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Fixed Points of αs-Interpolative Contractions in S-Metric Spaces
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abstract: Interpolative contraction is one of the generalization of Banach contraction, recently added in the
literature. In this paper, we introduce interpolative contraction of Kannan and Ćirić-Reich-Rus in S-metric
spaces via α-admissible mappings. Further, we prove some fixed point theorems for these contractions. We
also give an example and discuss various consequences.
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1. Introduction

Kannan [1,2] generalized Banach contraction principle [3] making continuity of the mapping not essen-
tial. Karapinar [4] introduced interpolative contraction to generalize Banach and Kannan contractions.
He said that in a metric space (X, d), a mapping T : X → X is an interpolative Kannan type contrac-
tion, if there exist constants λ ∈ [0, 1) and α ∈ (0, 1) such that d(Tx, Ty) ≤ λ[d(x, Tx)]α.[d(y, Ty)]1−α

for all x, y ∈ X with x ̸= Tx. He also state the corresponding fixed point theorem as “In a complete met-
ric space (X, d) an interpolative Kannan contraction mapping T : X → X has a unique fixed point in X”.

In [5], Karapinar et al. gave an example ( [5], Example 1) showcasing that the fixed point is not
necessarily unique and modified the theorem statement as “In a complete metric space (X, d), a mapping
T : X → X possesses a fixed point in X, if there exist constants λ ∈ [0, 1) and α ∈ (0, 1) such that
d(Tx, Ty) ≤ λ[d(x, Tx)]α.[d(y, Ty)]1−α for all x, y ∈ X − Fix(T )”.
Throughout this paper, Fix(T ) will denote the collection of all fixed points of T , or points a ∈ X such
that Ta = a.

Following theorem was given in [6] stating that was proved independently by Reich, Rus and Ćirić
[7,8,9,10,11,12,13,14] to combine and improve fixed point theorems of Banach as well as Kannan.

Theorem 1.1 [6] “A mapping T on a complete metric space (X, d) satisfying:

d(Tx, Ty) ≤ λ[d(x, y) + d(x, Tx) + d(y, Ty)],

for all x, y ∈ X, where λ ∈ [0, 13 ), has a distinct fixed point”.

Following variation of Reich was also stated in [5];

d(Tx, Ty) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty),

where a, b, c ∈ (0,∞) such that 0 ≤ a+ b+ c < 1.
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Let Ψ be the collection of all nondecreasing mappings ψ constructed on the interval [0,+∞) with:

∞∑
n=1

ψn(t) <∞

for each t > 0.
Observe that given ψ ∈ Ψ, it maintains that ψ(0) = 0 and ψ(t) < t across every t > 0.

Many papers used and generalized above concept in order to prove variant (common) fixed point
results (see, for instance, [6]).

Samet et al. [15] gave the following definition of α-admissible.

Definition 1.1 [15] Let T : X → X be a mapping and α : X×X → [0,+∞) be a function.We identify
T as α-admissible if for x, y ∈ X, the condition α(x, y) ≥ 1 necessitates that α(Tx, Ty) ≥ 1.

Popescu [16] gave the definition of α-orbital admissible.

Definition 1.2 [16] Let T : X → X be a mapping and α : X ×X → [0,+∞) be a function.We identify
T as α-orbital admissible if for x ∈ X, the condition α(x, Tx) ≥ 1 necessitates that α(Tx, T 2x) ≥ 1.

Sedghi et al. [17] define S-metric space as follows

Definition 1.3 [17] A mapping S : X3 → [0,+∞), with X as a nonempty set, is classified as an
S-metric space if it fulfills the subsequent circumstances for every x1, x2, x3, t ∈ X:

(1) S(x1, x2, x3) ≥ 0

(2) S(x1, x2, x3) = 0 iff x1 = x2 = x3 = 0

(3) S(x1, x2, x3) ≤ S(x1, x1, t) + S(x2, x2, t) + S(x3, x3, t)

The duo (X,S) is termed as S-metric space.

For detail discussion about S-metric space we refer the reader to [17].
α-admissible and its various form are extended to S-metric spaces by Priyobarta et al. [18],Khomdram

et al. [19] and Poddar & Rohen [20]. Here, for requirement we pick up the following definition of α-
admissible in S- metric space.

Definition 1.4 [18] Let (X,S) be an S-metric space, T : X → X, and αs : X3 → [0,+∞). Then T is
termed αs-admissible if for x, y, z ∈ X, the condition αs(x, y, z) ≥ 1 necessitates that αs(Tx, Ty, Tz) ≥ 1.

In the same line, we gave the following definition of α-orbital admissible in S-metric spaces, by
extending Definition 1.2.

Definition 1.5 Let (X,S) be an S-metric space, T : X → X, and αs : X
3 → [0,+∞). Then T is called

αs-orbital admissible if for x ∈ X, the condition αs(x, x, Tx) ≥ 1 necessitates that αs(Tx, Tx, T
2x) ≥ 1.

2. Main Results

We commence with the principal outcome of our research by presenting the following definition.

Definition 2.1 The mapping T on the S-metric space (X,S) is designated as an αs-interpolative Kannan
type contraction if there occurs a function ψ ∈ Ψ and a mapping αs : X × X × X → [0,+∞), with
p, q ∈ (0, 1) such that

αs(x, y, z)S(Tx, Ty, Tz) ≤ ψ([S(x, x, Tx)]p

[S(y, y, Ty)]q[[S(z, z, Tz)]1−p−q) (2.1)

for each x, y, z ∈ X − Fix(T ).
The principal outcome is presented as follows.
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Theorem 2.1 Let T : X → X be a mapping defined on the complete S-metric space (X,S) that follows
the subsequent circumstances:

1. T is continuous.

2. T is αs-orbital admissible.

3. There occurs an element x0 ∈ X that gives αs(x0, x0, Tx0) ≥ 1.

4. T is αs-interpolative Kannan type contraction.

Then a fixed point of T exists in X.

Proof:
Let x0 ∈ X be a point that corresponds to αs(x0, x0, Tx0) ≥ 1. Let {xn} be the sequence defined by

xn = Tn(x0) for n ≥ 1. If for a certain n0, xn0 = xn0+1, then xn0 becomes a fixed point of T , otherwise,
xn ̸= xn+1 for all n ≥ 1. We have αs(x0, x0, x1) ≥ 1. Since T is αs-orbital admissible,

αs(x1, x1, x2) = αs(Tx0, Tx0, Tx1) ≥ 1.

Continuing as above, we obtain that

αs(xn, xn, xn+1) ≥ 1 for all n ≥ 0 (2.2)

Taking x = y = xn−1 and z = xn in (2.1), we find that

S(xn, xn, xn+1) ≤ αs(xn−1, xn−1, xn)S(Txn−1, Txn−1, Txn)

≤ ψ([S(xn−1, xn−1, Txn−1)]
p[S(xn−1, xn−1, Txn−1)]

q[S(xn, xn, Txn)]
1−p−q)

= ψ([S(xn−1, xn−1, xn)]
p+q[S(xn, xn, xn+1)]

1−p−q) (2.3)

Specifically, since ψ(t) < t for any t > 0,

S(xn, xn, xn+1) ≤ [S(xn−1, xn−1, xn)]
p+q[S(xn, xn, xn+1)]

1−p−q (2.4)

We derive

[S(xn, xn, xn+1)]
p+q < [S(xn−1, xn−1, xn)]

p+q

Therefore,

S(xn, xn, xn+1) < S(xn−1, xn−1, xn) for all n ≥ 1. (2.5)

Therefore, the positive sequence {S(xn−1, xn−1, xn)} is monotonically decreasing. Ultimately, we
have a real number l ≥ 0 that gives lim

n→+∞
S(xn−1, xn−1, xn) = l. Taking into account (2.5), so (2.3) in

conjunction coupled with the nondecreasing nature of ψ results in:

S(xn, xn, xn+1) ≤ ψ([S(xn−1, xn−1, xn)]
1−p−q[S(xn, xn, xn+1)]

p+q)

≤ ψ[S(xn−1, xn−1, xn)]

By reiterating this contention, we get

S(xn, xn, xn+1) ≤ ψ(S(xn−1, xn−1, xn)) ≤ ψ2(S(xn−2, xn−2, xn−1))

≤ ... ≤ ψn(S(x0, x0, x1)) (2.6)
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By letting n→ +∞ in (2.6) and employing the fact that lim
n→+∞

ψn(t) = 0 for any t > 0, we conclude

that l = 0, precisely,

lim
n→+∞

S(xn, xn, xn+1) = 0

We claim that {xn} constitutes a Cauchy sequence, specifically that lim
n→+∞

S(xn, xn, xn+p) = 0 for all

p ∈ N. By virtue of the triangle inequality in conjunction with (2.6), we ascertain:

S(xn, xn, xn+p) ≤ 2ψn(S(x0, x0, x1)) + ...+ 2ψn+p−2(S(x0, x0, x1)) + ψn+p−1(S(x0, x0, x1))

≤ 2

n+p−1∑
i=n

ψi(S(x0, x0, x1))

Taking the limit as n approaches infinity in the aforementioned inequality, we can deduce that the
right-hand side converges to zero. Consequently, the series {xn} is a Cauchy sequence. Concerning the
completeness of the S-metric space (X,S), we conclude that there exists an element x ∈ X such that

lim
n→+∞

S(xn, xn, x) = 0 (2.7)

Given that T is continuous, we obtain

x = lim
n→+∞

xn+1 = lim
n→+∞

Txn = T lim
n→+∞

(xn) = Tx

2

Additionally, the condition labelled as (H) has frequently been examined to bypass the continuity of
the relevant contractive mappings.

(H) If {xn} is a sequence in X such that αs(xn, xn, xn+1) ≥ 1 for each n and xn → x ∈ X as n→ +∞
then there exists {xn(k)} from {xn} such that αs(xn(k), xn(k), x) ≥ 1 for each k.

In the meantime, we substitute the continuity criteria with the weakened condition (H).

Theorem 2.2 Let T : X → X be a self-mapping defined on a complete S-metric space (X,S) that
satisfies condition (H) together with the subsequent conditions:

1. T is αs-orbital admissible.

2. There occurs an element x0 ∈ X that gives αs(x0, x0, Tx0) ≥ 1.

3. T is αs-interpolative Kannan type contraction.

Then a fixed point of T exists in X.

Proof:
According to the proof of Theorem 2.1, we deduce that the sequence {xn} is Cauchy and that (2.7)

is satisfied. Assume that condition (H) is satisfied. We employ proof by contradiction by presuming
that x ̸= Tx. Note that xn(k) ̸= Txn(k) for every k ≥ 0. As a result of (H), there exists a partial
subsequence {xn(k)} of {xn} such that αs(xn(k), xn(k), x) ≥ 1 for all k. Since S(xn(k), xn(k), x) → 0,
S(xn(k), xn(k), Txn(k)) → 0 and S(x, x, Tx) > 0, There occurs N ∈ N such that, for every k ≥ N ,

S(xn(k), xn(k), x) ≤ S(x, x, Tx)

and
S(xn(k), xn(k), Txn(k)) ≤ S(x, x, Tx).

Taking x = y = xn(k) and z = x in (2.1), we get
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S(xn(k)+1, xn(k)+1, Tx) ≤ αs(S(xn(k), xn(k), x))S(Txn(k), Txn(k), Tx)

≤ ψ([S(xn(k), xn(k), Txn(k))]
p[S(xn(k), xn(k), Txn(k))]

q

[S(x, x, Tx)]1−p−q) (2.8)

Since ψ is nondecreasing, it emerges from (2.8) that

S(xn(k)+1, xn(k)+1, Tx) ≤ ψ([S(x, x, Tx)]p[S(x, x, Tx)]q[S(x, x, Tx)]1−p−q)

= ψ(S(x, x, Tx))

Letting k → +∞, we find that

0 ≤ S(x, x, Tx) ≤ ψ(S(x, x, Tx)) < S(x, x, Tx)

which is a contradiction. Thus x = Tx. 2

To start with the second main result of our study, we state the following definition

Definition 2.2 Let (X,S) be an S-metric space. The mapping T : X → X is said to be an αs-
interpolative Ćirić-Reich-Rus-type contraction if there occurs ψ ∈ Ψ , αs : X × X × X → [0,+∞)
and positive reals p, q, r > 0, verifying p+ q + r < 1, such that

αs(x, y, z)S(Tx, Ty, Tz) ≤ ψ([S(x, y, z)]p[S(x, x, Tx)]q[S(y, y, Ty)]r[S(z, z, Tz)]1−p−q−r) (2.9)

for all x, y, z ∈ X − Fix(T ).

The following one is our second main result.

Theorem 2.3 Let T : X → X be a self mapping defined on the complete S-metric space (X,S) satisfying
the following conditions:

1. T is continuous.

2. T is αs-orbital admissible.

3. There occurs an element x0 ∈ X that gives αs(x0, x0, Tx0) ≥ 1.

4. T is αs-interpolative Ćirić-Reich-Rus type contraction.

Then a fixed point of T exists in X.

Proof:
Let x0 ∈ X be a point such that αs(x0, x0, Tx0) ≥ 1. Let {xn} be the sequence defined by xn =

Tn(x0), n ≥ 1 . If for some n0 , we have xn0 = xn0+1, then xn0 is a fixed point of T otherwise, xn ̸= xn+1

for each n ≥ 1. We have αs(x0, x0, x1) ≥ 1. Since T is αs-orbital admissible,

αs(x1, x1, x2) = αs(Tx0, Tx0, Tx1) ≥ 1.

Continuing as above, we obtain that

αs(xn, xn, xn+1) ≥ 1 for all n ≥ 0 (2.10)

Taking x = y = xn−1 and z = xn in (2.9), we find that
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S(xn, xn, xn+1) ≤ αs(xn−1, xn−1, xn)S(Txn−1, Txn−1, Txn)

≤ ψ([S(xn−1, xn−1, xn)]
p[S(xn−1, xn−1, Txn−1)]

q [S(xn−1, xn−1, Txn−1)]
r[S(xn, xn, Txn)]

1−p−q−r)

= ψ([S(xn−1, xn−1, xn)]
p+q+r[S(xn, xn, xn+1)]

1−p−q−r) (2.11)

In particular, as ψ(t) < t for each t > 0,

S(xn, xn, xn+1) < [S(xn−1, xn−1, xn)]
p+q+r[S(xn, xn, xn+1)]

1−p−q−r (2.12)

We derive

[S(xn, xn, xn+1)]
p+q+r < [S(xn−1, xn−1, xn)]

p+q+r

Therefore,

S(xn, xn, xn+1) < S(xn−1, xn−1, xn) for all n ≥ 1. (2.13)

Hence, the positive sequence {S(xn−1, xn−1, xn)} is decreasing. Eventually, there is a real l ≥ 0 in
order that lim

n→+∞
S(xn−1, xn−1, xn) = l. Taking into account (2.13),

[S(xn−1, xn−1, xn)]
p+q+r[S(xn, xn, xn+1)]

1−p−q−r ≤ [S(xn−1, xn−1, xn)]
p+q+r[S(xn−1, xn−1, xn)]

1−p−q−r

= S(xn−1, xn−1, xn)

so (2.11) along with the nondecreasing nature of ψ, this results in:

S(xn, xn, xn+1) ≤ ψ([S(xn−1, xn−1, xn)]
p+q+r[S(xn, xn, xn+1)]

1−p−q−r)

≤ ψ[S(xn−1, xn−1, xn)]

By reiterating this argument, we obtain

S(xn, xn, xn+1) ≤ ψ(S(xn−1, xn−1, xn)) ≤ ψ2(S(xn−2, xn−2, xn−1))

≤ ... ≤ ψn(S(x0, x0, x1)) (2.14)

By letting n → +∞ in (2.14) and utilising the fact that lim
n→+∞

ψn(t) = 0 for any t > 0, we conclude

that l = 0, that is,

lim
n→+∞

S(xn, xn, xn+1) = 0

We claim that {xn} constitutes a Cauchy sequence, specifically that lim
n→+∞

S(xn, xn, xn+p) = 0 for all

p ∈ N. By virtue of the triangle inequality in conjunction with (2.14), we ascertain:

S(xn, xn, xn+p) ≤ 2ψn(S(x0, x0, x1)) + ...+ 2ψn+p−1(S(x0, x0, x1))

≤ 2

+∞∑
i=n

ψi(S(x0, x0, x1)).

Taking the limit as n approaches infinity in the aforementioned inequality, we may deduce that the
right-hand side converges to zero. Consequently, the series {xn} is a Cauchy sequence. Concerning the
completeness of the S-metric space (X,S), we conclude that there exists an element x ∈ X such that

lim
n→∞

S(xn, xn, x) = 0. (2.15)
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Since T is continuous, we have

x = lim
n→+∞

xn+1 = lim
n→+∞

Txn = T lim
n→+∞

(xn) = Tx.

Subsequently, we substitute the continuity criteria by a weakened condition (H).
2

Theorem 2.4 Let T : X → X be a mapping defined on the complete S-metric space (X,S) satisfying
condition (H) along with the following conditions:

1. T is αs-orbital admissible.

2. There occurs an element x0 ∈ X that gives αs(x0, x0, Tx0) ≥ 1.

3. T is αs-interpolative Ćirić–Reich-Rus type contraction.

Then a fixed point of T exists in X.

Proof:
By the direct application of Theorem 2.3, we deduce that the sequence {xn} is Cauchy and that (2.15)

is satisfied. Assume that condition (H) is satisfied. We employ proof by contradiction by presuming
that x ̸= Tx. Note that xn(k) ̸= Txn(k) for every k ≥ 0. As a result of (H), there exists a partial
subsequence {xn(k)} of {xn} such that αs(xn(k), xn(k), x) ≥ 1 for every k. Since S(xn(k), xn(k), x) → 0,
S(xn(k), xn(k), Txn(k)) → 0 and S(x, x, Tx) > 0, there is N ∈ N such that, for each k ≥ N ,

S(xn(k), xn(k), x) ≤ S(x, x, Tx)

and
S(xn(k), xn(k), Txn(k)) ≤ S(x, x, Tx).

Taking x = y = xn(k) and z = x in (2.9), we get

S(xn(k)+1, xn(k)+1, Tx) ≤ αs(xn(k), xn(k), x)S(Txn(k), Txn(k), Tx)

≤ ψ([S(xn(k), xn(k), x)]
p[S(xn(k), xn(k), Txn(k))]

q

[S(xn(k), xn(k), Txn(k))]
r[S(x, x, Tx)]1−p−q−r) (2.16)

so (2.16) with the nondecreasing nature of ψ, this results in

S(xn(k)+1, xn(k)+1, Tx) ≤ ψ([S(x, x, Tx)]p[S(x, x, Tx)]q[S(x, x, Tx)]r[S(x, x, Tx)]1−p−q−r)

= ψ(S(x, x, Tx))

Letting k → +∞, we find that

0 ≤ S(x, x, Tx) ≤ ψ(S(x, x, Tx)) < S(x, x, Tx)

which is a contradiction. Thus x = Tx.
2

By considering αs(x, y, z) = 1 in Theorem 2.3, we state the following.

Corollary 2.1 Let T be a continuous self-mapping on a complete S-metric space (X,S) such that

S(Tx, Ty, Tz) ≤ ψ([S(x, x, Tx)]p[S(y, y, Ty)]q

[S(z, z, Tz)]1−p−q) (2.17)

for all x, y, z ∈ X − Fix(T ), where 0 < p, q < 1. Then, T possesses a fixed point in X.
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Corollary 2.2 Let T be a continuous self-mapping on a complete S-metric space (X,S) such that

S(Tx, Ty, Tz) ≤ ψ([S(x, y, z)]p[S(x, x, Tx)]q

[S(y, y, Ty)]r[S(z, z, Tz)]1−p−q−r) (2.18)

for all x, y, z ∈ X − Fix(T ), where p, q, r > 0 are positive reals satisfying p + q + r < 1. Then, T
possesses a fixed point in X.

Taking ψ(t) = λt (where λ ∈ [0, 1)) in Corollary 2.2, we state

Corollary 2.3 Let T be a continuous self-mapping on a complete S-metric space (X,S) such that

S(Tx, Ty, Tz) ≤ λ([S(x, y, z)]p[S(x, x, Tx)]q

[S(y, y, Ty)]r[S(z, z, Tz)]1−p−q−r) (2.19)

for all x, y, z ∈ X − Fix(T ), where p, q, r are positive reals verifying p+ q + r < 1 and λ ∈ [0, 1). Then,
T possesses a fixed point in X.

Taking p = 1 and q = r = 0 in Corollary 2.3, we get Banach contraction principle in S-metric space.
Which may be stated as

Let T be a continuous self-mapping on a complete S-metric space (X,S) such that

S(Tx, Ty, Tz) ≤ λ([S(x, y, z)])

for all x, y, z ∈ X − Fix(T ). Then, T possesses a fixed point in X.
Taking ψ(t) = λt (where λ ∈ [0, 1)) in Corollary 2.1, we state

Corollary 2.4 Let T be a continuous self-mapping on a complete S-metric space (X,S) such that

S(Tx, Ty, Tz) ≤ λ([S(x, x, Tx)]p[S(y, y, Ty)]q

[S(z, z, Tz)]1−p−q) (2.20)

for all x, y, z ∈ X − Fix(T ), where 0 < p, q < 1 and λ ∈ [0, 1). Then, T possesses a fixed point of T .

Example 2.1 Let us consider the set X = [a, b] with the S-metric defined as follows S(x, y, z) =| x− y |
+ | y − z | + | z − x |. Let T be a self mapping on X defined by:

Tx =

{
a+b
2 , if x ∈ [c, b], a < c < a+b

2
a, otherwise.

Take

αs(x, y, z) =

{
1, if x, y, z ∈ [c, b],
0, otherwise.

Let x, y, z ∈ X be such that x ̸= Tx, y ̸= Ty, z ̸= Tz and αs(x, y, z) ≥ 1. Then x, y, z ∈ [c, b] and
x, y, z /∈ {a+b

2 }. We have Tx = Ty = Tz = a+b
2 . Hence for x0 = b, we have:

αs(x0, x0, Tx0) = αs(b, b,
a+ b

2
) = 1

Now, let x, y, z ∈ X be such that αs(x, y, z) ≥ 1. It yields that x, y, z ∈ [c, b] so that Tx = Ty = Tz =
a+b
2 ∈ [c, b] Hence,αs(Tx, Ty, Tz) = αs(

a+b
2 , a+b

2 , a+b
2 ) = 1.

That is T is αs-orbital admissible.
Since T is not continuous. We will demonstrate that (H) holds. Let {xn} be a sequence in X such that
αs(xn, xn, xn+1) ≥ 1 for each n ∈ N. Then, {xn} ⊂ [c, b].
If {xn} → u as n→ ∞, we have | xn − xn | + | xn − u | + | xn − u |→ 0 as n→ ∞. Hence u ∈ [c, b], and
so αs(xn, xn, u) = 1. All prerequisites of Theorem 2.3 are satisfied. In this situation a and a+b

2 are two
fixed points of T .
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3. Conclusion

In conclusion, utilizing the notion of αS-admissibility, interpolation, and the simulation function within
the framework of S-metric space, we present the concepts of αS-interpolative Kannan type contraction
and αS-interpolative Ćirić-Reich-Rus type contractions to establish several fixed point theorems. A
comparable outcome using the Banach Contraction principle is derived in the context of S-metric spaces
as a corollary of our findings. Moreover, our findings can be extrapolated to additional generalized metric
spaces.
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