

Fixed Points of α_s -Interpolative Contractions in S -Metric Spaces

Moirangthem Pradeep Singh*, Sunil Panday and Yumnam Rohen Singh

ABSTRACT: Interpolative contraction is one of the generalization of Banach contraction, recently added in the literature. In this paper, we introduce interpolative contraction of Kannan and Ćirić-Reich-Rus in S -metric spaces via α -admissible mappings. Further, we prove some fixed point theorems for these contractions. We also give an example and discuss various consequences.

Key Words: Fixed point, α -admissible, α -orbital admissible, S -metric space, α_s -interpolative-Reich-Rus type contraction.

Contents

1	Introduction	1
2	Main Results	2
3	Conclusion	9

1. Introduction

Kannan [1,2] generalized Banach contraction principle [3] making continuity of the mapping not essential. Karapinar [4] introduced interpolative contraction to generalize Banach and Kannan contractions. He said that in a metric space (X, d) , a mapping $T : X \rightarrow X$ is an interpolative Kannan type contraction, if there exist constants $\lambda \in [0, 1)$ and $\alpha \in (0, 1)$ such that $d(Tx, Ty) \leq \lambda[d(x, Tx)]^\alpha \cdot [d(y, Ty)]^{1-\alpha}$ for all $x, y \in X$ with $x \neq Tx$. He also state the corresponding fixed point theorem as “In a complete metric space (X, d) an interpolative Kannan contraction mapping $T : X \rightarrow X$ has a unique fixed point in X ”.

In [5], Karapinar et al. gave an example ([5], Example 1) showcasing that the fixed point is not necessarily unique and modified the theorem statement as “In a complete metric space (X, d) , a mapping $T : X \rightarrow X$ possesses a fixed point in X , if there exist constants $\lambda \in [0, 1)$ and $\alpha \in (0, 1)$ such that $d(Tx, Ty) \leq \lambda[d(x, Tx)]^\alpha \cdot [d(y, Ty)]^{1-\alpha}$ for all $x, y \in X - Fix(T)$ ”.

Throughout this paper, $Fix(T)$ will denote the collection of all fixed points of T , or points $a \in X$ such that $Ta = a$.

Following theorem was given in [6] stating that was proved independently by Reich, Rus and Ćirić [7,8,9,10,11,12,13,14] to combine and improve fixed point theorems of Banach as well as Kannan.

Theorem 1.1 [6] “A mapping T on a complete metric space (X, d) satisfying:

$$d(Tx, Ty) \leq \lambda[d(x, y) + d(x, Tx) + d(y, Ty)],$$

for all $x, y \in X$, where $\lambda \in [0, \frac{1}{3})$, has a distinct fixed point”.

Following variation of Reich was also stated in [5];

$$d(Tx, Ty) \leq ad(x, y) + bd(x, Tx) + cd(y, Ty),$$

where $a, b, c \in (0, \infty)$ such that $0 \leq a + b + c < 1$.

* Corresponding author.

2010 Mathematics Subject Classification: 47H10, 54H25.

Submitted September 30, 2025. Published December 19, 2025

Let Ψ be the collection of all nondecreasing mappings ψ constructed on the interval $[0, +\infty)$ with:

$$\sum_{n=1}^{\infty} \psi^n(t) < \infty$$

for each $t > 0$.

Observe that given $\psi \in \Psi$, it maintains that $\psi(0) = 0$ and $\psi(t) < t$ across every $t > 0$.

Many papers used and generalized above concept in order to prove variant (common) fixed point results (see, for instance, [6]).

Samet et al. [15] gave the following definition of α -admissible.

Definition 1.1 [15] *Let $T : X \rightarrow X$ be a mapping and $\alpha : X \times X \rightarrow [0, +\infty)$ be a function. We identify T as α -admissible if for $x, y \in X$, the condition $\alpha(x, y) \geq 1$ necessitates that $\alpha(Tx, Ty) \geq 1$.*

Popescu [16] gave the definition of α -orbital admissible.

Definition 1.2 [16] *Let $T : X \rightarrow X$ be a mapping and $\alpha : X \times X \rightarrow [0, +\infty)$ be a function. We identify T as α -orbital admissible if for $x \in X$, the condition $\alpha(x, Tx) \geq 1$ necessitates that $\alpha(Tx, T^2x) \geq 1$.*

Sedghi et al. [17] define S -metric space as follows

Definition 1.3 [17] *A mapping $S : X^3 \rightarrow [0, +\infty)$, with X as a nonempty set, is classified as an S -metric space if it fulfills the subsequent circumstances for every $x_1, x_2, x_3, t \in X$:*

- (1) $S(x_1, x_2, x_3) \geq 0$
- (2) $S(x_1, x_2, x_3) = 0$ iff $x_1 = x_2 = x_3 = 0$
- (3) $S(x_1, x_2, x_3) \leq S(x_1, x_1, t) + S(x_2, x_2, t) + S(x_3, x_3, t)$

The duo (X, S) is termed as S -metric space.

For detail discussion about S -metric space we refer the reader to [17].

α -admissible and its various form are extended to S -metric spaces by Priyobarta et al. [18], Khomdram et al. [19] and Poddar & Rohen [20]. Here, for requirement we pick up the following definition of α -admissible in S -metric space.

Definition 1.4 [18] *Let (X, S) be an S -metric space, $T : X \rightarrow X$, and $\alpha_s : X^3 \rightarrow [0, +\infty)$. Then T is termed α_s -admissible if for $x, y, z \in X$, the condition $\alpha_s(x, y, z) \geq 1$ necessitates that $\alpha_s(Tx, Ty, Tz) \geq 1$.*

In the same line, we gave the following definition of α -orbital admissible in S -metric spaces, by extending Definition 1.2.

Definition 1.5 *Let (X, S) be an S -metric space, $T : X \rightarrow X$, and $\alpha_s : X^3 \rightarrow [0, +\infty)$. Then T is called α_s -orbital admissible if for $x \in X$, the condition $\alpha_s(x, x, Tx) \geq 1$ necessitates that $\alpha_s(Tx, Tx, T^2x) \geq 1$.*

2. Main Results

We commence with the principal outcome of our research by presenting the following definition.

Definition 2.1 *The mapping T on the S -metric space (X, S) is designated as an α_s -interpolative Kannan type contraction if there occurs a function $\psi \in \Psi$ and a mapping $\alpha_s : X \times X \times X \rightarrow [0, +\infty)$, with $p, q \in (0, 1)$ such that*

$$\begin{aligned} \alpha_s(x, y, z)S(Tx, Ty, Tz) &\leq \psi([S(x, x, Tx)]^p \\ &\quad [S(y, y, Ty)]^q[[S(z, z, Tz)]^{1-p-q}) \end{aligned} \tag{2.1}$$

for each $x, y, z \in X - \text{Fix}(T)$.

The principal outcome is presented as follows.

Theorem 2.1 Let $T : X \rightarrow X$ be a mapping defined on the complete S -metric space (X, S) that follows the subsequent circumstances:

1. T is continuous.
2. T is α_s -orbital admissible.
3. There occurs an element $x_0 \in X$ that gives $\alpha_s(x_0, x_0, Tx_0) \geq 1$.
4. T is α_s -interpolative Kannan type contraction.

Then a fixed point of T exists in X .

Proof:

Let $x_0 \in X$ be a point that corresponds to $\alpha_s(x_0, x_0, Tx_0) \geq 1$. Let $\{x_n\}$ be the sequence defined by $x_n = T^n(x_0)$ for $n \geq 1$. If for a certain n_0 , $x_{n_0} = x_{n_0+1}$, then x_{n_0} becomes a fixed point of T , otherwise, $x_n \neq x_{n+1}$ for all $n \geq 1$. We have $\alpha_s(x_0, x_0, x_1) \geq 1$. Since T is α_s -orbital admissible,

$$\alpha_s(x_1, x_1, x_2) = \alpha_s(Tx_0, Tx_0, Tx_1) \geq 1.$$

Continuing as above, we obtain that

$$\alpha_s(x_n, x_n, x_{n+1}) \geq 1 \quad \text{for all } n \geq 0 \quad (2.2)$$

Taking $x = y = x_{n-1}$ and $z = x_n$ in (2.1), we find that

$$\begin{aligned} S(x_n, x_n, x_{n+1}) &\leq \alpha_s(x_{n-1}, x_{n-1}, x_n)S(Tx_{n-1}, Tx_{n-1}, Tx_n) \\ &\leq \psi([S(x_{n-1}, x_{n-1}, Tx_{n-1})]^p[S(x_{n-1}, x_{n-1}, Tx_{n-1})]^q[S(x_n, x_n, Tx_n)]^{1-p-q}) \\ &= \psi([S(x_{n-1}, x_{n-1}, x_n)]^{p+q}[S(x_n, x_n, x_{n+1})]^{1-p-q}) \end{aligned} \quad (2.3)$$

Specifically, since $\psi(t) < t$ for any $t > 0$,

$$S(x_n, x_n, x_{n+1}) \leq [S(x_{n-1}, x_{n-1}, x_n)]^{p+q}[S(x_n, x_n, x_{n+1})]^{1-p-q} \quad (2.4)$$

We derive

$$[S(x_n, x_n, x_{n+1})]^{p+q} < [S(x_{n-1}, x_{n-1}, x_n)]^{p+q}$$

Therefore,

$$S(x_n, x_n, x_{n+1}) < S(x_{n-1}, x_{n-1}, x_n) \quad \text{for all } n \geq 1. \quad (2.5)$$

Therefore, the positive sequence $\{S(x_{n-1}, x_{n-1}, x_n)\}$ is monotonically decreasing. Ultimately, we have a real number $l \geq 0$ that gives $\lim_{n \rightarrow +\infty} S(x_{n-1}, x_{n-1}, x_n) = l$. Taking into account (2.5), so (2.3) in conjunction coupled with the nondecreasing nature of ψ results in:

$$\begin{aligned} S(x_n, x_n, x_{n+1}) &\leq \psi([S(x_{n-1}, x_{n-1}, x_n)]^{1-p-q}[S(x_n, x_n, x_{n+1})]^{p+q}) \\ &\leq \psi[S(x_{n-1}, x_{n-1}, x_n)] \end{aligned}$$

By reiterating this contention, we get

$$\begin{aligned} S(x_n, x_n, x_{n+1}) &\leq \psi(S(x_{n-1}, x_{n-1}, x_n)) \leq \psi^2(S(x_{n-2}, x_{n-2}, x_{n-1})) \\ &\leq \dots \leq \psi^n(S(x_0, x_0, x_1)) \end{aligned} \quad (2.6)$$

By letting $n \rightarrow +\infty$ in (2.6) and employing the fact that $\lim_{n \rightarrow +\infty} \psi^n(t) = 0$ for any $t > 0$, we conclude that $l = 0$, precisely,

$$\lim_{n \rightarrow +\infty} S(x_n, x_n, x_{n+1}) = 0$$

We claim that $\{x_n\}$ constitutes a Cauchy sequence, specifically that $\lim_{n \rightarrow +\infty} S(x_n, x_n, x_{n+p}) = 0$ for all $p \in \mathbb{N}$. By virtue of the triangle inequality in conjunction with (2.6), we ascertain:

$$\begin{aligned} S(x_n, x_n, x_{n+p}) &\leq 2\psi^n(S(x_0, x_0, x_1)) + \dots + 2\psi^{n+p-2}(S(x_0, x_0, x_1)) + \psi^{n+p-1}(S(x_0, x_0, x_1)) \\ &\leq 2 \sum_{i=n}^{n+p-1} \psi^i(S(x_0, x_0, x_1)) \end{aligned}$$

Taking the limit as n approaches infinity in the aforementioned inequality, we can deduce that the right-hand side converges to zero. Consequently, the series $\{x_n\}$ is a Cauchy sequence. Concerning the completeness of the S -metric space (X, S) , we conclude that there exists an element $x \in X$ such that

$$\lim_{n \rightarrow +\infty} S(x_n, x_n, x) = 0 \quad (2.7)$$

Given that T is continuous, we obtain

$$x = \lim_{n \rightarrow +\infty} x_{n+1} = \lim_{n \rightarrow +\infty} Tx_n = T \lim_{n \rightarrow +\infty} (x_n) = Tx$$

□

Additionally, the condition labelled as (H) has frequently been examined to bypass the continuity of the relevant contractive mappings.

(H) If $\{x_n\}$ is a sequence in X such that $\alpha_s(x_n, x_n, x_{n+1}) \geq 1$ for each n and $x_n \rightarrow x \in X$ as $n \rightarrow +\infty$ then there exists $\{x_{n(k)}\}$ from $\{x_n\}$ such that $\alpha_s(x_{n(k)}, x_{n(k)}, x) \geq 1$ for each k .

In the meantime, we substitute the continuity criteria with the weakened condition (H).

Theorem 2.2 *Let $T : X \rightarrow X$ be a self-mapping defined on a complete S -metric space (X, S) that satisfies condition (H) together with the subsequent conditions:*

1. *T is α_s -orbital admissible.*
2. *There occurs an element $x_0 \in X$ that gives $\alpha_s(x_0, x_0, Tx_0) \geq 1$.*
3. *T is α_s -interpolative Kannan type contraction.*

Then a fixed point of T exists in X .

Proof:

According to the proof of Theorem 2.1, we deduce that the sequence $\{x_n\}$ is Cauchy and that (2.7) is satisfied. Assume that condition (H) is satisfied. We employ proof by contradiction by presuming that $x \neq Tx$. Note that $x_{n(k)} \neq Tx_{n(k)}$ for every $k \geq 0$. As a result of (H), there exists a partial subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that $\alpha_s(x_{n(k)}, x_{n(k)}, x) \geq 1$ for all k . Since $S(x_{n(k)}, x_{n(k)}, x) \rightarrow 0$, $S(x_{n(k)}, x_{n(k)}, Tx_{n(k)}) \rightarrow 0$ and $S(x, x, Tx) > 0$, There occurs $N \in \mathbb{N}$ such that, for every $k \geq N$,

$$S(x_{n(k)}, x_{n(k)}, x) \leq S(x, x, Tx)$$

and

$$S(x_{n(k)}, x_{n(k)}, Tx_{n(k)}) \leq S(x, x, Tx).$$

Taking $x = y = x_{n(k)}$ and $z = x$ in (2.1), we get

$$\begin{aligned}
S(x_{n(k)+1}, x_{n(k)+1}, Tx) &\leq \alpha_s(S(x_{n(k)}, x_{n(k)}, x))S(Tx_{n(k)}, Tx_{n(k)}, Tx) \\
&\leq \psi([S(x_{n(k)}, x_{n(k)}, Tx_{n(k)})]^p[S(x_{n(k)}, x_{n(k)}, Tx_{n(k)})]^q \\
&\quad [S(x, x, Tx)]^{1-p-q})
\end{aligned} \tag{2.8}$$

Since ψ is nondecreasing, it emerges from (2.8) that

$$\begin{aligned}
S(x_{n(k)+1}, x_{n(k)+1}, Tx) &\leq \psi([S(x, x, Tx)]^p[S(x, x, Tx)]^q[S(x, x, Tx)]^{1-p-q}) \\
&= \psi(S(x, x, Tx))
\end{aligned}$$

Letting $k \rightarrow +\infty$, we find that

$$0 \leq S(x, x, Tx) \leq \psi(S(x, x, Tx)) < S(x, x, Tx)$$

which is a contradiction. Thus $x = Tx$. \square

To start with the second main result of our study, we state the following definition

Definition 2.2 Let (X, S) be an S -metric space. The mapping $T : X \rightarrow X$ is said to be an α_s -interpolative Ćirić-Reich-Rus-type contraction if there occurs $\psi \in \Psi$, $\alpha_s : X \times X \times X \rightarrow [0, +\infty)$ and positive reals $p, q, r > 0$, verifying $p + q + r < 1$, such that

$$\alpha_s(x, y, z)S(Tx, Ty, Tz) \leq \psi([S(x, y, z)]^p[S(x, x, Tx)]^q[S(y, y, Ty)]^r[S(z, z, Tz)]^{1-p-q-r}) \tag{2.9}$$

for all $x, y, z \in X - \text{Fix}(T)$.

The following one is our second main result.

Theorem 2.3 Let $T : X \rightarrow X$ be a self mapping defined on the complete S -metric space (X, S) satisfying the following conditions:

1. T is continuous.
2. T is α_s -orbital admissible.
3. There occurs an element $x_0 \in X$ that gives $\alpha_s(x_0, x_0, Tx_0) \geq 1$.
4. T is α_s -interpolative Ćirić-Reich-Rus type contraction.

Then a fixed point of T exists in X .

Proof:

Let $x_0 \in X$ be a point such that $\alpha_s(x_0, x_0, Tx_0) \geq 1$. Let $\{x_n\}$ be the sequence defined by $x_n = T^n(x_0)$, $n \geq 1$. If for some n_0 , we have $x_{n_0} = x_{n_0+1}$, then x_{n_0} is a fixed point of T otherwise, $x_n \neq x_{n+1}$ for each $n \geq 1$. We have $\alpha_s(x_0, x_0, x_1) \geq 1$. Since T is α_s -orbital admissible,

$$\alpha_s(x_1, x_1, x_2) = \alpha_s(Tx_0, Tx_0, Tx_1) \geq 1.$$

Continuing as above, we obtain that

$$\alpha_s(x_n, x_n, x_{n+1}) \geq 1 \text{ for all } n \geq 0 \tag{2.10}$$

Taking $x = y = x_{n-1}$ and $z = x_n$ in (2.9), we find that

$$\begin{aligned}
S(x_n, x_n, x_{n+1}) &\leq \alpha_s(x_{n-1}, x_{n-1}, x_n) S(Tx_{n-1}, Tx_{n-1}, Tx_n) \\
&\leq \psi([S(x_{n-1}, x_{n-1}, x_n)]^p [S(x_{n-1}, x_{n-1}, Tx_{n-1})]^q [S(x_{n-1}, x_{n-1}, Tx_{n-1})]^r [S(x_n, x_n, Tx_n)]^{1-p-q-r}) \\
&= \psi([S(x_{n-1}, x_{n-1}, x_n)]^{p+q+r} [S(x_n, x_n, x_{n+1})]^{1-p-q-r})
\end{aligned} \tag{2.11}$$

In particular, as $\psi(t) < t$ for each $t > 0$,

$$S(x_n, x_n, x_{n+1}) < [S(x_{n-1}, x_{n-1}, x_n)]^{p+q+r} [S(x_n, x_n, x_{n+1})]^{1-p-q-r} \tag{2.12}$$

We derive

$$[S(x_n, x_n, x_{n+1})]^{p+q+r} < [S(x_{n-1}, x_{n-1}, x_n)]^{p+q+r}$$

Therefore,

$$S(x_n, x_n, x_{n+1}) < S(x_{n-1}, x_{n-1}, x_n) \text{ for all } n \geq 1. \tag{2.13}$$

Hence, the positive sequence $\{S(x_{n-1}, x_{n-1}, x_n)\}$ is decreasing. Eventually, there is a real $l \geq 0$ in order that $\lim_{n \rightarrow +\infty} S(x_{n-1}, x_{n-1}, x_n) = l$. Taking into account (2.13),

$$\begin{aligned}
[S(x_{n-1}, x_{n-1}, x_n)]^{p+q+r} [S(x_n, x_n, x_{n+1})]^{1-p-q-r} &\leq [S(x_{n-1}, x_{n-1}, x_n)]^{p+q+r} [S(x_{n-1}, x_{n-1}, x_n)]^{1-p-q-r} \\
&= S(x_{n-1}, x_{n-1}, x_n)
\end{aligned}$$

so (2.11) along with the nondecreasing nature of ψ , this results in:

$$\begin{aligned}
S(x_n, x_n, x_{n+1}) &\leq \psi([S(x_{n-1}, x_{n-1}, x_n)]^{p+q+r} [S(x_n, x_n, x_{n+1})]^{1-p-q-r}) \\
&\leq \psi[S(x_{n-1}, x_{n-1}, x_n)]
\end{aligned}$$

By reiterating this argument, we obtain

$$\begin{aligned}
S(x_n, x_n, x_{n+1}) &\leq \psi(S(x_{n-1}, x_{n-1}, x_n)) \leq \psi^2(S(x_{n-2}, x_{n-2}, x_{n-1})) \\
&\leq \dots \leq \psi^n(S(x_0, x_0, x_1))
\end{aligned} \tag{2.14}$$

By letting $n \rightarrow +\infty$ in (2.14) and utilising the fact that $\lim_{n \rightarrow +\infty} \psi^n(t) = 0$ for any $t > 0$, we conclude that $l = 0$, that is,

$$\lim_{n \rightarrow +\infty} S(x_n, x_n, x_{n+1}) = 0$$

We claim that $\{x_n\}$ constitutes a Cauchy sequence, specifically that $\lim_{n \rightarrow +\infty} S(x_n, x_n, x_{n+p}) = 0$ for all $p \in \mathbb{N}$. By virtue of the triangle inequality in conjunction with (2.14), we ascertain:

$$\begin{aligned}
S(x_n, x_n, x_{n+p}) &\leq 2\psi^n(S(x_0, x_0, x_1)) + \dots + 2\psi^{n+p-1}(S(x_0, x_0, x_1)) \\
&\leq 2 \sum_{i=n}^{+\infty} \psi^i(S(x_0, x_0, x_1)).
\end{aligned}$$

Taking the limit as n approaches infinity in the aforementioned inequality, we may deduce that the right-hand side converges to zero. Consequently, the series $\{x_n\}$ is a Cauchy sequence. Concerning the completeness of the S -metric space (X, S) , we conclude that there exists an element $x \in X$ such that

$$\lim_{n \rightarrow \infty} S(x_n, x_n, x) = 0. \tag{2.15}$$

Since T is continuous, we have

$$x = \lim_{n \rightarrow +\infty} x_{n+1} = \lim_{n \rightarrow +\infty} Tx_n = T \lim_{n \rightarrow +\infty} (x_n) = Tx.$$

Subsequently, we substitute the continuity criteria by a weakened condition (H). \square

Theorem 2.4 *Let $T : X \rightarrow X$ be a mapping defined on the complete S -metric space (X, S) satisfying condition (H) along with the following conditions:*

1. *T is α_s -orbital admissible.*
2. *There occurs an element $x_0 \in X$ that gives $\alpha_s(x_0, x_0, Tx_0) \geq 1$.*
3. *T is α_s -interpolative Ćirić-Reich-Rus type contraction.*

Then a fixed point of T exists in X .

Proof:

By the direct application of Theorem 2.3, we deduce that the sequence $\{x_n\}$ is Cauchy and that (2.15) is satisfied. Assume that condition (H) is satisfied. We employ proof by contradiction by presuming that $x \neq Tx$. Note that $x_{n(k)} \neq Tx_{n(k)}$ for every $k \geq 0$. As a result of (H), there exists a partial subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that $\alpha_s(x_{n(k)}, x_{n(k)}, x) \geq 1$ for every k . Since $S(x_{n(k)}, x_{n(k)}, x) \rightarrow 0$, $S(x_{n(k)}, x_{n(k)}, Tx_{n(k)}) \rightarrow 0$ and $S(x, x, Tx) > 0$, there is $N \in \mathbb{N}$ such that, for each $k \geq N$,

$$S(x_{n(k)}, x_{n(k)}, x) \leq S(x, x, Tx)$$

and

$$S(x_{n(k)}, x_{n(k)}, Tx_{n(k)}) \leq S(x, x, Tx).$$

Taking $x = y = x_{n(k)}$ and $z = x$ in (2.9), we get

$$\begin{aligned} S(x_{n(k)+1}, x_{n(k)+1}, Tx) &\leq \alpha_s(x_{n(k)}, x_{n(k)}, x)S(Tx_{n(k)}, Tx_{n(k)}, Tx) \\ &\leq \psi([S(x_{n(k)}, x_{n(k)}, x)]^p[S(x_{n(k)}, x_{n(k)}, Tx_{n(k)})]^q \\ &\quad [S(x_{n(k)}, x_{n(k)}, Tx_{n(k)})]^r[S(x, x, Tx)]^{1-p-q-r}) \end{aligned} \quad (2.16)$$

so (2.16) with the nondecreasing nature of ψ , this results in

$$\begin{aligned} S(x_{n(k)+1}, x_{n(k)+1}, Tx) &\leq \psi([S(x, x, Tx)]^p[S(x, x, Tx)]^q[S(x, x, Tx)]^r[S(x, x, Tx)]^{1-p-q-r}) \\ &= \psi(S(x, x, Tx)) \end{aligned}$$

Letting $k \rightarrow +\infty$, we find that

$$0 \leq S(x, x, Tx) \leq \psi(S(x, x, Tx)) < S(x, x, Tx)$$

which is a contradiction. Thus $x = Tx$. \square

By considering $\alpha_s(x, y, z) = 1$ in Theorem 2.3, we state the following.

Corollary 2.1 *Let T be a continuous self-mapping on a complete S -metric space (X, S) such that*

$$\begin{aligned} S(Tx, Ty, Tz) &\leq \psi([S(x, x, Tx)]^p[S(y, y, Ty)]^q \\ &\quad [S(z, z, Tz)]^{1-p-q}) \end{aligned} \quad (2.17)$$

for all $x, y, z \in X - \text{Fix}(T)$, where $0 < p, q < 1$. Then, T possesses a fixed point in X .

Corollary 2.2 Let T be a continuous self-mapping on a complete S -metric space (X, S) such that

$$\begin{aligned} S(Tx, Ty, Tz) &\leq \psi([S(x, y, z)]^p [S(x, x, Tx)]^q \\ &\quad [S(y, y, Ty)]^r [S(z, z, Tz)]^{1-p-q-r}) \end{aligned} \quad (2.18)$$

for all $x, y, z \in X - \text{Fix}(T)$, where $p, q, r > 0$ are positive reals satisfying $p + q + r < 1$. Then, T possesses a fixed point in X .

Taking $\psi(t) = \lambda t$ (where $\lambda \in [0, 1)$) in Corollary 2.2, we state

Corollary 2.3 Let T be a continuous self-mapping on a complete S -metric space (X, S) such that

$$\begin{aligned} S(Tx, Ty, Tz) &\leq \lambda([S(x, y, z)]^p [S(x, x, Tx)]^q \\ &\quad [S(y, y, Ty)]^r [S(z, z, Tz)]^{1-p-q-r}) \end{aligned} \quad (2.19)$$

for all $x, y, z \in X - \text{Fix}(T)$, where p, q, r are positive reals verifying $p + q + r < 1$ and $\lambda \in [0, 1)$. Then, T possesses a fixed point in X .

Taking $p = 1$ and $q = r = 0$ in Corollary 2.3, we get Banach contraction principle in S -metric space. Which may be stated as

Let T be a continuous self-mapping on a complete S -metric space (X, S) such that

$$S(Tx, Ty, Tz) \leq \lambda([S(x, y, z)])$$

for all $x, y, z \in X - \text{Fix}(T)$. Then, T possesses a fixed point in X .

Taking $\psi(t) = \lambda t$ (where $\lambda \in [0, 1)$) in Corollary 2.1, we state

Corollary 2.4 Let T be a continuous self-mapping on a complete S -metric space (X, S) such that

$$\begin{aligned} S(Tx, Ty, Tz) &\leq \lambda([S(x, x, Tx)]^p [S(y, y, Ty)]^q \\ &\quad [S(z, z, Tz)]^{1-p-q}) \end{aligned} \quad (2.20)$$

for all $x, y, z \in X - \text{Fix}(T)$, where $0 < p, q < 1$ and $\lambda \in [0, 1)$. Then, T possesses a fixed point of T .

Example 2.1 Let us consider the set $X = [a, b]$ with the S -metric defined as follows $S(x, y, z) = |x - y| + |y - z| + |z - x|$. Let T be a self mapping on X defined by:

$$Tx = \begin{cases} \frac{a+b}{2}, & \text{if } x \in [c, b], \quad a < c < \frac{a+b}{2} \\ a, & \text{otherwise.} \end{cases}$$

Take

$$\alpha_s(x, y, z) = \begin{cases} 1, & \text{if } x, y, z \in [c, b], \\ 0, & \text{otherwise.} \end{cases}$$

Let $x, y, z \in X$ be such that $x \neq Tx$, $y \neq Ty$, $z \neq Tz$ and $\alpha_s(x, y, z) \geq 1$. Then $x, y, z \in [c, b]$ and $x, y, z \notin \{\frac{a+b}{2}\}$. We have $Tx = Ty = Tz = \frac{a+b}{2}$. Hence for $x_0 = b$, we have:

$$\alpha_s(x_0, x_0, Tx_0) = \alpha_s(b, b, \frac{a+b}{2}) = 1$$

Now, let $x, y, z \in X$ be such that $\alpha_s(x, y, z) \geq 1$. It yields that $x, y, z \in [c, b]$ so that $Tx = Ty = Tz = \frac{a+b}{2} \in [c, b]$. Hence, $\alpha_s(Tx, Ty, Tz) = \alpha_s(\frac{a+b}{2}, \frac{a+b}{2}, \frac{a+b}{2}) = 1$. That is T is α_s -orbital admissible.

Since T is not continuous. We will demonstrate that (H) holds. Let $\{x_n\}$ be a sequence in X such that $\alpha_s(x_n, x_n, x_{n+1}) \geq 1$ for each $n \in \mathbb{N}$. Then, $\{x_n\} \subset [c, b]$.

If $\{x_n\} \rightarrow u$ as $n \rightarrow \infty$, we have $|x_n - x_n| + |x_n - u| + |x_n - u| \rightarrow 0$ as $n \rightarrow \infty$. Hence $u \in [c, b]$, and so $\alpha_s(x_n, x_n, u) = 1$. All prerequisites of Theorem 2.3 are satisfied. In this situation a and $\frac{a+b}{2}$ are two fixed points of T .

3. Conclusion

In conclusion, utilizing the notion of α_S -admissibility, interpolation, and the simulation function within the framework of S -metric space, we present the concepts of α_S -interpolative Kannan type contraction and α_S -interpolative Ćirić-Reich-Rus type contractions to establish several fixed point theorems. A comparable outcome using the Banach Contraction principle is derived in the context of S -metric spaces as a corollary of our findings. Moreover, our findings can be extrapolated to additional generalized metric spaces.

Acknowledgments

We thank the referee by your suggestions. The first author is supported by National Institute of Technology Manipur, India.

References

1. R. Kannan, Some results on fixed points. *Bull. Calcutta Math. Soc.* 60, 71-76 (1968).
2. R. Kannan, Some results on fixed points. II. *Am. Math. Mon.* 76, 405-408 (1969).
3. Banach S: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. *Fund Math* 1922, 3: 133–181.
4. Karapinar, E. Revisiting the Kannan Type Contractions via Interpolation. *Adv. Theory Nonlinear Anal. Appl.* 2018, 2, 85–87.
5. Karapinar, E.; Agarwal, R.; Aydi, H. Interpolative Reich-Rus-Ćirić Type Contractions on Partial Metric Spaces. *Mathematics* 2018, 6, 256. <https://doi.org/10.3390/math6110256>
6. Aydi, H.; Karapinar, E.; Roldán López de Hierro, A.F. ω -Interpolative Ćirić-Reich-Rus-Type Contractions. *Mathematics* 2019, 7, 57. <https://doi.org/10.3390/math7010057>
7. Ćirić, L.B. A generalization of Banach's contraction principle. *Proc. Am. Math. Soc.* 1974, 45, 267–273.
8. Ćirić, L.B. On contraction type mappings. *Math. Balkanica* 1971, 1, 52–57.
9. Ćirić, L.B. Generalized contractions and fixed-point theorems. *Publ. Inst. Math.* 1971, 12, 19–26.
10. Reich, S. Some remarks concerning contraction mappings. *Can. Math. Bull.* 1971, 14, 121–124.
11. Reich, S. Fixed point of contractive functions. *Boll. Un. Mat. Ital.* 1972, 4, 26–42.
12. Reich, S. Kannan's fixed point theorem. *Boll. Un. Mat. Ital.* 1971, 4, 1–11.
13. Rus, I.A. *Generalized Contractions and Applications*; Cluj University Press: Cluj-Napoca, Romania, 2001.
14. Rus, I.A. *Principles and Applications of the Fixed Point Theory*; Editura Dacia: Cluj-Napoca, Romania, 1979.
15. Samet, B., Vetro, C., Vetro, P: Fixed point theorems for $\alpha - \psi$ -contractive type mappings. *Nonlinear Anal.* 75, 2154–2165(2012).
16. Popescu, O: Some new fixed point theorems for α -Geraghty contraction type maps in metric spaces. *Fixed Point Theory Appl.* 2014, Article ID 190 (2014).
17. S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S -metric spaces, *Math. Vesnik.*, 64, 3(2012), 258–266.
18. Ningthoujam Priyobarta, Rohen Yumnam, Stephen Thounaojam and Stojan N Radenović. Some remarks on α -admissibility in S -metric spaces. *J Inequal Appl* 2022, 34 (2022). <https://doi.org/10.1186/s13660-022-02767-3>.
19. Khomdram, B., Rohen, Y., Singh, Y., and Khan, M. (2018). Fixed point theorems of generalized $S - \beta - \psi$ contractive type mappings. *Mathematica Moravica*, 22(1), 81–92. <https://doi.org/10.5937/matmor1801081k>
20. Poddar, S., and Rohen, Y. (2021). Generalised Rational α_s -Meir-Keeler Contraction Mapping in S -metric Spaces. *American Journal of Applied Mathematics and Statistics*, 9(2), 48–52. <https://doi.org/10.12691/ajams-9-2-2>

Moirangthem Pradeep Singh,
 Department of Mathematics,
 National Institute of Technology Manipur,
 India.

E-mail address: pradeepsmoirangthem@gmail.com

and

Sunil Panday,
Department of Mathematics,
National Institute of Technology Manipur,
India.
E-mail address: sunilpanday@hotmail.co.in

and

Yumnam Rohen Singh,
Department of Mathematics,
Manipur University Canchipur,
India.
E-mail address: ymnehor2008@yahoo.com, yumnam.rohen@manipuruniv.ac.in