
i)+ H(Spvt,, Spv) + J(p?] ,p"))
;)

IN

Jj—oo

IN

lim sup(d(vy, 172 ) + d(vr,0) + (o7, ")
j—o00

lim sup d(vti , V).
j—o0 ’

Since asymptotic center is unique, we get v =p"™ € Syv, n =1,2,3. By using (3.34), we obtain

v € F(G1) N F(Gs) N F(Gs) N F(S1) N F(S2) N F(Ss) ﬂarg{réigf((j) =

From Theorem 3.1 and Lemma 2.5 , we get ¢ = v, and W,,({p:}) C Q.

Now it is left to show that W,,({p:}) consists of single element only. For this, let {u;} be a subsequence
of {p:}. Again, by using Lemma 2.2, we can find a subsequence {v;} of {us} such that A — li¥n v = .
Let A({ut}) = u and A({p:}) = p. It is enough to show that v = p. Since v € Q, by Theorem 5.1,
{d(p,v)} is convergent. Again, by Lemma 2.5, we have v = p which proves that W,,({p,}) = {p}. Hence
the conclusion follows.

Next, we establish the strong convergence theorems of our iteration.

Theorem 3.3 Under the hypothesis of Theorem 2, the sequence {p,} converges to an element of Q if J5 is
semi-compact or Gy is semi-compact or Gz is semi-compact or G is semi-compact or Sy is hemi-compact
or So is hemi-compact or Ss is hemi-compact.

Proof 3 Without loss of generality, we assume that Sy is hemi-compact. Therefore, there exist a subse-
quence {vi} of {P+} which is having a strong limit p in E. From Theorem 3.1, we get

lim d(G ug,ur) =0, n=1,2,3,

t—o0
tllglo d(J5ue,ue) =0
and

lim dist(Spue,u) =0, n=1,23.

t—o00

From Lemma 2.4 , we obtain

pe F(G)NF(Gy)NF(Gs)Narg gélg f(@). (3.35)

By using nonexpansiveness of Sy, we have

dist(p, S1p) < d(p,w) + dist(us, Syu) + H(S1uq, S1p)
< 2d(p,ut) + dist(ug, Syug)
— 0 as t — oo

This results into dist(p, Sl@ = 0, which is same as p € Syp. Thus, p € F(S1). Similarly, we can show
that p € F'(S2) and p € F(S3). Therefore, from (3.35), we get

P € F(G1) N F(Go) N F(G3) N F(S1) N F(S2) N F(S3) ﬂargr}éigf(d) =Q

By using double extract subsequence principle, we get that the sequence {p;} converges strongly to p € Q.
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Since every multi-valued mapping S : £ — CB (E) is hemi-compact if E is a compact subset of X. So,

the following result can be obtained from Theorem 3.3 immediately.

Theorem 3.4 Let E be a nonempty compact and convex subset of a complete CAT(O) space X. Let

G,:E—>FE,n=123 be single-valued nonexpansive mappings, S, E— KC(E), n=1,2,3 be multi-

valued nonexrpansive mappings, and f E — (—00,00] be a proper conver and lower semi-continuous

function. Suppose that Q = F(G1) N F(Ga) N F(ég) N F(S1) N F(Sy) N F(S3) Nargmin f(§) # 0 and
GeE

S, ={z}, n=1,2,3 fori € Q. Forp, € E, let the sequence {p;} is generated by (3.1), where {ay},
{8} {weds {vnd, {seds {ee}, {0e}, {me} and {&} are sequences in (0,1) such that

0 < d S ataﬁtv’yta¢t75t7¢t75tvnta£t S l; < ]-7

a+Bi+vn=L Y Fr+ o =160+n+E& =1,

for allt € N and {;\t} s a sequence such that M>A>0 for allt € N and some A Then, the sequence
{p:} converges strongly to a point in ).

Since every real Hilbert space H is a complete CAT(0) space, so we have the following convergence results
which can be obtained from Theorem 3.2 and 3.3.

Corollary 3.5 Let E be a nonempty closed and convex s~ubset of a real Hilbert space X. Let G, : FE—
E, n=1,223 be single-valued mnonerpansive mappings, Sy : E — CB(E ), n = 1,2,3 be multi-valued
nonexpansive mappings and f : E — (—o00,00] be a proper convex and lower semi-continuous function.

Suppose that Q = F(G1) N F(Ga) N F(G3) N F(S1) N F(S2) N F(Ss) Nargmin f(§) # 0 and S,z = {z},
qerE

n=1,2,3 for & € Q. Forpy € E, let the sequence {p+} is generated in the following manner:
. ~ 2
w; = argmin[f(q) + 5514 — p:]l°],
gJeE t
Tt = Py + Brwy + yewy, (3.36)

= VP + wew)” + .Gy,
D1 = 0tG1Dy + e Gapy + §:G3Gy, for all t€N

where {ai}, {Be}, {1}, {Wi}, {ke}, {de}, {6:}, {m} and {&} are sequences in (0,1) such that

0 < d S ataﬁtv’yta¢tvﬁt7¢t75tvnta£t S Z; < 17

a+Bi+vn=L Y F+r+ o =160 +n+E& =1,

for allt € N and {;\t} s a sequence such that M>A>0 for allt € N and some A Then, the sequence
{p:} converges weakly to a point in ).

Corollary 3.6 Let E be a nonempty closed and convex subset of a real Hilbert space H. Let G,:FE—

E, n =1,2,3 be single-valued nonexpansive mappings, S, : E — CB(E ), n = 1,2,3 be multi-valued

nonexpansive mappings, and f E — (—o00, 0] be a proper convex and lower semi-continuous function.

Suppose that Q = F(G1) N F(Gs) N F(Gs) N F(Sy) N F(S2) N F(S3) Nargmin f(q) # 0 and S,& = {z},
GeE

n=1,2,3 for & € Q. Forp, € E, let the sequence {p,} is generated by (3.36), where {ov}, {B:}, {7},
{e}, {Ke}, {o¢}, {0t} {m} and {&} are sequences in (0,1) such that
0<a < Oétaﬁu%awt,“t,(ﬁt,istﬂ?taft < 6 < 17

a+ B+ =LY+ R+ o =10 +n +& =1,

for allt € N and {S\t} is a sequence such that M>A>0 for all t € N and some A Then, the sequence
{pt} converges to an element of ) if J5 is semi-compact or G is semi-compact or G is semi-compact
or Gs is semi-compact or Sy is hemi-compact or Sy is hemi-compact or Ss is hemi-compact.
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4. Conclusion

In this article, we present a new proximal point algorithm for solving the constrained convex minimiza-
tion problem as well as the fixed point problem of nonexpansive single-valued and multi-valued mappings
in CAT(0) spaces. Theorem 2-4 are the main convergence results of the paper. We also obtained some
corollaries in the class of Hilbert spaces. Our results extend and improves the corresponding results of
Cholamjiak [20], Suantai and Phuengrattana [38], Kumam et al. [39], Weng et al. [40] and Weng et al.
[41].
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