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Anisotropic Elliptic ?(~)—Laplacian Systems

Mokhtar Naceri

ABSTRACT: Within the framework of this paper, we aim to prove the existence of distributional solutions in
the space WLP(0) (©2,R™) for a new kind of nonlinear elliptic 7(~)—anisotr0pic Laplace systems, such that its
right-hand side is a nonlinearity connecting the solution v and given functions ¢; € LPi() (Q,R™),i=1,...,N.
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1. Introduction

Throughout our paper, we will work to demonstrate the existence of distributional solutions for a
class of Dirichlet boundary value problems represented by a nonlinear elliptic ?()— anisotropic Laplace
systems, of the form

N N
~Agyut Y O, u,du) = auy (il + B | u P72 in 0, (1.1)
=1 =1

u=20 on 0,
where  is an open bounded Lipschitz domain in RY (N > 2), «, 8 are strictly positive constants,

Y € LPiC)(QR™), i =1,...,N, (m > 1) independent of u, —A (s 1 the 7(x)—anisotropic Laplace
differential operator defined as follows

pi(z)—2 3iu)’

N
—Apu = — Z 81'( | Oiu

i=1
O;: AxR™ = R™ i=1,...,N, are a Carathéodory functions such that, for almost everywhere x € Q
and every s, £ € R™, there exists ¢ > 0

10;(z,5,8)| < ¢ilx) +cs| + [€])P @~ such that ¢; € Lp;(')(Q). (1.2)

System (1.1) is ?(x)—anisotropic Laplacian operator system type, and that’s to involve it the variable
exponents anisotropic differential operator (i.e. —A5(,) defined from the space VCVL?(')(Q,R’”) to its
dual. Here we must recall the importance of this kinds of problems, this appears in the treatment of many
scientific phenomena and robotics, including describing models in image processing, electrorheological
and thermorheological fluids, as seen in references [22,23,24,25,26,27]. The existence results of systems
with this type of differential operators and others with various conditions and data were presented (but
not limited to) in the papers [1,2,3,4,5,6,7,8]. Here we tried to depart from the usual (the classical
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case) by considering the right-hand side as a nonlinearity linking the solution u to given functions v; €
LPiO(Q,R™), i = 1,..., N, without the possibility of formulating to the usual case (i.e., the right-hand
side is a datum belongs to certain Lebesgue or Sobolev spaces).

Our proof relied on the sequence of suitable approximate solutions (uy), thanks to the Theorem of
existence of Leray-Schauder’s fixed point that ensured its existence, and then we moved to provide prior
estimates on the solution and its partial derivatives, where we proved the boundedness of u,, and both
strong convergence in LPi() (€, R™) and the almost everywhere convergence in Q for dju,, i =1,...,N.
Passing to the limit by L!—strongly sense in both | d;up [P =2 Oup, un(] ¥i | +8 | un |)p‘(m) 27 and
©;(z,un, O;u,). Then we deduce the convergence of u,, to the desired solution u of (1.1).

Basic concepts and definitions with the most important properties of variable exponents anisotropic
Lebesgue-Sobolev spaces and their R”-valued versions are discussed in Section 2. The main result with
proof is in Section 3.

2. Preliminaries

In this section we will address the p(-)—anisotropic Lebesgue-Sobolev spaces and their R™-valued
versions. For more about these spaces see [10,11,12].

Let Q C RY (N > 2) be a bounded open subset. Set
C+(Q) = {p() € C(Q) : p~ = minp(z) > 1},

zeQ

where C(Q) is the set of continuous real functions on Q
Let p(-) € CL(Q), for every a,3 € R and every # > 0, the following inequality (it’s called Young’s
inequality)
] < Bla”™) + ¢(0) |51,
(

holds true, where p'(-) = p(.)zl in Q (the Holder conjugate of p(-)). If ((a, 8) # (0,0)), the following
inequality is true

. . 2277 o — BP@), if p(z) = 2,
(o™ 2a = [BFD2B) (@ = B) 2§\ ass ol o (21)
(p~ )(‘a|+|ﬁ|)2 are i p() € (1,2).
Also, for all p = (constant) > 0 and all a; >0, i =1,...,r, we have
(1 + ...+ )P <max{1,7P '} (a? +... +ab). (2.2)

The reflexive Banach p(-)—Lebesgue space LP()(Q) defined by
LP0O)(Q) := {measurable functions u : Q — R; / lu(z)[P@dz < oo},
Q

under the norm

lullpey = llull ooy ) = inf {v > 0:| ppey(u/y) <1},
where u — p,)(u) :== [, [u(z)P (@) dz is called the convex modular of w.
For every u € LP( )(Q) and v € LP'O)(Q), the Holder inequality is defined as

| [ wda 1< 2l ol
The Banach p(-)—Sobolev space W1P()(Q) defined as fellows

w0 (@) = {ue 1rO©): foul € PO©@)},
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when equipped with the norm
u = fullwroe ) = [10ullpe)- (2.3)

We define also the reflexive separable Banach space (Wol’p(')(ﬂ), Il - ||W1,p(-)(g)> by

1,p(+)
wer() = e

We have the following key results [11,12]. If u € LP()(Q), then
. L . L
min (3507 10) <y < ma (700 (0. (2.4
. - + - +
min (JJul2 )l ) < ooy () < max ([l s ) (2.5)

Now we will talk about variable ?(~)—anis0tropic Sobolev spaces H/lj(")(ﬂ).
Let p;(-) € C’(Q, [1,—1—00)), i=1,...,N, and we set for every z in Q

P(@) = (p(),....px (), pi(e)= max pi(z), p-(z)= min_ pi(),

ie€{l,...,N} ie{l,...,N}
N -1 _
p(:c)N(Zpi(lx)) : p*(a:)m if pz) <N.

The Banach space Wl’?(')(Q) is defined by
wh70(Q) = fue 17+0(Q), du e LO(Q), i=1,....N},

under the norm

N
lull ¢y = Nullp. ¢y + D 19l - (2.6)

i=1
The reflexive separable Banach space (Wl’?(')(ﬂ), Il - H?(,)) is defined as follows
WEPOQ) = WHPO@Q) nWE(9).
We have the following embedding [9,10]. Let Q@ ¢ RN be a bounded domain and 7' (-) € (C,(Q))N.
Lemma 2.1 If s(-) € C4(Q) and s(-) < max{p,(-), p*(-)} in Q. Then the embedding

Vi/l’?(')(Q) — L*O(Q) is compact. (2.7)
Lemma 2.2 If -
py(z) <P (x), Ve € Q. (2.8)
Then
N
lllps ) < €D 10sull, Yu € WHPO(@), (2.9)
i=1

where C' > 0 independent of w.Thus,

N

u Z |0

i=1

pi(-) 18 equivalent to (2.6) on VT/L?(J(Q)_

Since our paper is devoted to dealing with a system of the form (1.1), we need the spaces X =
L”(')(Q,RT), Y = V[/L?(')(Q’]Rm)7 which represent the R™-valued version for the spaces
PO (Q), le(')(Q) respectively, and becomes a reflexive separable Banach spaces under the norms

e flull = lulllyey w = flully = ]l (2.10)
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3. Statement of Results and Proof

Definition 3.1 The vector-valued function u = (uy,...,uy)" : & — R™ is a distributions solution
of the system (1.1) if and only if u € W' (€2, R™), and for every ¢ € C°(Q, R™),

N
2
A

N
pi(@)=2 aiu : 81g0dm+ Z/ @i(xa u, 8Zu) : @dx
=179

N
:O‘Z/Q“U i | 8 [u P72 o da.
i=1

The main result of our work is represented by the following theorem.

Theorem 3.1 Let () € (Co(Q)N such that p(-) < N in Q, and (2.8) is satisfied. Assume that
Y € LPO(QR™), i = 1,...,N, and ©;,i = 1,...,N be Carathéodory functions are satisfies (1.2).
Then the system (1.1) accepts at least one distributional solution u in le(')(Q,Rm).

3.1. Existence of approximate solutions

For every (v,0) € LP+()(Q,R™) x [0, 1] given, let us consider the following system related to binary
(v,d) with the unknown u

N N
A =0 (a;““ b 48] v P2 ‘;@dm,@v)) . (31)

u=~0 on 0f).

Lemma 3.1 Let ?(), O, Vi, i = 1,..., N be restricted as in Theorem 3.1. Then, for every (v,0) €
LP+ O (Q,R™) x [0,1] given, the system (3.1) has only one solution in the weak sense.

Proof: Let (v,6) € LP+()(Q,R™) x [0,1] given. Through the use of (2.2) and the fact that Slv| <
|| + B|v|, and that t;, v € LP{()(Q, R™) we get for every i = 1,..., N

P (@) - / P (@)
J Jetu 48101727 do < a7, 5008 [ (|48 o o
Q Q
= C/ (| 9 @ + max{¢)=, I} | v [Pi@) do < . (3.2)
Q
Then, (3.2) and (2.4) means for every ¢ = 1,..., N that
[l ws 14810 @2 <c (3.3)
Also by (1.2), (2.2), and that v € LPi()(Q,R™), we obtain that
, pi(2)
[ 112,000 11 dz < [ (1o + ol + il )" do
Q Q
< / (6P @+ v @) 4 | B [P @) das < . (3.4)
Q
Then, (3.4) and (2.4) implies for every ¢ = 1,..., N that
118 (2, v, 0iv)| [lpy(y < C”. (3.5)

Thus, we have proven the boundedness of the right-hand side of (3.1) in L?()(Q,R™). So the existence
of a weak solution is a direct result of the main Theorem on monotone operators. Now let’s move on to
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prove the uniqueness of this solution.
Let u1, us be two weak solutions of (3.1). So, we have

N
Z/ |81’LL1 |pi($)_2 @-ul 8Z<pdl'
i=17%
N N
- (0‘2/ ol i | +6 | v |>m<m>—2-sodx—2/ @xx,v,aw)-sodx) ’
=17 i=17%
N
Z/ |5¢U2
i=17%
N N
:5<a§3/vuw|+ﬁuww@*”wdw—§)/@Aau@w-w“>'
i=17% =179

pi(w)=2 &-uz . 3,;<p dx

(3.6)

(3.7)

By taking ¢ = u; — us as a test function in (3.6) and in (3.7), then subtracting the results side by side,

we can deduce that

i/g (I dyuy

Since (2.1), we conclude for every i = 1,..., N that

Pi@)=2 9y — | Qg

pi(e)=2 3iu2) - (Biuy — Byug) dz = 0.

Pi@)=2 9y — | Osuo

(e P72 iy) - (D — Dyuz) 2 0.
From this and (3.8), we deduce for every i = 1,..., N that

/Q (\ O;up |p"(x)_2 Ojur— | Ojug |"7‘(’”)_2 am) - (Oyu1 — Oyug) dz = 0.
Now, after putting, for every i = 1,..., N,

A= /Q (‘ Oiuq

Qi,l = {.’ﬂ € Qa pl(l') Z 2}7 and Qi,2 = {ZL’ S Q7 pz(x) € (132)}3

P72 Gy — | Dyus

pi(e)=2 8¢u2) - (Ojur — Oiug) dz,

and like the proof steps followed in [13,14,15,16,17,18,19,20,21], we can obtain, for all t =1, ...

/ |8¢(u1 — ’U,Q)lpi(x) d.’l? S CAZ‘,
Qi1

and ,/ |3¢(U1fuz)][”(g”)dyc§c’max{Ai2 A2 }
Q2
By combining (3.11), (3.12), and (3.9), we get that
[ 1ot — )P dr =0, =1 N,
Q

Then, from (3.13) and (2.5) we conclude that
[10i (wr — U2)|Hp,;(.) =0, i=1,...,N.
By using the following fact, Yu € VT/L?(')(Q, R™)

0i[ul| < |0zul,

(3.8)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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and using (2.8), (3.14), we deduce that
[lur = ol 5, =0, i=1,...,N. (3.16)

Then, (3.16) implies that u; = us. O

Lemma 3.2 The operator T : L+ (Q,R™) x [0,1] — LP+O)(Q,R™) defined as follows
T(v,6) = u < (u is the only weak solution of the problem (3.1)),

is continuous and compact. Moreover, there exists C' > 0, such that for every (v,8) € LP+()(Q,R™) x
[0,1],
v="T(v,0) = H|v|Hp+(_) < C. (3.17)
In addition,
Yo € LP+O(Q,R™) : T(v,0) = 0. (3.18)

Proof: Choosing u as a test function in the weak formulation of (3.1), and through the use of (2.8),
(1.2), (2.2), (2.4), (2.5), Lemma 2.1, and Hoélder inequality, we can deduce that

N
2
A

N N
Pi(@) o < OZZ/“ Vi |48 v )@ | dJU—FZ/ | ©i(z,v,0v) || u| dx
= Jo =179

N N
<2 (i | + v P! lelll,, oy +2{1D ¢i(w)+6(|v|+|8iv|)“(”*1’ Helll,, ¢
i=1 Pi() i=1 pi ()
N
Nt ISl (et IR T
(gﬂh o Z;| oo ) Ml
N N N
&; pi(z)—l) T H L [Pi@—1 n H By [Pila) -1 ulll=
(ZH' | i) ; vl pi () ; | | P() I |||?()
+ N L
1+Z / | v [Pe®) dx) +Z</ | Qv |Pi(® da:) ) el
i=1 \/
N v} i i
<C (HZII )+Z|||5v| oy | Nl <€ i) +ZII oy | Hulllzy
ot T ot
2+ ’+ 2+
<" [ 1+lolll, +|||vH|;>() ulllg < C” 1+|Hv|||,,+<) Hulll5 .y - (3.19)

Now, we also have through (2.5) that, foralli=1,..., N

Py

pi(+)’

1 —|—/ | D [P dx > | 0w
Q
Consequently, we deduce that
24 [ o P do > 0] )0 i =1 N

So, we obtain that

N 1 N p_
Z/Q | B [P da > <N2|\|aiu|||m)> —2N | Q]. (3.20)
=1 =1
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Combine (3.19) and (3.20), we conclude that

vt
H‘“”’%() sc|l+ |||v|||;:() H|“|H5’(.)' (3.21)
Then, we obtain
o
|||u|||?(') <C|[1+ |||U|H;;((S_71) . (3.22)

After arriving at this initial estimate of the solution wu, let us move on to proving the continuity of 7.
Let (vg) C LP+O(Q,R™), (6;) C [0,1], (k € N, k > 1) be two sequences, such that

v — v, strongly in LT’*(')(Q,R’”), (3.23)
0 — d, strongly in R. (3.24)

For the previous two limits v and §, we put u = T(v,9), and this equivalent to that, for every ¢ €
WLPO(Q,R™)

N
Z/ |3iu|p"(“’)_28iu - Oypdx
=179

N N
=4 ; Pi(®)=2 e 0;(z,v,00) - pdx | . 3.25
(a;/Qv(lwwvl) pda g/ (@ v>¢x> (3.25)

For n > 1 fixed in N, let us consider the sequence (uy), such that
up = T(vg,6r), (k €N, k> 1).
So, we obtain, for every ¢ € VOVLE)(‘)(Q,R’”)

N
Z/ |0y, [P @) =20y, - 950 dae
i=179

N N
- (‘“Z o 481072 oo = 3 [ @4fa 0 Ww) | (3.26)
1=1 1=1

Since the sequence (v) is bounded in LP+()(Q,R™) (thanks to (3.23)). Therefore through this and
(3.22), we can infer the boundedness of (uy)(= T(vg,dx)) in LP+()(Q,R™).

We can then, thanks to the reflexivity of T/i/l’?(')(Q,Rm) and the compactness of its embedding into
LP+0)(Q,R™) (due (2.8) and Lemma 2.1), extract a subsequence (still denoted by (u)) and there exists
w e I/i/l’?(')(Q,Rm) such that

up = w weakly in Wl’?(')(Q,Rm), (3.27)

and up, — w  strongly in LP+)(Q,R™). (3.28)
N N

Through the continuity of v — o 3> v(] ¥ | +8[v])Pi®) =2 — 3 ©;(x, v, d;v) on LP+C)(Q,R™) towards
i=1 i=1

itself, (3.23), and (3.24), we can pass to the limit in (3.26) as k — +o00, then we obtain for every
p e WETO(Q,R™),

N
N N
=4 i pi()=2 dr — @1 s ,81' -pd . .
(az/ﬂvw | +Bll) pdz Z/Q (2,0,0,0) - ¢ ) (3.29)

i=1

Pi(®)=29.4p - O0;pdx
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So, (3.29) means that w = T'(v, ).

Then, thanks to Lemma 3.1, we deduce that, w = u = T'(v,d) (where u defined in (3.2

conclude that uy — v strongly in Lp+(')(Q,Rm),, and this means the continuity of 7T'.
Let B C LP+()(©Q,R™) be a bounded. Then,
there exists a ball B(0,7) (i.e. of center 0 and of radius r > 0), such that

B c BcLP+O(Q,R™),
and this equivalent to that
B =Bx[0,1 cBx[0,1] ¢ L+ (Q,R™) x [0,1].
Relationship (3.30) implies that, B is a bounded of the space LP+()(Q, R™) x [0,1].

Let u € T'(B), then there exists (v,d) € B x [0,1] (i.e. [[|[v|[p, ) <), such that u = T'(v,d).

By using (3.22), we deduce that [||u[l|5) < o (¢ > 0).
This implies that T(B) C B(0, 9) C Wh-7O(Q,R™),

where, B(0, ¢) a closed ball (of center 0 and of radius ¢ > 0) in le(')(Q,Rm) C LP+O(Q,R™).

So, we

(3.30)

Let (ux) C T(B) be a sequence, then there exists (vy,0x) € B x [0,1] (i.e. |[[[vglllp, ) < 7), such that

U = T(U;c, 5k)

Since ||[ul[|5(.) < @ , then there exists a subsequence (still denoted by (ux)) and u € Wl’?(')(Q,]Rm) ,

such that u, — u  weakly in W17 () (Q,R™).

Thanks to (2.8) and Lemma 2.1, we deduce that u;, — u  strongly in LP+()(Q,R™).
This means that T is compact.

Now, for every v € LP+()(Q, R™) such that v = T'(v,d), we have that

N
Yo € VT/L?(')(Q,R’”), Z/ |0;0|P* @) =200 - 9,0 da =
i=179

N N
4 i P2 o dy — O;(z,v,0v) - pd
G;/vaumvn o ds ;/Q (2,0 v>¢x>

(3.31)

Taking ¢ = v in (3.31), and using (2.2), (1.2), the fact that Slv| < |¢;| + Blv|, (3.5), (2.4) and that

Yy € LPO(Q,R™), v € LP+0)(Q,R™), we deduce that
N
i=1 70
N N
< C'Z/ (| i [P +¢" [0 PP@) da +27 184, v,0:0) [y 0]
=179 i=1 '

N
gciz_;/ﬂwi

On the other hand, like proof (3.20), we can deduce that

N 1 N p_
Z/Q | g0 [P@ dz > (NZHWWH\M.)) —2N | Q.
i=1 i=1

The combine of (3.32) and (3.33), gives us

N
Z H|8iU|Hpi(.) <"
i=1

From (3.34) with using (2.8), (2.9), and (3.15), we obtain (3.17).

N N
P do <y [ 4810 PO do+ Y [ jeite v o0l ds
— Ja i=1"%

pi(*)

i) 4o |y

N
P®) e+ "3 103, v, 00) ) ol ) < C:
=1

(3.32)

(3.33)

(3.34)

Obviously, (3.18) is valid, Because we simply find that, u = 0 € LP+()(Q,R™) the only weak solution of

(3.1) when 6 = 0. Thus, the proof of Lemma 3.2 is completed.

O
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Lemma 3.3 Let ?(), O, Yi, t = 1,..., N be restricted as in Theorem 5.1. Then, there exists at least
one weak solution u, € W (')(Q,Rm) to the approximated problems

N N

—Az Uy + O;(x, Uy, Oitn) = Qly, il + up NPE2 gy Q,
Uy, =0 on 09,

in this sense

N
Pi(@)=2 g4 Ospdx + Z O;(x, up, Osuy) - @ dx
— Ja

N
- Ja
N
=X [ i |48 P2 o, (3.36)
i=17%

for every v € VT/L?(‘)(Q,R’”) N L>®(Q,R™).

Proof: The results of Lemma 3.2 are a direct fulfillment of all the conditions of the Leray-Schauder
fixed point theorem, which in turn guarantees us the existence of at least u,, in L”+(')(Q, R™), such that
®(uy,) = uyp with @ @ w — T'(u,1). Thus, we have guaranteed the existence of a weak solution for the
approximated problems (3.35) in sense of (3.36). Therefore, Lemma 3.3 was proven. O

3.1.1. A priori estimates.

Lemma 3.4 Let ?()7 O;, Y;,i=1,...,N be restricted as in Theorem 3.1. Then there exists C > 0,
such that
[unlll5 ) < C. (3.37)

Proof: After taking ¢ = u, in (3.36), and like the proof of (3.34) we can simply get

N
Z H|8iun|||pi(~) sec (3.38)
i=1

Through (3.38) with using (2.8), and (3.15), we obtain (3.37). O

Lemma 3.5 There exists a subsequence (still denoted (u,)) that satisfies the following

Oy, — Oju  strongly in Lp"(')(Q,]Rm)7 and almost everywhere in Q, i =1,..., N. (3.39)

Proof: The boundedness of (u,) in Vi/l’?(')(Q,Rm) due (3.37) allows us to extract a subsequence (still
denoted by (u,)) from (u,), and guarantees the existence of a function u € Wl’ﬁ(')(Q,Rm), such that

up, — u  weakly in VT/L?(')(Q, R™) and almost everywhere in €. (3.40)

By taking ¢ = u,, — u in (3.36), we obtain that

N
ain
A

N N
— n i n pi(z)—2 n—u)dr — O, (x, Up, Oiun) - (uy — u) dx. 3.41
a;/ﬂu(|¢|+5|u|) (U, — u) dx ;/ﬂ (2, tn, Oitin) - (tn — u) da (3.41)

Pi@)=2 94,y - 9 (up — u) dz
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Now we have the following

N N
= Z/ | it [P 72 Dy, - 0y (up — ) dz — Z/ | Diu [P D=2 9 - 9 (up — ). (3.42)
i=179 =179

P2 Qg — | Oyu

pi()—2 aiu) < 0i(up, — u) dzx

By combining (3.42) and (3.41), we deduce that

é | (1,

N N
= aZ/ Un (| i | 48 | un )P D72 (uy — u) da — Z/ O;(x, Up, Oitiy) - (Up, — u) da
i=1 79 =179

Pi@)=2 g, — | Byu

pi(@)=2 @'u) - 0i(up — u) dzx

N
-3 / | D5 |72 By - By — w). (3.43)
i=1 7%

Now, since d;u € LP:()(Q, R™), then

/ || Qyu [P =2 dyu @) g = / | du [Pi@® dz < ¢ i=1,...,N, (3.44)
Q Q
and this implies that

(| Ay [Pi(®)—2 8iu> uniformly bounded in Lp;(')(Q,Rm)7 i=1,...,N. (3.45)

Like the proof (3.3) and (3.5), we can obtain for all i =1,..., N

Un(] ;| +8 | upn P2 uniformly bounded in LP() (9, R™), (3.46)
and , ©;(z, up, 0;u,) uniformly bounded in Lpé(')(Q,Rm). (3.47)
By (3.40), (2.4), (3.45), (3.46), and (3.47), we find that, the right-hand side of (3.43) goes to zero when

n — 4-00. So through this, we conclude that

N

=1

pi(w)=2 8iun— | @u

pi(2) -2 3iu> 03 (up — u)dz = 0. (3.48)

From (2.1) (i.e. (| Ayuy [P =2 9y, — | O;u

pi(z)=2 diu) - 0;(un —u) > 0), and (3.48), we find that

lim A, =0, (3.49)

n—-+oo

where, A;,, = fQ (| Oyuy [P =2 9y, — | O;u pi(x)=2 Biu) < 0i(up, —u)dx,i=1,...,N.
Now, considering €; 1, €2; o defined in (3.10), and like the proof steps followed in [13,14,15,16,17], we can
get, foralli=1,...,N

[ 10— 0 do < e, (3.50
Qi1
P, p;r
and ,/ |05 (U, — u) [P dz < ¢ max {Ai;‘;l A } (3.51)
Qi 2
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By passing to the limit in (3.50) and in (3.51) when n — +o00, with the use of (3.49), we obtain that

lim / |0 (u
n—-+oo
From (2.4), we get that

10:(atm — W1, <max{</ 10ty — )P dx) (/ 10s (1t — w)[P<(®) dx)pl_}. (3.53)

Passing to the limit in (3.53) when n — +o00 with the usie of (3.52), we find that

)P da = 0. (3.52)

18, w)l, ) dr = 0. (3.54)
Then, (3.54) implies (3.39). Therefore, Lemma 3.5 has been proven. O

3.2. Proof of the Theorem 3.1 :
From (3.39), we deduce that

| Osun, |p7‘(’”)_2 Oiun, —| Oju |pi("‘”)_2 O;u almost everywherein €. (3.55)

By the use of Young’s inequality and that d;u, € LP:()(Q,R™), we find for all # > 0 that

/ || Osun, pi(w) =2 Oty | dz:/ | Oiuun, pi(@)=1 go < C(9)+9/ | Oy, Pi(®)
" < CSZH) +ch = C'(0). ’ (3.56)
Then, for any 6 > 0 fixed, we conclude that
(| iy, P12 &-un) e LYQR™),i=1,...,N. (3.57)

So, from (3.45), (3.55), (3.57), and Vitali’s Theorem, we deduce for every i = 1,..., N that
| Dyt [P =2 Byu,, —| By [P 72 §;u strongly in L (€, R™). (3.58)
From (3.40), we obtain that
Un (| 5 | 48 |t P72 — w(] b | +8 | u )P =2 almost everywhere in Q. (3.59)

Like the proof of (3.57) with the use of (2.2) and that 1, u, € LPi() (€, R™), we can obtain for every
t=1,...,N that

() i ] +8 L un )72 € LI Q. R™). (3.60)
So, by (3.46), (3.59),(3.60), thanks to Vitali’s Theorem, we deduce for every i =1,..., N
n(| i | 48 [ un P72 — u(] ¢ | +8 | u P72 strongly in L' (2, R™). (3.61)
In a similar way with the use of (1.2), (3.39), and (3.40), we can obtain that

O;(z, up, Osun) — ©;(x,u,0;u) almost everywhere in €, (3.62)
and , ©;(x, up, juy) € L*(Q,R™). (3.63)

Then, by (3.47), (3.62), (3.63), and Vitali’s Theorem, we find for every ¢ = 1,..., N that
Oi(z, Up, Oun) — O;(x,u, dju) strongly in L' (Q,R™). (3.64)

So, we can pass to the limit in (3.36). Thus, Theorem 3.1 was proven.
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