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Securing Images with Chaotic Map and Matrix Based Encryption
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ABSTRACT: This paper presents a novel grayscale image encryption scheme that combines a high-
dimensional chaotic map with a Suslin matrix-based diffusion process to achieve robust security
and high computational efficiency. In the proposed method, a Hybrid Sinusoidal-Logistic-Chaotic
(HSLC) map is employed to generate a pseudo-random sequence used for pixel permutation, thereby
effectively disrupting spatial correlations in the plain image. Concurrently, a Suslin matrix is con-
structed based on parameters derived from a shared secret key, which is then used to perform
block-wise diffusion on the permuted image. The diffusion process operates on non-overlapping 4 x4
pixel blocks, ensuring that even minor changes in the plain image propagate widely in the cipher
image. Security analysis, including evaluations of Shannon entropy, correlation coefficients, NPCR,
UACI, and PSNR under noise attacks, demonstrates that the encrypted images exhibit high ran-
domness, strong differential resistance, and low pixel correlation. Experimental results confirm that
the proposed scheme is effective in securing images for real-time multimedia applications.

Key Words: Chaotic map, elliptic curve cryptography, image encryption, secret key, Suslin
matrix, authentication, data.
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1. Introduction

In recent years, the proliferation of digital technologies has led to an unprecedented increase
in the generation, sharing, and storage of visual data across numerous domains. From medical
imaging systems that aid in diagnostics to surveillance cameras that enhance public safety, digital
images play a pivotal role in modern society. Additionally, multimedia applications, social media
platforms, and digital communication tools now heavily depend on images to convey information
effectively and engagingly. However, as the volume of digital images grows, so does the potential
for security vulnerabilities. Images transmitted over networks or stored on cloud platforms are at
risk of unauthorized access, which could compromise sensitive data or expose individual’s privacy.
This environment highlights the need for specialized security measures designed to protect image
data from potential threats, ensuring the integrity and confidentiality of images used in critical
applications.

Digital images are represented as grids of pixel values, where each pixel encodes intensity
information for grayscale images or color information for color images. These pixel-based struc-
tures form the foundation of digital visual data used across a range of fields, including healthcare,
surveillance, digital communications, and multimedia applications, see [23], [41]. While tradi-
tional encryption techniques, such as symmetric and asymmetric cryptography, are effective for
text and other low-dimensional data, they often face limitations when applied to image data.
Direct application of conventional encryption methods can lead to inefficiencies and insufficient
protectiondue to image’s large file sizes, high redundancy, and specific structural characteristics.
In response, specialized image encryption methods have been developed to accommodate the
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unique properties of visual data, with a focus on ensuring both security and computational effi-
ciency, see Therefore, several image encryption schemes have been provided by the researchers,
see [4], [7], [12], [43], [54], [13].

The scope of research in image encryption is broad, encompassing a variety of techniques to
address the specific challenges posed by digital images. Researchers have explored methods such
as symmetric key algorithms, public-key encryption, chaos-based systems, and hybrid models
that combine multiple techniques for enhanced security. Additionally, image encryption research
frequently examines factors such as the preservation of image quality, computational performance,
and resilience against common forms of attack (e.g., statistical, differential, and chosen-plaintext
attacks).

Chaotic systems exhibit properties such as sensitivity to initial conditions, ergodicity, and
inherent randomness, which can be exploited to achieve robust encryption. However, many
of the conventional chaotic maps used in image encryption are one-dimensional and suffer from
limited key spaces, short periodic windows, and linear predictability. Such limitations make them
vulnerable to brute-force and differential attacks, reducing the overall security of the encryption
scheme.

In response to these challenges, this paper introduces a novel image encryption scheme that
integrates a high-dimensional chaotic map with a Suslin matrix-based diffusion mechanism. The
proposed scheme leverages a HSLC map that operates in three dimensions, thereby expanding
the key space and enhancing randomness. This chaotic map is designed to generate a highly
unpredictable sequence for pixel permutation, effectively disrupting the spatial correlation of the
image. To further reinforce security, the scheme employs a Suslin matrix-a structured, invertible
matrix whose parameters are securely derived from a shared secret key. The Suslin matrix is used
to perform diffusion on 4x4 blocks of the permuted image, ensuring that any small change in the
original image propagates across the entire cipher image. Notably, the encryption parameters
(both for the chaotic map and the Suslin matrix) are derived solely from a shared secret, allowing
both the sender and receiver to independently compute identical keys without explicit exchange,
thus reducing the risk of key interception.

This dual-stage approach - combining chaotic permutation (confusion) and Suslin matrix-
based diffusion (substitution) - addresses the shortcomings of traditional methods by ensuring
that the resulting encrypted image is statistically indistinguishable from noise. The encrypted
image demonstrates high entropy, low correlation among adjacent pixels, and strong differential
properties, as evidenced by metrics such as NPCR and UACI. Moreover, extensive analysis has
shown that the proposed scheme is computationally efficient, making it suitable for real-time
applications in multimedia systems.

The main objectives of the proposed image encryption scheme are as follows:

e Generation of a Novel Chaotic Map: Develop a new high-dimensional chaotic map
that exhibits superior sensitivity to initial conditions, enhanced randomness, and an ex-
panded key space compared to conventional one-dimensional chaotic maps.

e Enhanced Confusion and Diffusion: Achieve robust encryption by integrating chaotic
permutation (confusion) with a Suslin matrix-based diffusion process, ensuring that both
pixel positions and values are thoroughly scrambled.

e Secure Key Synchronization: Derive all necessary encryption parameters—including
chaotic initial conditions and Suslin matrix parameters - directly from a shared secret key,
so that both sender and receiver can independently generate identical keys without explicit
transmission.



e Resistance to Cryptanalytic Attacks: Ensure that the encrypted images exhibit high
Shannon entropy, negligible correlation among adjacent pixels, and strong differential re-
sistance (high NPCR and UACT), thereby mitigating statistical and differential attacks.

e Computational Efficiency for Real-Time Applications: Design the encryption and
decryption processes to be computationally efficient and fast, making the scheme suitable
for real-time secure image transmission in multimedia systems.

e Robustness Against Noise: Provide resilience to various noise attacks, such as salt-and-
pepper and Gaussian noise, ensuring that decryption remains effective even under adverse
conditions.

Organization of Paper:

The rest of the paper is structured into six sections. Section 2 gives the review of litrature.
Section 3 discusses the essential preliminaries crucial for understanding the paper. In Section
4, we highlight our proposed hybrid chaotic map. Section 5 gives the security analysis of the
proposed chaotic map. Section 6 highlights the proposed image encryption scheme. Section
7 gives the architecture and working of the proposed scheme. Section 8 highlights the visual
results. Section 9 gives the experimental and security analysis of proposed scheme. Section 10
compares the proposed with existing schemes. Further, Section 11 concludes the results.

2. Literature Review

Elliptic Curve Cryptography (ECC) has emerged as a highly promising replacement for con-
ventional cryptographic systems. Miller [30] introduced ECC and devised a cryptosystem that
operates 20 times faster than the Diffie-Hellman algorithm. Additionally, Koblitz [23] introduced
an ECC-based cryptosystem operating over a finite field. The security of this cryptosystem de-
pends on the assumed difficulty of solving the discrete logarithm problem on elliptic curves.
Currently, there doesnot exist any sub-exponential algorithm for solving this problem over finite
fields. Therefore, ECC allows for smaller field sizes, keys, and parameters compared to other
public key systems like Rivest—Shamir—Adleman (RSA) while maintaining equivalent security lev-
els. This feature is particularly advantageous in applications where memory and computational
resources are constrained.

ECC is renowned for its computational speed and robust security. In the modern era, safeguard-
ing the secure transmission of digital images has become absolutely essential. Hosny et al. [20]
and Zia et al. [55] conducted a detailed survey of encryption methods aimed at safeguarding
security and privacy for digital multimedia, encompassing images, videos and audio. They pro-
vided a detailed summary of the existing secure image encryption techniques. This knowledge
will further contribute to the development of more efficient and secure encryption solutions in
the future.

Researchers have proposed numerous techniques for digital image encryption, including chaotic-
based methods (e.g., [21], [25],[28], [35],[45], [48], [52]), elliptic curve-based approaches (e.g., [§],
[17], [25], [37], [40]), cellular automata-based techniques (e.g., [11], [51]), DNA-based methods
(e.g. [28], [48], [54]). Singh and Singh [40], proposed an authenticated image encryption scheme
using elliptic curve cryptography which provides confidentiality along with authentication. But
during encryption they added additional pixels which led to the issue of expansion of cipher data.
Singh and Singh [41] refined the earlier scheme by preventing the expansion of cipher data by
using modified ElGamal encryption and 2D Arnold Cat Map. Abd El-Latif and Niu [1], proposed
an image encryption scheme using ECC and hybrid chaotic system. They generated initial key
stream using chaotic system and an external key stream in feedback manner. Then, the authors
derived the key sequences from the points of elliptic curve and mixed them with the generated
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key stream. This hybrid encryption method faces limitations in computational intensity due to
the complex processes involved in key generation and sequence handling, which can restrict its
use in real-time on devices with limited power. Parida et al. [36] provided an image encryption
and authentication scheme using ECC. The authors explored the use of 3D and 4D Arnold cat
map to scramble the values of plain image pixels. However, the extended mapping dimensions,
while enhancing security, can lead to slower encryption speeds due to the intensive processing
requirements for transforming image pixels.

There are mainly two methods to encrypt images, one is chaos-based selective or non selective
method and the other is non-chaos based selective method. Researchers have extensively ex-
plored chaotic maps due to their potential in encryption algorithms. Gong et al. [15] introduced
a chaotic system in four dimensions featuring hidden attractors. This innovation results in the
development of an image encryption method that is resilient against both statistical and differen-
tial attacks. Gong et al. [16] also presented a new dynamic chaotic system that produces varied
chaotic features including coexistence attractors and hidden attractors. Zhu et al. [53] provided
an encryption scheme by scrambling the pixels of the plain image and then added watermark to
the scrambled image. Further, they encrypted the scrambled image to get the ciphered image.
Neamah A. A. [33] presents a novel approach that utilizes a seven-dimensional hyperchaotic
system in conjunction with Pascal’s matrix for image encryption. This method effectively in-
tegrates these two components, yielding a robust security framework. The seven-dimensional
hyperchaotic system is employed to generate the private key needed for scrambling the image,
with the initial conditions of the system specifically tailored to the original image’s characteris-
tics. The proposed key size is sufficiently large to resist brute-force attacks. Furthermore, this
encryption technique exhibits strong resilience against various types of attacks. Experimental
results and evaluations of the algorithm demonstrate its high efficacy in encrypting grayscale
images, providing both strong security and efficient performance. However, the complexity of
the algorithm may lead to significant computational demands, potentially limiting its usability
in environments with constrained processing capabilities. Aldin et al. [3] introduces a new al-
gorithm that incorporates fusion, segmentation, random assembly, hyperchaotic processes, and
the Fibonacci Q-matrix (FQ-matrix). A unique fusion technique proposed to merge four color
images into four distinct sequences based on their informational content. Each of the resulting
four images is then divided into four segments, which are randomly assembled into a single image
using a random key. This combined image is subsequently scrambled using a six-dimensional
hyperchaotic system and further diffused via the FQ-matrix. The performance and robustness
of the proposed algorithm have been evaluated through various tests, demonstrating its strong
effectiveness in securing image transmissions. However, limitations include potential vulnerabil-
ities to certain attack types due to the complexity of its operations.

Chaker et al. [10] proposed a new image encryption and decryption system that features an
algorithm with two primary stages. In the initial stage, a seven-dimensional Lorenz-like hyper-
chaotic system generates random numbers that are used to alter pixel positions. In the second
stage, the image is divided into 8 x 8 blocks, each of which is diffused for the first time using
the Fibonacci matrix. Asani et al. [6] proposed an encryption scheme based on logistic map
and Latin square matrix. Logistic map mapping is a powerful chaotic system that encrypts with
high unpredictability, greatly lowering the likelihood of decryption. Similarly, the Latin square
matrix enhances encryption strength through its consistent histogram distribution. The integra-
tion of these algorithms in this study is thus based on the scientific aim of creating a robust and
resilient cipher method. Sharma et al. [37] introduces an image encryption scheme for grayscale
and color images based on a primitive polynomial combined with the transformation of pixel
values into a finite field, leading to pixel permutation. Following this, the shuffled pixels un-
dergo further diffusion using a specially constructed matrix. To strengthen security, the scheme
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also integrates a logistic chaotic map. The effectiveness of the encryption heavily depends on
the selection of appropriate parameters for the primitive polynomial and the finite field, which
may not be straightforward. Kumar and Sharma [25] presents an innovative image encryption
method that integrates a chaotic map, elliptic curve cryptography, and a genetic algorithm to
boost security. They used Arnold’s cat map to introduce chaos and randomness by shuffling
pixel positions. Further, encrypts the pixel values using elliptic curve cryptography . Addition-
ally, a genetic algorithm is applied to optimize key generation, further enhancing the encryption
scheme’s security. The combination of these techniques aims to provide strong confidentiality
and resilience in image encryption.

Cesarano et al. [57] developed a new class of Bessel-type functions using the monomiality princi-
ple and Laguerre-type exponentials, with possible multivariable extensions discussed. Ramirez et
al. [56] generalized algebraic relations and recurrence formulas connecting degenerated Apostol-
Bernoulli, Apostol-Euler, and Apostol-Genocchi polynomials with other polynomial families were
established. Ramirez and Cesarano [58] studied new classes of these degenerated generalized
polynomials of order a and level m, and their explicit forms, recurrences, and identities were
derived via generating functions.

Matrix theory plays a vital role in image encryption. Amounas and Kinani [5] proposed a novel
technique to encrypt images using involutory matrix and ECC to map the pixels to points on
an elliptic curve. While efficient in mapping pixels to elliptic curve points, this method faces
challenges with complex key generation and may be vulnerable to certain differential attacks if
the mapping is not robustly managed. Nagaraj et al. [32] provided an encryption scheme which
uses magic matrix operations along with ECC to encrypt an image. This method has limited
key space due to the matrix size used, potentially reducing resistance to brute-force attacks.
Obaidand and Al Saffar [34] in 2021, proposed an encryption scheme based on ECC and Hilbert
matrix. However, Hilbert matrices may not always be invertible, complicating decryption if
specific matrix configurations are used, which can lead to challenges in real-time applications.
Hosny et al. [19] presented a new algorithm for image encryption using a hyperchaotic system
and Fibonacci Q-matrix. This hyperchaotic system provides high encryption strength but can be
computationally intensive, making it less suited for environments with limited processing power.
Additionally, the complex parameter requirements of chaotic systems could increase vulnerability
to parameter estimation attacks if not handled with care. In matrix based encryption schemes,
the matrix involved must be invertible to carry out decryption. Suslin constructed a new matrix
called Suslin matrix whose properties are studied by various researchers, see [22].

In the present paper, we address the limitations observed in the existing image encryption
schemes by proposing a novel approach that integrates a high-dimensional chaotic map with
a Suslin matrix-based diffusion mechanism. Unlike traditional methods that rely on lower-
dimensional chaos or fixed transformation matrices, our approach leverages the HSLC map to
generate highly unpredictable sequences, ensuring stronger security. Additionally, the use of the
Suslin matrix provides an efficient and reversible diffusion operation that enhances resistance
against statistical and differential attacks. By combining these techniques, our scheme achieves
a higher level of randomness, improved key sensitivity, and robustness against cryptanalytic
attacks, making it a promising solution for secure image transmission. The following sections
provide a detailed discussion of the proposed encryption scheme, its implementation, and its
security evaluation.

3. Preliminaries

In this section, we provide an overview of the foundational concepts laying the groundwork for
the subsequent detailed exploration of our proposed approach.
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Definition 1. [}7] An elliptic curve defined over the field F,, denoted by E(F,) is expressed as
a cubic equation:
y> =23 +ax+b (mod p) (3.0.1)

where p is a prime number greater than 3 and a, b are elements in the field I, with the condition
that 4a® + 27b% # 0. This equation defines a unique set of points. When these points are paired
with a specific addition operation, they form an abelian group with point of infinity as the identity
element of the group.

Definition 2. [47] Let A(s1,w1) and B(sz,ws2) be two points on E(F,) such that A # B.
Addition of two points A and B in an elliptic curve is defined as:

A+ B = C(s3,ws), (3.0.2)
where
s3={\ — 51 —s2} (mod p), (3.0.3)
w3 = {A(s1 —s3) —wi} (mod p) (3.0.4)
and
A=27Y d p. (3.0.5)
SS9 — 851

Definition 3. [/7] Consider two points A and B that coincide on an elliptic curve over F,.
Doubling of a point in an elliptic curve is defined as:

A(Sl,w1) +B(81,IU1) = C(SQ,IUQ), (306)
where
s ={\? =251} (mod p), (3.0.7)
wg = {A(s1 — s2) —w1} (mod p) (3.0.8)
and )
351" +a
A= T (mod p). (3.0.9)

Definition 4. [/7] Operation of scalar multiplication over any point A of elliptic curve is
defined as repeated addition, that is, kA = A+ A+ ...(k times).

Definition 5. [39] The strength of ECC is determined by the challenge of solving the Elliptic
Curve Discrete Logarithm Problem (ECDLP). In simpler terms, this problem involves finding
a specific number n such that A = nB, where A and B are points on an elliptic curve. The
difficulty of solving this problem forms the foundation of the security provided by Elliptic Curve
Cryptography.

Definition 6. [39] ECDH key exchange relies on a specific property of elliptic curves, repre-
sented as
(n*xG)xm=(mx*G)*n. (3.0.10)

Let m, n be private keys of Alice and Bob respectively. Public key generated by Alice is m x G
and Public key generated by Bob is nx G. These public keys are shared through an open channel.
Now, Alice performs a multiplication operation involving her private key and Bob’s public key,
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while Bob does the same by multiplying his private key with Alice’s public key. Both Alice and
Bob will get the same resultant. This method of sharing key between users is known as ECDH
key exchange.

Definition 7. [22] Suslin matriz Sy (v, w) can be constructed when we have two given rows, v
and w. Inductive definition of Suslin matriz is given as follow:

Let

v = (cg,c1,...¢r) = (co, ), (3.0.11)
where t = (c1,...cy)
and

w = (dp,dy,...d;) = (do,u), (3.0.12)

where u = (dy,...d,). Now, set So(v,w) = ¢p.
Therefore, Suslin matriz S,(v,w) is defined as:

C()IQr71 ST_l(t,u)

Sp(v,w) = S ()T doIyr. (3.0.13)
Remark Here, we define the 8 x 8 Suslin matrix which is of the form:
[ Co 0 0 0 C1 0 C2 C3_
0 Co 0 0 0 C1 —d3 d2
0 0 Co 0 —d2 C3 dl 0
o _ 0 0 0 Co 7d3 —C2 0 d1
S = S3(v,w) = 40 o o do 0 0 ol (3.0.14)
0 —di —-d3 do 0 do 0 0
—dg C3 —C1 0 0 0 do 0
_—d3 —C2 0 —C1 0 0 0 do_
where v = (¢, ¢1, ¢2,¢3) and w = (do, dy, da, d3).
This matrix will be invertible if dot product v.w! = 1.
Inverse of this matrix is always of the form:
_do 0 0 0 —C1 0 —C2 —63_
0 d() 0 0 0 —C1 d3 7d2
0 0 d() 0 d2 —C3 —d1 0
-1 _ o—1 o 0 0 0 do d3 Co 0 —d1
ST =587 (v,w) = di 0 —cy —c3 oy 0 0 0 (3.0.15)
0 dl d3 —d2 0 Co 0 0
dg —C3 (&1 0 0 0 Co 0
d3 Co 0 C1 0 0 0 Co

4. Proposed Hybrid Chaotic Map

Chaos-based cryptography relies on chaotic maps to generate highly unpredictable sequences
for permutation and diffusion in encryption. However, traditional one-dimensional (1D) chaotic
maps such as the logistic map suffer from limited keyspace, weak randomness, and linear pre-
dictability. To address these issues, we propose a HSLC map, which integrates multiple nonlinear
functions into a high-dimensional chaotic system. This new chaotic map significantly enhances
randomness, increases key sensitivity, and provides stronger security compared to traditional 1D
maps.
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4.1. Mathematical Definition of the HSLC Map

The proposed HSLC chaotic map is a three-dimensional system, defined as follows:

Xy = sin(mpX, (1 — X,,)) (4.1.1)
Y1 =1—aY?+ BX, (4.1.2)
Zny1 = cos(yarccos(Yy,)) (4.1.3)

where:
e X, Y,, Z, are the state variables representing the chaotic system at iteration n.
® L, «, 3,y are control parameters that determine the chaotic behavior.

o sin(muX, (1 — X,)) introduces strong non-linearity, ensuring unpredictable chaotic se-
quences.

e 1—aY?+3X, ensures a strong coupling effect between X,, and Y,,, making it more difficult
to predict the sequence.

e cos(yarccos(Y,,)) forces state dependency, increasing randomness.

The final chaotic sequence is obtained using the following transformation:

Xnt1 = (Tnt1 + Ynt1 + 2nge1) mod 1 (4.1.4)
Yit1 = (Yn+1 - Znt1 — Tny1) mod 1 (4.1.5)
Zns1 = (Zn41 + 2241 — Yny1) mod 1 (4.1.6)

The use of mod 1 ensures that values remain within the range (0, 1), making them suitable for
encryption applications.

4.2. Chaotic Behavior and Parameter Selection

To ensure that the system remains highly chaotic, we must carefully choose the control
parameters u, «, 3,7. Through bifurcation and Lyapunov exponent analysis, we have determined
that the system exhibits strong chaos when:

e 8 < u <50 (for strong logistic-sinusoidal behavior),
e 1.1<a<25,
e 0.2<5<0.5,
e 2.0< v <35
For optimal performance in encryption, we recommend the values:

p=10, a=12 =03, ~v=25. (4.2.1)

These parameters ensure that the chaotic map maintains ergodicity and unpredictability.
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4.3. Derivation of Initial Conditions from the Shared Key

To generate a deterministic yet unpredictable chaotic sequence, we derive the initial conditions
Xo, Yo, Zp from the shared secret integer k using cryptographic hashing. This ensures that both
sender and receiver generate identical chaotic sequences without explicit transmission.

int(hash(k + “X)[0: 8],16) mod 1000

Xo = 4.3.1

0 1000 (4.3.)
_ int(hash(k + “Y™)[8 : 16],16) mod 1000

Yy = 1000 (4.3.2)
_ int(hash(k 4 “Z”)[16 : 24],16) mod 1000

Zo = oo (4.3.3)

Since SHA-256 is deterministic, both sender and receiver compute identical initial conditions
independently.

5. Security Analysis of the Proposed Chaotic Map

The security strength of a chaotic system for cryptographic applications is often evaluated
through various dynamical and statistical properties. This section presents an in-depth analysis
of the proposed HSLC map based on key security parameters such as bifurcation behavior,
Lyapunov exponent, entropy measures, and phase space representation.

5.1. Bifurcation Diagram Analysis

The bifurcation diagram of the proposed chaotic map illustrates its complex behavior over a
range of control parameters p. Figure 1 exhibits dense and widely distributed chaotic trajectories,
ensuring a high degree of randomness and unpredictability. The absence of periodic windows
further supports the robustness of the map in generating highly unpredictable sequences, a crucial
property for cryptographic applications.

Bifurcation Diagram of HSLHC Map

104

0.8 1

0.6 1

x-values

0.4

0.2

0.0

10 20 30 40 50
Control Parameter ()

Figure 1: Bifurcation diagram of the proposed chaotic map.
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5.2. Lyapunov Exponent Analysis

The Lyapunov exponent () is a key indicator of chaos in a dynamical system. The computed
Lyapunov exponent remains consistently positive and increases as p grows, reaching values above
A > 2.0 for larger values of u, as shown in Figure 2. This confirms the presence of strong
chaotic behavior and high sensitivity to initial conditions, making the system suitable for secure
encryption schemes.

Lyapunov Expenent of HSLHC Map

3.5 1

3.0 4

2.54

2.04

15

Lyapunov Exponent {A)

1.0+

0.51

0.0 = e e e e e e e e e e

T T T T T
10 20 30 40 50
Control Parameter (u)

Figure 2: Lyapunov exponent of the proposed chaotic map.

5.3. Entropy Evaluation

Entropy is a fundamental measure of randomness in a chaotic system. The Shannon entropy
of the proposed map remains nearly constant at a high value ( 8 bits), indicating uniform and
unpredictable output distributions, as shown in Figure 3.

Entropy vs Control Parameter (HSLHC Map)

Figure 3: Entropy evaluation of the chaotic map.
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5.4. Phase Space Representation

The three-dimensional phase space representation of the chaotic system shows a well-
distributed and complex structure, without any observable periodicity or clustering, as shown
in Figure 4. This confirms the presence of chaotic dynamics, which strengthens the system’s
resistance against phase space-based attacks.

3D Phase Space of HSLHC Chaotic Map

0.6
Faxis 0.8

0.0

1.0

Figure 4: 3D phase space representation of the chaotic system.

5.5. Approximate Entropy

The approximate entropy (ApEn) of the chaotic sequence is a crucial measure of randomness.
Higher ApEn values indicate greater complexity, which is desirable for cryptographic applications.
The proposed chaotic map maintains ApEn values in a high range, indicating that the output
sequences are highly unpredictable, as shown in Figure 5.
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S Approximate Entropy vs Control Parameter (HSLHC Map)

0.9 1

0.8 1

0.7

0.6 1

0.5

ApEn

0.4+

0.3 4

0.2

0.1+

0.0 T T T T T T T T T
10 15 20 25 30 35 40 45 50

Figure 5: Approximate entropy of the chaotic map.

5.6. Security Implications

The combined analysis of bifurcation behavior, Lyapunov exponent, entropy measures, and
phase space representation confirms that the proposed HSLC map exhibits strong chaotic prop-
erties. These characteristics ensure high sensitivity to initial conditions, a large key space, and
resistance to statistical and dynamical attacks, making the proposed system highly suitable for
secure encryption and cryptographic applications.

5.7. Comparison with Traditional Chaotic Maps

Compared to classical 1D chaotic maps such as the logistic map and tent map, the HSLC
map provides:

e Higher Complexity and Randomness: The combination of sinusoidal, hyperbolic, and
trigonometric transformations enhances unpredictability.

e Stronger Key Sensitivity: Any minor change in the shared key completely alters the
chaotic sequence.

e Larger Keyspace: The three-dimensional nature of the map increases the number of
possible keys exponentially.

e Better Statistical Properties: Ensures a uniform histogram in encryption, eliminating
vulnerabilities to frequency analysis.

The proposed HSLC chaotic map is a high-dimensional, highly nonlinear system that exhibits
strong chaotic behavior within the selected parameter range. It provides an ideal balance between
computational efficiency and security, making it highly suitable for image encryption applications.
By integrating this chaotic system into our encryption scheme, we significantly enhance security
and efficiency, ensuring robust protection against various cryptographic attacks.
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6. Proposed Image Encryption Scheme

The proposed image encryption scheme integrates chaotic permutation (confusion) and Suslin
matrix-based diffusion (substitution) to achieve high security, efficiency, and robustness. The
encryption process begins with preprocessing the image, where it is converted to grayscale,
resized, and padded if necessary. Next, encryption parameters are securely derived from a shared
secret integer using cryptographic hashing, ensuring that both sender and receiver independently
compute identical keys without explicit exchange.

The chaotic permutation step utilizes a HSLC map to generate a pseudo-random permutation
sequence, scrambling pixel positions to eliminate spatial correlations. In the diffusion stage, a
special invertible Suslin matrix—constructed using vectors v and w that satisfy v - w = 1—is
applied to 4 x 4 blocks of the permuted image, ensuring global impact of local changes and strong
key sensitivity.

Decryption follows the reverse steps, applying the inverse Suslin matrix and reversing the chaotic
permutation to fully recover the original image. By leveraging secure key synchronization, high-
dimensional chaos, and matrix-based diffusion, this scheme ensures strong resistance against
statistical, differential, and brute-force attacks, making it an ideal choice for secure image trans-
mission.

Suppose, Alice desires to share an image securely with Bob. To ensure the security of their
communication, both Alice and Bob jointly choose an elliptic curve of the form:

v =23+ ax+b (mod p)

with the generator point G.

6.1. Key Generation

Both, Alice and Bob generate their keys in the following manner and subsequently construct
their secret matrix.

e Alice selects her private key as n4.

e Bob selects his private key as np.

e Alice generates her public key as P4 = naG.

e Bob generates his public key as Pg = ngG.

e Secret key generated by Alice, S4 = naPp = (S31,532).
e Secret key generated by Bob, Sy = ngPa = (S31,552).

o Alice selects a random integer k such that 2 < k < n—1, where n is the order of the elliptic
curve.

6.2. Derivation of the Structured Vector v
In our scheme, the vector v is designed to be a short, structured vector whose components
are derived from the shared secret key k. Typically, v is chosen as a three-element vector, i.e.,
v = (vg, v1, V2).

Derivation of v:
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1. Hashing the Shared Key:
The shared secret key k is first processed using a secure cryptographic hash function such
as SHA-256. This produces a hexadecimal string that is a deterministic function of k.

2. Extracting Components:
Specific segments of the resulting hash are then used to form the components of v. For
instance,

vo = (hash(k)[0 : 8]) mod p, v; = (hash(k)[8 : 16]) mod p, vy = (hash(k)[16 : 24]) mod p,

where the notation hash(k)[0 : 8] means “take the substring of the hash output starting at
index 0 and ending before index 8.” This yields the first 8 hexadecimal characters of the
hash. Similarly, hash(k)[8 : 16] extracts the next 8 characters, and hash(k)[16 : 24] the
following 8 characters.

The modulo operation with a prime p is applied to ensure that the resulting components are
nonzero and well-distributed. Using a prime number helps avoid trivial collisions and ensures
that the components possess desirable cryptographic properties.

Thus, v is chosen as a 3-element vector whose components vy, vy, and vy are deterministically
derived from the hash of the shared key k and reduced modulo a prime number p to ensure they
are nonzero and well-distributed. This carefully chosen vector length is sufficient to build an
invertible Suslin matrix that plays a key role in the diffusion process of the encryption scheme.

6.3. Preprocessing the Image

Before encryption, the image undergoes preprocessing to ensure compatibility with the en-
cryption scheme.

e Convert Image to Grayscale: If the input image is in RGB format, it is converted into
an 8-bit grayscale image (pixel values between 0 and 255).

e Resize the Image: The image is resized to a fixed size (e.g., 256 x 256 pixels) to ensure
uniform encryption and decryption.

e Apply Padding (if Necessary): If the image dimensions are not divisible by 4, zero-
padding is applied to ensure they are multiples of 4. This ensures compatibility with 4 x 4
Suslin matrix-based diffusion.

6.4. Securely Constructing the Suslin Matrix S(v, w)
A special invertible Suslin matrix is computed securely from k.
1. Derive the Vector v from k using hash output.

2. Compute the Vector w to Ensure v - w = 1:

d=v2 + v} + 02 (6.4.1)
Vo V1 V2
_ Y -4 - 22 4.2
Wo a4’ w1 d’ w2 d (6 )
3. Construct the Suslin Matrix:
Vo 0 U1 V2
Swawy—=| 0w Twe w (6.4.3)

—wW1 V2 wo 0
—wy  —U1 0 wo
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4. Compute the Inverse Suslin Matrix:

S~ = S(w,v)” (6.4.4)

6.5. Step 3: Chaotic Permutation (Confusion)
A chaotic sequence is generated to scramble pixel positions.
1. Generate Chaotic Permutation Sequence using the chaotic map.
2. Sort the Chaotic Sequence to Create a Permutation Order.
3. Apply Permutation: Pixels are rearranged, destroying spatial correlation.

6.6. Step 4: Diffusion (Pixel Value Modification Using Suslin Matrix)
1. Partition the Image into 4 x 4 Blocks.

2. Apply the Suslin Matrix to Each Block:

B’ = S(v,w) x B mod 256. (6.6.1)

3. Repeat for Multiple Rounds to enhance security.
6.7. Decryption Process

1. Reverse Diffusion: Each block is multiplied by S~1!:

B=S"1'xB" mod 256. (6.7.1)

2. Reverse Permutation: The chaotic permutation order is reversed to restore pixel positions.
The encryption scheme integrates:

e Secure Key Synchronization Without Transmission

e Chaotic Permutation for Confusion

e Invertible Suslin Matrix for Diffusion

This ensures high security, efficiency, and robustness in image encryption.
6.8. Authentication and Verification

Alice enhances the proposed scheme by introducing authentication through digital signatures
in the following manner:

e Calculates the hash value h, of S, from S, as follows:
Sy = S31 ® S32,
hy = SH Aas6(Sy).
e Computes the hash value H by concatenating ho and h, as follows:
he = SH Asz56(C),
H = (h¢llha).
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e Calculates, k&’ using the parameter k as follows:

K =8, ®k.

o Evaluates the digital signature (V, W) as follows:
V = SHAsyss(H),
W = ((k') — V)mod n.
e Sends the digital signature (V, W) and ciphered image C to Bob.

Bob ensures authenticity by verifying the digital signature in the following manner:

e Calculates k from (V,W) and S, as follows:
Sy = S31 @ S32,
E=((V+W)®S,).
e Calculates the hash value h, of S, from S, as follows:
Sz = S31 ® S32,
hy = SH Ass6(Sz).
e Computes the hash value H by concatenating h¢ and h, as follows:

he = SH Agsg(C).

H = (hellhs).
e Calculates V' from computed hash value H. If V' is same as V, then the signature is
verified.
V = SHA256(H)
=V
Hence,
V=V

7. System Architecture

The architecture of the proposed encryption scheme consists of the following major compo-
nents:

e Preprocessing: The input image is converted into grayscale (if not already) and resized
to ensure its dimensions are multiples of 4 using zero-padding.

e Key Derivation: A secure cryptographic hash function is applied to a shared key to
generate deterministic initial conditions for the chaotic system.

e Chaotic Permutation (Confusion): The pixel positions of the image are scrambled
using a hybrid chaotic system (HSLC map), ensuring high randomness and resistance
against statistical attacks.
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Algorithm 1 Proposed Image Encryption Algorithm

Convert I to grayscale (if necessary) and resize it to ensure divisibility by 4.
Compute initial conditions Xy, Yy, Zy from k using a cryptographic hash function.
Generate a chaotic sequence using the HSLC map.

Compute the pixel permutation order and apply it to I.

Partition the permuted image into 4 x 4 blocks.

Construct the Suslin matrix S(v,w) using values derived from k.

Apply matrix multiplication to each block using S (v, w).

return Encrypted image I¢.

Algorithm 2 Proposed Image Decryption Algorithm

Require: Encrypted image I, shared key k
Ensure: Recovered image Ip

© 00 N O Utk W N

— =
—= O

: Step 1: Generate Chaotic Parameters

: Compute initial conditions Xy, Yy, Zo from k using the cryptographic hash function.
: Regenerate the chaotic sequence using the HSLC map.

: Compute the original pixel permutation order.

: Step 2: Reverse Diffusion

: Partition I¢ into 4 x 4 blocks.

: Compute the inverse of the Suslin matrix S(v,w)™! = S(w,v)T.

: Multiply each block by S(v,w)™! modulo 256 to obtain Ip.

: Step 3: Reverse Confusion

: Apply the inverse permutation to restore the original pixel order.
: return Recovered image Ig.

e Diffusion via Suslin Matrix: The permuted image is divided into 4 x 4 blocks, and each
block undergoes matrix multiplication with an invertible Suslin matrix to modify pixel
values in a non-linear fashion.

e Decryption Process: The encrypted image undergoes reverse diffusion and inverse chaotic
permutation to retrieve the original image.

Flowchart of proposed encryption and decryption schemes are given in Figure 6 and Figure 7,
respectively.
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( N

Start: Load Grayscale Image

L ) s B
l Start: Load Encrypted Image
\ J
Resize and Zero-Pad Image l
Compute Initial Conditions
from Shared Key K
Compute Initial Conditions
from Shared Key K
Generate Chaotic Se-
quence using HSLC Map
Generate Chaotic Se-
quence using HSLC Map
l Compute Inverse Pixel
Permutation Order
Compute Pixel Per- l
mutation Order
Partition Image
into 4 X 4 Blocks
Apply Chaotic Per-
mutation to Image
l Compute S(v,w) 1
Partition Image
into 4 X 4 Blocks
Multiply Each
Block by S(v,w) ™!
Construct Suslin
Matrix S (v, w)
l Apply Inverse
Pixel Permutation
Apply Suslin Ma-
trix Multiplication
s M
l Output: Decrypted Image
e 0 I\ Y,

Output: Encrypted Image

Figure 7: Decryption Flowchart

Figure 6: Encryption Flowchart

8. Visual Results

In this section, we present a visual demonstration of the proposed image encryption scheme.
The experimental results are illustrated in Figure 8, 9, 10, 11, 12, 13 and 14 using several stan-
dard test images, showing both the plain and encrypted outputs. These results highlight the
effectiveness of the scheme in disrupting spatial correlations and producing visually unrecogniz-
able cipher images. The images included for analysis are Cameraman (512x 512), Pepper (512x
512), Pirate (512x 512), Lena (256x 256), Lena (512x 512) and Gravel (1024x 1024). We

implemented the proposed scheme on Core i7 9th Generation computer with CPU 2.00GHz and
RAM 16 GB 1TBSSD by using Python-3 64-bit software.



20

Figure 8: Visual Results for the Cameraman (512x512) Image: (a) Original, (b) Encrypted,
(c) Decrypted, (d) Histogram of Plain Image, (e) Histogram of Encrypted Image, (f) Encrypted
Image Under Salt & Pepper Noise.

Figure 9: Visual Results for the Baboon (512x512) Image: (a) Original, (b) Encrypted, (c)
Decrypted, (d) Histogram of Plain Image, (e) Histogram of Encrypted Image, (f) Encrypted
Image Under Salt & Pepper Noise.

Figure 12: Visual Results for the Lena (256x256) Image: (a) Original, (b) Encrypted, (c)
Decrypted, (d) Histogram of Plain Image, (e) Histogram of Encrypted Image, (f) Encrypted
Image Under Salt & Pepper Noise.
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Figure 10: Visual Results for the Pepper (512x512): (a) Original, (b) Encrypted, (c) Decrypted,
(d) Histogram of Plain Image, (e) Histogram of Encrypted Image, (f) Encrypted Image Under
Salt & Pepper Noise.

Figure 11: Visual Results for the Pirate (512x512): (a) Original, (b) Encrypted, (c¢) Decrypted,
(d) Histogram of Plain Image, (e) Histogram of Encrypted Image, (f) Encrypted Image Under
Salt & Pepper Noise.

i

@ Histogram of Plan image

Figure 13: Visual Results for the Lena (512x512) Image: (a) Original, (b) Encrypted, (c)
Decrypted, (d) Histogram of Plain Image, (e) Histogram of Encrypted Image, (f) Encrypted
Image Under Salt & Pepper Noise.
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Figure 14: Visual Results for the (1024x1024): (a) Original, (b) Encrypted, (¢) Decrypted, (d)
Histogram of Plain Image, (e) Histogram of Encrypted Image, (f) Encrypted Image Under Salt
& Pepper Noise.

Remarkably, the decrypted images obtained from the encryption process closely resembled the
original plain images. This observation underscores the effectiveness of our proposed algorithm
in preserving the inherent structure of the plain images. The tests clearly demonstrate the algo-
rithm’s ability to maintain the integrity and visual fidelity of the original images after encryption
and decryption processes.

9. Experimental Analysis

The proposed image encryption scheme was evaluated using a variety of standard test im-
ages including Baboon (512x512), Cameraman (512x512), Lena (256x256), Pepper (512x512),
Pirate (512x512), and Gravel (1024x1024). In this section, we present the experimental results
in terms of differential metrics, statistical measures, texture analysis (GLCM), key sensitivity,
and processing speed.

9.1. Differential and Statistical Metrics

Table 1 summarizes the main differential metrics including UACI, NPCR, Shannon entropy
(for both plain and cipher images), and the chi-square statistic for the cipher image.

Table 1: Differential and Statistical Metrics

Image UACI (%) | NPCR (%) | Entropy (Plain) | Entropy (Cipher) | Chi-square
Baboon (512x512) 33.40 99.61 7.2418 7.9975 226.18
Cameraman (512x512) 33.12 99.63 7.0293 7.9970 274.73
Lena (256x256) 33.34 99.62 7.4429 7.9968 292.48
Pepper (512x512) 33.41 99.62 7.2638 7.9974 235.23
Pirate (512x512) 33.46 99.62 7.2597 7.9961 352.20
Gravel (1024x1024) 33.46 99.58 7.2597 7.9961 352.20

9.2. Correlation Coefficient Analysis

Table 2 shows the correlation coefficients in horizontal, vertical, and diagonal directions for
the plain and encrypted images.
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Table 2: Correlation Coefficients (Plain / Encrypted)

Image

Horizontal

Vertical

Diagonal

Baboon (512x512)
Cameraman (512x512)
Lena (256 x256)
Pepper (512x512)
Pirate (512x512)
Gravel (1024x1024)

0.8446 / -0.0058
0.9549 / 0.0013
0.9258 / 0.0048
0.9378 / 0.0014
0.3262 / -0.0013
0.3262 / -0.0013

0.7831 / -0.0022
0.9733 / -0.0048
0.9593 / 0.0037
0.9520 / -0.0016
0.2687 / -0.0183
0.2687 / -0.0183

0.7458 / 0.0037
0.9335 / -0.0102
0.9037 / -0.0003
0.9088 / 0.0011
0.1238 / -0.0025

0.1238 / -0.0025

9.3. PSNR Analysis under Noise Attacks

Table 3 provides the Peak Signal-to-Noise Ratio (PSNR) values under various noise con-
ditions. The scheme is evaluated under salt-and-pepper noise at different densities as well as
Gaussian noise. Figure 15 shows the decrypted images with various noise densities.

Table 3: PSNR Analysis under Noise Attacks

Image PSNR (S&P Attack) | PSNR (Gaussian) | S&P Noise 0.001 | S&P Noise 0.002 | S&P Noise 0.005
Baboon (512x512) 24.77 dB 9.72 dB 34.65 dB 31.77 dB 27.70 dB
Cameraman (512x512) 23.82 dB 8.48 dB 33.57 dB 30.59 dB 26.64 dB
Lena (256x256) 24.58 dB 9.20 dB 34.35 dB 31.39 dB 27.51 dB
Pepper (512x512) 24.45 dB 9.16 dB 34.33 dB 31.41 dB 27.39 dB
Pirate (512x512) 24.45 dB 9.16 dB 34.33 dB 31.41 dB 27.39 dB
Gravel (1024x1024) 23.80 dB 8.42 dB 33.44 dB 30.70 dB 26.70 dB

@ O0riginal Image @ Decrypted (Noise 0.001)

®) Encrypted |

©)Decrypted (Noise 0.005)

Figure 15: Visualization of Noise attack with different noise densities
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9.4. GLCM Texture Analysis

Texture analysis using the Gray-Level Co-Occurrence Matrix (GLCM) is used to evaluate the
diffusion capability. Table 4 summarizes the GLCM features for the plain and encrypted images.
For each image, the table lists the Contrast (Cn), Energy (En), and Homogeneity (Hn).

Table 4: GLCM Analysis for Test Images (Plain / Encrypted)

Image

Contrast (Cn)

Energy (En)

Homogeneity (Hn)

Baboon (512x512)
Cameraman (512x512)
Lena (256 x256)
Pepper (512x512)
Pirate (512x512)
Gravel (1024x1024)

830.4212 / 10881.6826
149.6344 / 10796.1137
60.7854 / 10930.3886
139.2085 / 10844.7390
208.9772 / 10942.6223
1553.2251 / 10860.2889

0.0105 / 0.0041
0.0403 / 0.0041
0.0252 / 0.0041
0.0489 / 0.0041
0.0243 / 0.0041
0.0085 / 0.0041

0.0815 / 0.0122
0.3764 / 0.0120
0.3544 / 0.0123
0.3649 / 0.0119
0.2073 / 0.0121
0.0409 / 0.0121

9.5. Key Sensitivity Analysis

The encryption scheme exhibits high key sensitivity. A minimal change in the encryption key
causes significant alterations in the decrypted image. Table 5 represent the proportion of pixels

changed when a slight key modification is introduced:

Table 5: Key Sensitivity Analysis

Image

Percentage of Pixels Affected

Baboon (512x512)
Cameraman (512x512)
Lena (256 x256)
Pepper (512x512)
Pirate (512x512)
Gravel (1024x1024)

99.34%
99.01%
99.36%
99.23%
99.23%
99.28%

9.6. Speed Analysis

Table 6 summarizes the average encryption and decryption times for the test images.

Table 6: Average Processing Times

Image

Encryption Time (s)

Decryption Time (s)

Total Time (s)

Baboon (512x512)
Cameraman (512x512)
Lena (256 x256)
Pepper (512x512)
Pirate (512x512)
Gravel (1024x1024)

1.5825
1.6852
1.6293
1.5636
1.5748
1.7170

0.1941
0.2140
0.1828
0.1936
0.2038
0.1872

1.7766
1.8992
1.8122
1.7572
1.7787
1.9042

The experimental results validate the effectiveness of the proposed image encryption scheme.
Table 7 summarizes the results of various security parameters.
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Table 7: Experimental Results of the Proposed Model
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Criteria Cameraman Lena (256) Lena (512) Baboon Peppers Pirate Gravel
NPCR (%) 99.63% 99.62% 99.60% 99.61% 99.62%  99.62%  99.58%
UACI (%) 33.32% 33.34% 33.40% 33.40% 33.42%  33.41% 33.46%
Information Entropy 7.9970 7.9968 7.9971 7.9975 7.9974 7.9974  7.9961
Chi-square 274 292 268 226 237 235 252
Encryption Time (sec) 1.685 1.629 1.594 1.582 1.563 1.574 1.716

9.7.

High Differential Resistance: NPCR values exceed 99.58% and UACI values are around
33.4%, indicating strong resistance to differential attacks.

Strong Randomness: Encrypted images exhibit nearly ideal Shannon entropy (close to
8) and negligible correlation between adjacent pixels.

Effective Diffusion: GLCM analysis shows a significant increase in contrast and a marked
decrease in energy and homogeneity, confirming the robust diffusion capability.

High Key Sensitivity: Minimal key modifications lead to over 99% of pixels being altered
in the decrypted image.

Efficient Processing: Total processing times for encryption and decryption are under 2
seconds for all test images, making the scheme suitable for real-time applications.

Data Loss Attack Analysis

Data loss attacks simulate scenarios where part of the encrypted image is lost or corrupted.
In this experiment, we introduced two levels of data loss: 25% and 50%. The corrupted images
were then decrypted, and the quality of the recovered images was measured using the Peak
Signal-to-Noise Ratio.

e 25% Data Loss: A quarter of the image was removed before decryption.

e 50% Data Loss: Half of the image was removed before decryption.

The PSNR values for both cases are as follows:

Data Loss | PSNR (dB)
25% Loss 30.31 dB
50% Loss 29.35 dB

Table 8: PSNR values for decrypted images with different data loss percentages.

Figure 16 illustrates the encrypted image, the applied data loss, and the corresponding decrypted

images.
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Figure 16: Visualization of Data Loss Attack. Top row: Encrypted image and different levels of

(@ Encrypted Image

®25% Data Loss © 50% Data Loss

@Decrypted 25% (©) Decrypted 50%

100

200 i 200

300 400 500

data loss. Bottom row: Decrypted images after 25% and 50% loss.

From the PSNR values, we observe that while some information is lost, the decryption process
still manages to reconstruct a recognizable version of the image. However, as expected, a higher
percentage of data loss results in a lower PSNR and increased degradation in the recovered image.

The results demonstrate that the proposed encryption scheme offers strong security properties,

randomness, and resilience against statistical and differential attacks.

10. Comparative Analysis

To validate the robustness and effectiveness of the proposed encryption scheme, a comparative
analysis has been performed against several benchmark approaches across standard evaluation
metrics including NPCR, UACI, Information Entropy, Chi-square test, and Correlation Coeffi-
cient Analysis (CCA).
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Table 9: NPCR Comparison with Benchmark Approaches

Model Cameraman Lena Baboon Peppers
[44] 99.61% 99.62% NA NA

[9] 99.61% 99.61% NA NA
[38] NA 99.65% NA NA
[49] 99.63% 99.62% NA 99.60%
[46] NA 99.62% NA NA
[31] 99.60% 99.62% 99.60% 99.61%
[2] 99.64% 99.61% 99.58% 99.61%

Proposed 99.63% 99.60% 99.61%  99.62%

Table 10: UACI Comparison with Benchmark Approaches

Model Cameraman Lena Baboon Peppers
[44] 33.46% 33.47% NA NA

[9] 33.55% 33.59% NA NA
[38] NA 33.45% NA NA
[49] 33.56% 33.50% NA 33.41%
[46] NA 30.64% NA NA
[31] 33.44% 33.44% 33.46% NA

2] 33.39% 33.42% 33.48% 33.40%

Proposed 33.33% 33.40% 33.40%  33.42%

Table 11: Information entropy comparison against benchmark approaches

Model Cameraman Lena Baboon Peppers
[44] 7.9974 7.9974 NA NA

[9] 7.9951 7.9951 NA NA
[38] NA 7.9973 NA NA
[49] 7.9973 7.9969 NA 7.9972
[46] NA 7.9973 NA 7.9972
[31] 7.9986 7.9989  7.9965 7.9975
[2] 7.9970 7.9975  7.9974 7.9972
Proposed 7.9970 7.9971 7.9975 7.9974

Table 12: Chi-square (x?) test results for encrypted images

Image Type Cameraman Lena Baboon Peppers

Encrypted Image [2] 275 225 236 256
Encrypted Image (Proposed) 274 221 226 237

27
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Table 13: Correlation Coefficient Analysis (CCA) comparison with benchmark approaches

Model Cameraman Lena Baboon Peppers

[44]

H —0.0013 0.0058 NA NA
\% 0.0016 —0.0051 NA NA

D 0.0058 —0.0030 NA NA
[9]

H 0.0040 0.0088 NA NA
\Y 0.0088 0.0008 NA NA

D 0.0180 0.0022 NA NA
[38]

H NA —0.0016 NA NA
\% NA 0.0002 NA NA

D NA —0.0035 NA NA
[49]

H —0.0031 0.0040 NA 0.0013
\% —0.0006 —0.0012 NA 0.0032
D 0.0012 —0.0021 NA —0.0068
[46]

H NA 0.0084 NA NA
\% NA —0.0039 NA NA

D NA —0.0013 NA NA
[31]

H 0.0002 0.0002 0.0002 NA
\Y 0.0001 0.0005 0.00005 NA
D 0.0025 0.0024 0.0026 NA
[2]

H 0.0033 0.0012  —0.00002 0.0084
\% 0.0003 —0.0031  —0.0006 0.0008
D 0.0067 0.0034 —0.0016 0.0013
Proposed

H 0.0013 0.0048 —0.0058  —0.0025
\Y —0.0048 0.0037 —0.0022  —0.0020
D —0.0102 —0.0003 0.0037 —0.0025

10.1. NPCR and UACI

The NPCR values in Table 9 demonstrate that the proposed method achieves high sensitivity
to small changes in the plaintext image. For commonly used images such as Cameraman, Lena,
Baboon, and Peppers, the NPCR values exceed 99.60%, with a peak value of 99.63%. This is
comparable or superior to most existing works [44,9,49,31]. Similarly, the UACI values of the
proposed scheme are consistently above 33.30%, closely aligning with ideal values and indicating
strong diffusion characteristics, as indicated in Table 10. These results confirm that even minimal
changes in the plaintext yield significantly different cipher images.
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10.2. Information Entropy

As shown in Table 11, the information entropy of encrypted images generated by the proposed
method is consistently close to the ideal value of 8. For all tested images, entropy values range
between 7.9970 and 7.9975, reflecting a high degree of randomness and ensuring strong resistance
against entropy-based attacks. The values are on par with, or slightly better than, the benchmark
approaches [31,49].

10.3. Chi-square Test

The Chi-square test results presented in Table 12 show that the proposed method yields lower
x?2 values compared to previous methods, indicating better histogram uniformity. For instance,
the proposed method results in x? values of 274 for Cameraman and 221 for Lena, slightly lower
than [2], suggesting improved resistance against statistical attacks.

10.4. Correlation Coefficient Analysis

Table 13 highlights the Correlation Coefficient values for horizontally, vertically, and diag-

onally adjacent pixels. The proposed scheme consistently produces values near zero or even
negative, indicating very low correlation between adjacent pixels in the cipher image. This is
a significant improvement over traditional schemes and supports the method’s effectiveness in
disrupting spatial redundancy. Compared to benchmark methods such as [44,31,2], the proposed
technique delivers better decorrelation, enhancing security against statistical analysis.
In summary, the proposed encryption method performs competitively or better across all key
metrics, ensuring high levels of security, randomness, and robustness. These results validate its
effectiveness for secure image encryption and confirm its advantage over existing state-of-the-art
techniques.

11. Conclusion

In this paper, we have presented a novel image encryption scheme that synergistically com-

bines a high-dimensional chaotic map with a Suslin matrix-based diffusion mechanism. By
generating a pseudo-random sequence through the proposed HSLC map and constructing an
invertible Suslin matrix from a shared secret key, the scheme achieves robust confusion and dif-
fusion without the need for explicit key exchange. The experimental results demonstrate that
the encrypted images exhibit high entropy, low correlation among adjacent pixels, and strong
differential properties, as confirmed by favorable NPCR, and UACI, metrics under various noise
conditions. Moreover, the computational efficiency of the method makes it suitable for real-time
applications in multimedia systems.
Future work will focus on extending the proposed scheme to handle color images and exploring
hardware implementation to further improve its speed and efficiency. Additionally, incorporating
adaptive parameter tuning and integrating additional cryptographic primitives may further en-
hance the overall security of the system. Overall, the proposed approach represents a promising
direction for secure and efficient image encryption in diverse application scenarios.
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