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Lie Algebraic Modeling of Dibromodichlorosilane Vibrational Frequencies Using Casimir
and Majorana Operators
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abstract: Mathematical models used to analyse polyatomic molecule vibrational spectra must account
for anharmonicity and molecular symmetry while being computationally efficient. We applied features of the
Lie algebraic model relevant to the vibrational analysis of dibromodichlorosilane (SiBr2Cl2) and provided
details. The vibrational Hamiltonian is explicitly formulated within the U(2) algebra with its Casimir and
Majorana operators. The operator approach yields an algebraic representation of stretching and bending
vibrations, eliminating the need for differential equations, thereby allowing for a direct matrix representation.
Fundamental vibrational frequencies are computed and carried through to the second overtone. The results
confirm that vibrational frequencies, within the algebraic structure, mathematically capture anharmonic and
intermode effects. Additionally, the results show that the method is highly accurate compared to more
conventional techniques and requires a minimal set of parameters. This study provides evidence of the value of
Casimir and Majorana operators for constitutive algebraic models of vibrational frequencies and an important
step towards broadening the scope of their use in molecular spectroscopy, mathematical physics, and operator
theory.
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1. Introduction

Molecular vibrations and their respective movements and dynamics, alongside the system’s structure
and bonding, can be best appreciated through a detailed understanding and study of them, particu-
larly in the context of the complex chemical world. The methods of spectroscopy, particularly vibra-
tional (infrared, Raman, etc.), present tangible approaches to the numerous intricacies associated with
characteristic overtones, coupling, and their frequencies. The molecular structure faces a multitude of
mechanical issues, with the range of molecular resonances giving rise to complex spectra. These have
been invaluable in determining signals, analyzing reactions, and providing fingerprints for solutions. The
experimental work and methods have shown considerable progress over the years; however, the lack of
practical theoretical approaches to the spectra of vibrations remains a key challenge, especially regarding
potential energy surfaces and underappreciated and neglected approaches to spectral and anharmonic
effects [1]. Classical approaches, for instance, the Dunham expansion, break down the structure of vi-
brations and their respective movements and dynamics alongside the system’s structure and bonding
to derive the constructions of the entire system’s complex vibration surfaces. These surface levels are
then expressed as power series in quantum molecular numbers. As it is also apparent, in the simplest
of molecular configurations, the rest of the molecules and structures, alongside polyatomic complex ring
systems and other systems joined by interacting superposition of bonds, are unable to reveal the full
potential and landmarks of polyatomic systems at higher overtones [2,3,4]. Ab initio and density func-
tional approaches, in contrast, are DFT methods that utilise the superposition of molecular orbitals,
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which are mathematically solved by the nuclear Schrödinger equation for higher levels of electronic struc-
ture. Although the pure electronic and potential structures can be overlaid in the balanced systems of
polyatoms, they serve as approximation methods for the rest of the large complex system of structures
[5,6,7,8,9,10,11]. The Lie algebraic framework is more efficient and elegant for describing vibrational dy-
namics as an operator. In the U(2) vibron model, every vibrational degree of freedom is associated with a
separate dynamical algebra. The Hamiltonian is written in terms of Casimir operators, which account for
the separate vibrational components, and Majorana operators, which separate the mode couplings. The
operator formulation more naturally incorporates anharmonicity, symmetry, and vibrational interactions
than formulating differential equations. The success of the algebraic method remains unsurpassed for
various molecular systems. Over the last decade, the methodology has been applied to numerous poly-
atomic molecules, yielding striking agreement with experimental frequencies and accurate predictions of
overtone transitions. The most recent applications to various polyatomic molecules, such as cyclohexane,
cyclobutane-ds, and higher overtones of naphthalene, provide strong support for the universality and
strength of the algebraic framework for polyatomic vibrations. In comparison to Dunham expansions
and ab initio methods, the Lie algebraic approach has several benefits: (i) it directly calculates and cap-
tures anharmonic effects, (ii) the molecular symmetry is incorporated automatically, and (iii) accurate
predictions can be attained with fewer parameters [12,13,14,15,16,17,18].

Mathematically, the vibrational Hamiltonians for the Si–Br and Si–Cl bonds within the algebraic
framework can be expressed as

H(Si–Br) = E0 +

2∑
i=1

aiCi +

2∑
i<j

aijCij +

2∑
i<j

bijMij , (1)

H(Si–Cl) = E′
0 +

2∑
i=1

a′iCi +

2∑
i<j

a′ijCij +

2∑
i<j

b′ijMij . (2)

where Ci = −4
(
Nivi − v2i

)
are the Casimir operators associated with individual vibrational modes,

Cij = 4 (vi + vj) (vi + vj −Ni −Nj) (3)

represent two-mode Casimir interactions, and Mij are the Majorana operators that describe intermode
couplings.

The matrix elements of the Majorana operators are given by

≺ Ni, vi;Nj , vj |Mij |Ni, vi;Nj , vj ≻ = viNj + vjNi − 2vivj ,

≺ Ni, vi + 1;Nj , vj − 1|Mij |Ni, vi;Nj , vj ≻ = −
√

vj(vi + 1)(Ni − vi)(Nj − vj + 1), (4)

≺ Ni, vi − 1;Nj , vj + 1|Mij |Ni, vi;Nj , vj ≻ = −
√

vi(vj + 1)(Nj − vj)(Ni − vi + 1).

The coefficients ai, aij , bij , a′i, a′ij , b′ij are algebraic parameters determined from experimental data
compiled by Shimanouchi.

Here, Ni(i = 1, 2) denotes the is the vibronn number associated with mode i, while vi is the corre-
sponding vibrational quantum number. The vibronn number N defines the size of the basis set used to
describe molecular vibrations and is expressed as

N =
ωe

ωeχe
− 1 (5)

where ωe and ωeχe represent the harmonic and anharmonic spectroscopic constants of the Si–Br
(429.58, 0.98) and Si–Cl (535.59, 2.175) bonds, respectively, as reported by Irikura [19,20,21]. Here, N1

and N2 denote the vibron numbers corresponding to the Si-Br an Si-Cl bonds, respectivel
The current work employs an operator-based U(2) Hamiltonian introduced in reference [22] for the

study of methylene chloride and explicitly formulated in terms of Casimir and Majorana operators to
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investigate the vibrational spectra of dibromodichlorosilane. This mixed tetrahalosilane exhibits peculiar
features in its vibrational spectra due to the presence of halogen substituents. We compute both the
fundamental vibrational frequencies and overtone transitions up to the second overtone, thereby show-
casing the effectiveness and predictive power of the Lie algebraic approach in modelling halogenated silane
systems.

2. Structure of Dibromodichlorosilane

Belonging to the family of tetrahalosilanes, dibromodichlorosilane consists of a silicon atom bonded
covalently to two chloro and two bromo atoms. As outlined in the schematic of Figure 1, the Si–Br bonds
are 1 and 2, while the Si–Cl bonds are 3 and 4, aiding in the subsequent vibrational description. The
molecule resides in the C2v point group as a C2 type system, possessing a central rotation axis through
the silicon atom and two vertical mirror planes. As a nonlinear system with five atoms, SiBr2Cl2 has
a total of nine vibrational modes, as determined by the 3N–6 rule. The group theoretical treatment
classifies the vibrational modes intoC2v point group irreducible representations as 4A1+A2+2B1+2B2.
The A1 modes of the system are the center of both the symmetric stretching and bending vibrations of
the Si–Br (bonds 1 and 2) and Si–Cl (bonds 3 and 4) group and are found in both the IR and Raman
spectra. Antisymmetric bending vibrations classified as A2 modes are Raman active but IR inactive.
The B1 and B2 modes, asymmetrical stretching and bending with respect to the bonds, are weakly to
moderately active in both IR and Raman spectra. The vibrational elements of SiBr2Cl2, including more
than scissoring, bending, rocking, and twisting, have practical applications in molecular spectroscopy
and structural chemistry. These applications highlight the significance of understanding the vibrational
modes of SiBr2Cl2, which are all governed by the C2v molecular symmetry [23,24,25,26,27].

Figure 1: Molecular structure of SiBr2Cl2 with numbering scheme: Si–Br bonds labeled as 1 and 2, and
Si–Cl bonds labeled as 3 and 4.

3. Results and Discussion

The initial estimates for the fundamental mode parameters ai, a′i, corresponding to the Si-Br and
Si-Cl bonds respectively, are obtained from the single-oscillator energy expressions:

ai = −EFundamental
Si-Br

4(N1 − 1)
, a′i = −EFundamental

Si-Cl

4(N2 − 1)
. (6)

The initial values of interaction parameters bij and b′ij , for the Si-Br and Si-Cl bonds respectively, are
given by:

bij =
|Es-str − Ea-str|

3N1
, b′ij =

|E′
s-str − E′

a-str|
3N2

. (7)
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Here, Es-str and Ea-str denote the symmetric and asymmetric stretching energies of the Si-Br bond,
while and E′

s-str and E′
a-str represent the corresponding energies for the Si-Cl bond. The initial estimates

of the parameters aij and a′ij corresponding to the Si-Br and Si-Cl bonds respectively, are taken to be zero.
All parameters in the Hamiltonian are subsequently optimized using a least-squares fitting procedure with
the fundamental mode vibrational frequencies data [28], and the final fitted values are presented in Table1.

Table 1. Optimized Lie Algebraic Parameters for the U(2) Hamiltonian of SiBr2Cl2

Parameters Optimized Value
N1 (Si-Br Stretching, bending) 436, 202
N2 (Si-Cl Stretching, bending) 244, 118
ai (Si-Br Stretching, bending) -0.226, -0.393
a′i (Si-Cl Stretching, bending) -0.575, -0.402
aij (Si-Br Stretching, bending) -1.261, 2.398
a′ij (Si-Cl Stretching, bending) -0.507, 1.750

bij (Si-Br Stretching, bending) 0.217, 0.804
b′ij (Si-Cl Stretching, bending) 0.104, 1.454

Table 2. Observed and calculated vibrational frequencies (fundamental, first overtone, and second
overtone) of SiBr2Cl2

Vibrational Mode Symmetry Species Fundamental Mode Overtone

Observed [28] Calculated I II

SiCl2
Symmetric stretching (v1)

A1 563 559.30 1103.61 1576.07

SiBr2
Symmetric stretching (v2)

A1 326 320.75 621.26 885.86

SiCl2
Scissoring (v3)

A1 182 174.48 307.33 511.54

SiBr2
Scissoring (v4)

A1 111 107.69 188.00 284.19

SiCl2
Twisting (v5)

A2 122 116.27 219.63 317.57

SiCl2
Asymmetric stretching (v6)

B1 605 598.91 1173.06 1682.29

SiCl2
Rocking (v7)

B1 191 183.03 360.22 545.21

SiBr2
Asymmetric stretching (v8)

B2 508 501.11 971.63 1486.88

SiBr2
Rocking (v9)

B2 174 167.65 312.20 495.49

4. Conclusions

The present study completes the calculation of the vibrational spectra of SiBr2Cl2 within the frame-
work of Lie algebra using Casimir and Majorana operators. Within the U(2) algebra, the vibrational
Hamiltonian was formulated in compact operator form, which permits stretching and bending vibrations
to be represented without the burdens of the complications that arise in differential formulations. The
optimised values showed that the algebraic Hamiltonian has the required parameters constant, and only
for anharmonic intermode couplings, to obtain equilibrium results that are very close to the experimental
values. Analysis of the fundamental vibrational frequencies showed an RMS deviation of 6.06 cm −1.
All these underlines the authenticity of the entire approach used in the study. Moreover, the predicted
systematic anharmonic first and second overtone frequencies are of great help in guiding experimenters
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in further exploration of the vibrational excitations of this molecule. Overall, the present work further
emphasises the algebraic control over vibrational analysis of halogen-bonded silanes using Casimir and
Majorana operators. While the results for SiBr2Cl2 are conclusive, the approach retains strong applica-
bility for larger polyatomic molecules and more intricate systems, illustrating the profound relevance for
molecular spectroscopy, mathematical physics and operator theory.
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