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Fixed Points of a,-Interpolative Contractions in S-Metric Spaces
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ABSTRACT: Interpolative contraction is one of the generalization of Banach contraction, recently added in the
literature. In this paper, we introduce interpolative contraction of Kannan and Cirié-Reich-Rus in S-metric
spaces via a-admissible mappings. Further, we prove some fixed point theorems for these contractions. We
also give an example and discuss various consequences.
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1. Introduction

Kannan [1,2] generalized Banach contraction principle [3] making continuity of the mapping not essen-
tial. Karapinar [4] introduced interpolative contraction to generalize Banach and Kannan contractions.
He said that in a metric space (X,d), a mapping T : X — X is an interpolative Kannan type contrac-
tion, if there exist constants A € [0,1) and o € (0,1) such that d(Tx,Ty) < Nd(z, Tx)]*.[d(y, Ty)]*
for all x,y € X with  # T'z. He also state the corresponding fixed point theorem as “In a complete met-
ric space (X, d) an interpolative Kannan contraction mapping 7' : X — X has a unique fixed point in X”.

In[5], Karapinar et al. gave an example ([5], Example 1) showcasing that the fixed point is not
necessarily unique and modified the theorem statement as “In a complete metric space (X, d), a mapping
T : X — X possesses a fixed point in X, if there exist constants A € [0,1) and « € (0,1) such that
d(Tz, Ty) < Nd(z, Tz)]%.[d(y, Ty)]}= for all z,y € X — Fiz(T)”.

Throughout this paper, Fixz(T) will denote the collection of all fixed points of T', or points a € X such
that Ta = a.

Following theorem was given in [6] stating that was proved independently by Reich, Rus and Ciri¢

[7,8,9,10,11,12,13,14] to combine and improve fixed point theorems of Banach as well as Kannan.

Theorem 1.1 [6] “A mapping T on a complete metric space (X,d) satisfying:
d(Tz,Ty) < Md(z,y) + d(z, Tz) + d(y, Ty)],
for all z,y € X, where \ € [0, %), has a distinct fized point”.

Following variation of Reich was also stated in [5];

d(Tz,Ty) < ad(z,y) + bd(z,Txz) + cd(y, Ty),
where a, b, ¢ € (0,00) such that 0 < a+b+c < 1.
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Let ¥ be the collection of all nondecreasing mappings 1 constructed on the interval [0, +00) with:

D o Un(t) < oo

for each t > 0.
Observe that given ¢ € ¥, it maintains that ¢ (0) = 0 and v (¢) < t across every ¢ > 0.

Many papers used and generalized above concept in order to prove variant (common) fixed point
results (see, for instance, [6]).
Samet et al. [15] gave the following definition of a-admissible.

Definition 1.1 [15] Let T : X — X be a mapping and o : X x X — [0,4+00) be a function. We identify
T as a-admissible if for x,y € X, the condition a(x,y) > 1 necessitates that a(Tx, Ty) > 1.

Popescu [16] gave the definition of a-orbital admissible.

Definition 1.2 [16] Let T : X — X be a mapping and o : X x X — [0, +00) be a function. We identify
T as a-orbital admissible if for x € X, the condition a(z,Tz) > 1 necessitates that o(Tx, T?x) > 1.

Sedghi et al. [17] define S-metric space as follows

Definition 1.3 [17] A mapping S : X? — [0,+00), with X as a nonempty set, is classified as an
S-metric space if it fulfills the subsequent circumstances for every xy,xo,x3,t € X:

(1) S(z1,22,23) 2 0

(2) S(x1,29,23) =0 iff &1 =29 =23 =0

(8) S(x1,x2,23) < S(z1,21,t) + S(x2,22,t) + S(T3,23,1)
The duo (X, S) is termed as S-metric space.

For detail discussion about S-metric space we refer the reader to [17].

a-admissible and its various form are extended to S-metric spaces by Priyobarta et al. [18],Khomdram
et al.[19] and Poddar & Rohen [20]. Here, for requirement we pick up the following definition of a-
admissible in S- metric space.

Definition 1.4 [18] Let (X, S) be an S-metric space, T : X — X, and as : X3 — [0,+00). Then T is
termed as-admissible if for x,y,z € X, the condition as(x,y, z) > 1 necessitates that as(Tx, Ty, Tz) > 1.

In the same line, we gave the following definition of a-orbital admissible in S-metric spaces, by
extending Definition 1.2.

Definition 1.5 Let (X,S) be an S-metric space, T : X — X, and a : X® — [0,+00). Then T is called
as-orbital admissible if for x € X, the condition o (x,x, Tx) > 1 necessitates that as(Tax, Tz, T?z) > 1.

2. Main Results
We commence with the principal outcome of our research by presenting the following definition.

Definition 2.1 The mapping T on the S-metric space (X, S) is designated as an as-interpolative Kannan
type contraction if there occurs a function ¥ € U and a mapping as : X x X x X — [0,4+00), with
p,q € (0,1) such that

as(z,y,2)S(Tx, Ty, Tz) < ([S(x,z,Tx)]P
[S(y, y, Ty)U[[S (2, 2, T2)] 7F79) (2.1)

for each x,y,z € X — Fiz(T).
The principal outcome is presented as follows.
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Theorem 2.1 Let T : X — X be a mapping defined on the complete S-metric space (X, S) that follows
the subsequent circumstances:

1. T s continuous.
2. T is as-orbital admissible.
3. There occurs an element xo € X that gives as(xg, xo, Txo) > 1.

4. T is ag-interpolative Kannan type contraction.

Then a fized point of T exists in X.

Proof:

Let 2o € X be a point that corresponds to as(zg, g, Txo) > 1. Let {z,} be the sequence defined by
Ty =T"(x0) for n > 1. If for a certain ng, n, = Tny+1, then z,, becomes a fixed point of T, otherwise,
Ty 7 Tt for all n > 1. We have a, (29, 20, 21) > 1. Since T' is as-orbital admissible,

as(1, 21, 22) = as(Txo, Txo, Tay) > 1.
Continuing as above, we obtain that

s (Tny Tny 1) 21 for all n>0 (2.2)

Taking x =y = ¢,—1 and z = 2, in (2.1), we find that

S(mnaxn7xn+1) S as(xnflamnfbxn)S(TxnflaTmnflyTxn)
< P([S(@n—1,2n—1,Tn-1)P[S(@n-1,Tn-1,TTn—1)|[S(Tn, Tn, Txn)]lipiq)
= w([S(xn—laxn—lazn)}erq[S(xn;l‘namn—&-l)}lipiq) (23)

Specifically, since ¢ (t) < t for any t > 0,

S(:Enymnaanrl) S [S(ajnfhxnflzxn)]p+q[s(mnaxnvanrl)]l_p_q (24)
We derive

[S(xnu Ty xn+1)]p+q < [S(ﬁrnfh Tp—1, xn)]p+q

Therefore,

S(Tn, Tn, Tnt1) < S(Tp—1,Tn—1,2,) for all n>1. (2.5)

Therefore, the positive sequence {S(zp—_1,2Zn—1,%,)} is monotonically decreasing. Ultimately, we
have a real number [ > 0 that gives lirf S(Xn—1,Tn—1,,) = l. Taking into account (2.5), so (2.3) in
n—-+oo

conjunction coupled with the nondecreasing nature of 1) results in:

1/1([5(%—17 Tn—1, xn)] 17p7q[5(xn’ T, xn+1)]p+q)

w[s(mn—:h xn—la xn)]

S(xm L, xn—&-l)

IAIA

By reiterating this contention, we get

¢(S(:Enflvxn717xn)) S wQ(S(xnf%xanvxnfl))
S wn(S(ﬂfo,l’(),ZEl)) (26)

S(xnyxnaanrl)

INIA
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By letting n — 400 in (2.6) and employing the fact that hlf Y™ (t) = 0 for any ¢t > 0, we conclude
n—-+0oo
that | = 0, precisely,
ngr_{_loo S(xn; Tn, anrl) =0
We claim that {z,,} constitutes a Cauchy sequence, specifically that hr—? S (X, Ty Tptp) = 0 for all
n—-+0o0

p € N. By virtue of the triangle inequality in conjunction with (2.6), we ascertain:

STy Ty Tgp) < 20™(S(20, 0, 1)) + oo + 20" TPT2(S (w0, 20, 1)) + " TPTH(S (20, 0, 71))
n+p—1

2 Z ¢i(S(JZQ,$0,JE1))

IN

Taking the limit as n approaches infinity in the aforementioned inequality, we can deduce that the
right-hand side converges to zero. Consequently, the series {z,} is a Cauchy sequence. Concerning the
completeness of the S-metric space (X, .S), we conclude that there exists an element x € X such that

ngrfw S(Tn, Tn,z) =0 (2.7)
Given that T is continuous, we obtain
O

Additionally, the condition labelled as (H) has frequently been examined to bypass the continuity of
the relevant contractive mappings.

(H) If {x,} is a sequence in X such that as(z,, pn, Tpy1) > 1 for each n and z, — z € X asn — 400
then there exists {x,,)} from {z,} such that o (2 ), Znk),z) > 1 for each k.

In the meantime, we substitute the continuity criteria with the weakened condition (H).

Theorem 2.2 Let T : X — X be a self-mapping defined on a complete S-metric space (X,S) that
satisfies condition (H) together with the subsequent conditions:

1. T is as-orbital admissible.
2. There occurs an element xo € X that gives as(xg, o, Txo) > 1.

3. T is as-interpolative Kannan type contraction.

Then a fized point of T exists in X.

Proof:

According to the proof of Theorem 2.1, we deduce that the sequence {x,} is Cauchy and that (2.7)
is satisfied. Assume that condition (H) is satisfied. We employ proof by contradiction by presuming
that © # Twx. Note that x,4) # T,y for every & > 0. As a result of (H), there exists a partial
subsequence {z, )} of {x,} such that ag(z, k), Tnw), ) > 1 for all k. Since S(zy, k), Ty, ) — 0,
S(Trk) Tk, TTpry) — 0 and S(x, z,Tx) > 0, There occurs N € N such that, for every & > N,

S(Tpkys Tngr), x) < S(x,2,Tx)

and
S @n(k)> Tnk)y, TTnrky) < S(x,z,Tx).

Taking = y = x,,) and z = x in (2.1), we get
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s (S(Tn(k) Tn(k), ©))S(TTn(kys TTn(ry, TT)
V(S (@niys Trk)s TP IS (@ (k) Triys T (i))]?
[S(z, z, Tx)]' P79 (2.8)

S(Zn(k)+1, Tn(k)+1, 1)

IAIA

Since 1 is nondecreasing, it emerges from (2.8) that

Sy 1 Ty, To) < (S(, 2, Ta) P8 (e, 2, Ta) (S (w, 2, Ta)] 77
= (S(z.x,Ta))

Letting kK — +o00, we find that

0<S(z,z,Tx) < P(S(z,z,Tx)) < S(x,z,Tx)
which is a contradiction. Thus x = T'z. O
To start with the second main result of our study, we state the following definition

Definition 2.2 Let (X,S) be an S-metric space. The mapping T : X — X is said to be an -
interpolative Clirié-Reich-Rus-type contraction if there occurs ¢ € U | ay : X X X x X — [0,4+00)
and positive reals p,q,r > 0, verifying p+ q +r < 1, such that

as(z,y,2)S(Tz, Ty, Tz) < ([S(x,y, 2)]P[S(x, 2, T2)[S(y, y, Ty)]"[S(2, 2, T2)] 7P797") (2.9)
forall z,y,z € X — Fix(T).
The following one is our second main result.

Theorem 2.3 LetT : X — X be a self mapping defined on the complete S-metric space (X, S) satisfying
the following conditions:

1. T s continuous.

2. T is as-orbital admissible.

3. There occurs an element xo € X that gives a(xg, xo, Txo) > 1.
4. T is ag-interpolative Cirié-Reich-Rus type contraction.

Then o fized point of T exists in X.

Proof:

Let zp € X be a point such that as(xo,zo,Tzo) > 1. Let {z,} be the sequence defined by z, =
T™(xg), n > 1. If for some ng , we have x,, = X, 41, then x,, is a fixed point of T otherwise, x,, # Zpn41
for each n > 1. We have as(xg,xg,x1) > 1. Since T is a,-orbital admissible,

as(x1, w1, 22) = as(Txo, Txo, Tx1) > 1.

Continuing as above, we obtain that

as(Tp, Tp, py1) > 1 for all n>0 (2.10)

Taking * = y = 2,,—1 and z = z,, in (2.9), we find that
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as(xnflymnflymn)S(Txnfly Txp—1, Twn)
w([s(2n71 yTn—1, zn)]p[S(xn,l, Tn—1, Tznfl)]q[s(m’nfla Tn—1, Txnfl)]T[S(xny Tn, Txn)]l—p—q—r)
P([S(@n—1,Tn—1,20) P [S(@n, Tn, 2ny1)] PO (2.11)

S(zru Tn, $n+1)

I IA A

In particular, as ¥(t) < t for each ¢ > 0,

S(wnymnaanrl) < [S(xnflawnflaxn>]p+q+r[s(xn7xn>$n+l)]1_p_q_r (212)

We derive

[S(.’I,‘n, Tn, mn+1)}p+q+r < [S(.’L‘n,h Tn—1, xn)]p+q+r

Therefore,

S(Tny Ty Tng1) < S(Tn—1,Tn-1,2n) for all n>1. (2.13)

Hence, the positive sequence {S(z,—1,%n—1,Z,)} is decreasing. Eventually, there is a real [ > 0 in
order that lirf S(Tp-1,Zn-1,%,) = l. Taking into account (2.13),
n—-+0oo

[S(x”_l’xn—hx”)]p+q+T[S(xn7xn7wn+1)]17p7q7'r S [S(xn—lvxn—lyxn)]p+q+r[s(xn—1yxn—hmn)]lipiqi'r

= S(:I:n—lyzn—hmn)

so (2.11) along with the nondecreasing nature of v, this results in:

S($naxna$n+l) S w([s(xnflvxnflaxn)]p+q+r[s($naxnaanrl)]l_p_q_r)
< Q/J[S(:L‘n,h Tn—1, xn)]

By reiterating this argument, we obtain

¢(S($n717 Tn—1, xn)) S wQ(S(‘II;nf% Tn—2, xn71>)

S(Tns Tny Tng1) <
S S wn(S(LC(),ZL’(),IL'l)) (214)

By letting n — +o00 in (2.14) and utilising the fact that lirf Y™ (t) = 0 for any ¢t > 0, we conclude
n—-+0oo
that [ = 0, that is,
nEr—iI-loo S(J"n) T, xn-‘,—l) =0
We claim that {z,} constitutes a Cauchy sequence, specifically that lirf S(Zn, Tn, Tngp) = 0 for all
n—-+0oo

p € N. By virtue of the triangle inequality in conjunction with (2.14), we ascertain:

IN

20" (S(zo, w0, 1)) + ... + 2" P (S (w0, w0, 71))

+oo
2Z¢i(5(aco,x0,x1)).

S(.Tn, Tn,s xn—i—p)

IN

Taking the limit as n approaches infinity in the aforementioned inequality, we may deduce that the
right-hand side converges to zero. Consequently, the series {z,} is a Cauchy sequence. Concerning the
completeness of the S-metric space (X, S), we conclude that there exists an element x € X such that

lim S(zp,xn,z) =0. (2.15)

n—oo
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Since T is continuous, we have
x= lim zp41 = lim Tx, =T lim (x,) =Tz
n—-+oo

n——+oo n—-+oo

Subsequently, we substitute the continuity criteria by a weakened condition (H).
O

Theorem 2.4 Let T : X — X be a mapping defined on the complete S-metric space (X, S) satisfying
condition (H) along with the following conditions:

1. T s as-orbital admaissible.
2. There occurs an element xo € X that gives a(xg, o, Txo) > 1.
3. T is as-interpolative Cirié-Reich-Rus type contraction.

Then a fized point of T exists in X.

Proof:

By the direct application of Theorem 2.3, we deduce that the sequence {z, } is Cauchy and that (2.15)
is satisfied. Assume that condition (H) is satisfied. We employ proof by contradiction by presuming
that © # Tw. Note that x,4) # Tx,y) for every & > 0. As a result of (H), there exists a partial
subsequence {x, ()} of {,} such that o (x, ), Znky,z) > 1 for every k. Since S(zy, k), Tpn), ) — 0,
S(Tr(k) Tk, TTpry) — 0 and S(x, z,Tx) > 0, there is N € N such that, for each £ > N,

S(mn(k)a Tn(k)s 33) < S(l‘, €T, TZC)

and
S(Trk) Tk, Tpry) < S(x, 2, Tx).

Taking z =y = 2, and z = z in (2.9), we get

< as(Tnrys Tak)s S (T2ny, TTnk), TT)
< PS@n(r)s Trir)> T[S (Tn(k)s Tnir)s TTnk))]?
[S(xn(k)v Tn(k)> Txn(k:))r[s('ra z, Tx)]l—p—q—r) (216)

S(Tp(k)+1, Tn(k)+1, 1)

5o (2.16) with the nondecreasing nature of 1, this results in
S($n(k)+l7xn(k)+lyTx) < d)([S(xv'raTz)]p[s($7x7Tx)}q[S(xamaTz)]r[s(xvxaTI)]lipiqir)

= P(S(x, 2, Tx))
Letting k — +o00, we find that

0< S(z,2,Tx) < P(S(x,z,Tx)) < S(x,z,Tx)

which is a contradiction. Thus z = T'x.

O
By considering as(x,y,z) = 1 in Theorem 2.3, we state the following.
Corollary 2.1 Let T be a continuous self-mapping on a complete S-metric space (X,S) such that
ST, Ty, Tz) < ¢([S(z,z,Tx)P[S(y,y,Ty))*
[z, 2, T2)] 77~ (2.17)

forall z,y,z € X — Fix(T), where 0 < p,q < 1. Then, T possesses a fized point in X.
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Corollary 2.2 Let T be a continuous self-mapping on a complete S-metric space (X,S) such that

S(Tz, Ty, Tz) < P([S(x,y,2)]P[S(z,z, T)]?
[S(y,y, Ty)]"[S(2, 2, T2)]' P797") (2.18)

for all z,y,z € X — Fiz(T), where p,q,r > 0 are positive reals satisfying p+ q+r < 1. Then, T
possesses a fized point in X.

Taking 9 (t) = At (where A € [0,1)) in Corollary 2.2, we state
Corollary 2.3 Let T be a continuous self-mapping on a complete S-metric space (X,S) such that

STz, Ty, Tz) < X[S(z,y,2)’[S(z,x, Tx)]?
[S(y,y, Ty)]"[S(z, 2, Tz)] P74 (2.19)
for all x,y,z € X — Fiz(T), where p,q,r are positive reals verifying p+q+r <1 and X\ € [0,1). Then,

T possesses a fixved point in X .

Taking p =1 and ¢ = r = 0 in Corollary 2.3, we get Banach contraction principle in S-metric space.
Which may be stated as
Let T be a continuous self-mapping on a complete S-metric space (X, .S) such that

STz, Ty, Tz) < A([S(x,y,2)])
for all z,y,z € X — Fiz(T). Then, T possesses a fixed point in X.
Taking ¢(t) = At (where A € [0,1)) in Corollary 2.1, we state

Corollary 2.4 Let T be a continuous self-mapping on a complete S-metric space (X,S) such that

S(Tz, Ty, Tz) < M[S(z,z,Tx)"[S(y,y,Ty)]
(2,5, T2 ) (2.20)
forall z,y,z € X — Fix(T), where 0 < p,q <1 and A\ € [0,1). Then, T possesses a fized point of T.

Example 2.1 Let us consider the set X = [a,b] with the S-metric defined as follows S(z,y,2) =|z —y |
+|ly—z|+|z—=x|. LetT be a self mapping on X defined by:

Te — ‘%b, if x € [e, b, a<c<“7+b
o a, otherwise.

Take

B 1, if z,y,z€ e,
as(z,y,2) = {()7 otherwise.

Let x,y,z € X be such that x # Tx, y # Ty, z # Tz and as(x,y,z) > 1. Then x,y,z € [c,b] and

z,y,z & {22}, We have Tx = Ty = Tz = 2. Hence for xo = b, we have:
as(xo, o, Txo) = as(b, b, %—H)) =1

Now, let x,y,z € X be such that as(x,y,z) > 1. It yields that z,y, z € [¢,b] so that Tx =Ty =Tz =
2t ¢ [c,b] Hence,os(Tx, Ty, T2) = o, (22, % atb 2y =1.
That is T is ag-orbital admissible.
Since T is not continuous. We will demonstrate that (H) holds. Let {x,} be a sequence in X such that
s (Tny Ty Tpy1) > 1 for each n € N. Then, {z,} C [e,b].
If{z,} = u asn — oo, we have | &y, —xp |+ | Tp—u | + | zp —u|— 0 as n — co. Hence u € [c,b], and
80 s(Ty, Ty, u) = 1. All prerequisites of Theorem 2.3 are satisfied. In this situation a and %rb are two
fized points of T.
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3. Conclusion

In conclusion, utilizing the notion of ag-admissibility, interpolation, and the simulation function within

the framework of S-metric space, we present the concepts of ag-interpolative Kannan type contraction
and ag-interpolative Cirié-Reich-Rus type contractions to establish several fixed point theorems. A
comparable outcome using the Banach Contraction principle is derived in the context of S-metric spaces
as a corollary of our findings. Moreover, our findings can be extrapolated to additional generalized metric
spaces.
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