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A Bootstrap Approach for Constructing Control Charts for Beta-Binomial Processes with
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ABSTRACT: Statistical process control (SPC) for attribute data traditionally relies on p-charts or c-charts
based on Binomial or Poisson distributions, which are often inadequate for processes exhibiting over-dispersion.
This paper proposes a novel bootstrapbased framework for constructing Shewhart-type control charts specifi-
cally designed for processes following a Beta-Binomial distribution (BBD). The methodology utilizes paramet-
ric bootstrap sampling to estimate empirical sampling distributions of relevant statistics, enabling accurate
control limit derivation without relying on restrictive normality assumptions. Comprehensive Monte Carlo
simulations demonstrate that the proposed bootstrap M and S charts effectively maintain desired in-control
average run lengths (ARL) while exhibiting high sensitivity in detecting various parameter shifts. The practi-
cal utility of this approach is further validated through a real-world case study involving defective transformer
counts in manufacturing, where the Beta-Binomial model provided superior fit compared to standard distri-
butions and established reliable control limits for quality monitoring.
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1. Introduction and Literature Review
1.1. Background and Motivation

Achieving success in modern manufacturing and business environments depends heavily on the quality
of production. Various approaches can be taken to ensure high quality, with Statistical Process Control
(SPC) being a fundamental methodological framework for monitoring, controlling, and improving pro-
cesses [24]. SPC entails the use of statistical techniques to oversee production processes and detect any
potential issues early on, thereby enhancing quality control practices and boosting organizational success.

At the heart of SPC lie control charts, the primary tools used to distinguish between common-
cause variation (inherent to the process) and assignable-cause variation (indicative of a process shift).
These charts employ random sampling to evaluate and oversee quality parameters during manufacturing
processes, pinpointing any deviations from anticipated control levels. The efficacy of any control chart is
fundamentally tied to the accurate estimation of its control limits, which are traditionally derived from
an assumed underlying probability distribution of the quality characteristic, most commonly the normal
distribution.

However, real-world processes often violate the assumption of normality. As manufacturing processes
and components grow in complexity, the quality characteristics may follow skewed, heavy-tailed, or
complex distributions such as the Weibull [26], Gamma [11], Birnbaum-Saunders [19], Inverse Gaussian
[18], log-symmetric [17], or generalized Pareto [4]. Furthermore, processes in reliability engineering [17]
and those monitoring system availability [22] often present unique distributional challenges. In such cases,
using traditional parametric control charts can lead to inflated false-alarm rates or reduced sensitivity to
detect actual process shifts.
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1.2. The Bootstrap Methodology in SPC

To address these challenges, the bootstrap methodology, introduced by Efron [12], has emerged as a
powerful non-parametric and semi-parametric alternative for constructing control limits. The bootstrap
does not rely on strong distributional assumptions but instead uses resampling from the empirical data
to approximate the sampling distribution of a statistic and estimate its quantiles for control limits.

The application of bootstrap methods in SPC has a rich and varied history. Seminal work by [32]
introduced the subgroup bootstrap technique for constructing control charts. This was followed by [20]
and [40], who expanded the concept for both dependent and independent data. [15] provided a critical
early performance analysis of bootstrap control charts, establishing their credibility and exploring their
properties.

Since these foundational studies, the bootstrap paradigm has been successfully adapted to a vast array
of scenarios: for percentiles of specific non-normal distributions [26,19,18,4,21]; for multivariate quality
control using Hotelling’s T2 [29,25] and maximum multivariate CUSUM [16]; for profile monitoring
[27]; for process capability indices [41]; for monitoring proportion data [7], availability indices [22], and
reliability data [17]; and for robust control chart design using model selection approaches [6]. Recent
advancements continue to focus on robustness and handling non-normal data [30], including applications
for geometric percentiles of the Lindley distribution [1] and monitoring Poisson-Lindley distributed counts

[2].
1.3. Monitoring Proportion Data and the Beta-Binomial Distribution

A pervasive and critical scenario in SPC involves monitoring proportion or count data, which are
inherently non-normal. The p-chart is commonly used to monitor the proportion of defective items or
parts in a production process, helping to detect any shifts or trends in the proportion of defects over time
and allowing for timely intervention to maintain quality standards. Similarly, the c-chart serves as the
standard tool for count data. However, the performance of these charts relies on large sample sizes to
justify the normal approximation. For processes with low defect counts, highly variable sample sizes, or
inherent over-dispersion, these assumptions often fail spectacularly.

The binomial distribution is the natural model for defect counts, but its parameter p (the probability
of a defect) may itself be variable from subgroup to subgroup due to unobserved factors or latent hetero-
geneity. This extra-binomial variation is elegantly captured by the Beta-Binomial distribution, where the
success probability p follows a Beta distribution, leading to a more dispersed count distribution than the
standard binomial [10,14]. The Beta-Binomial distribution, its generalizations [9,28], and its statistical
inference [39,13,23,31,5] have been extensively studied and applied in various fields, including biometric
identification [38] and analysis of binary measurement methods [34]. Its approximations have also been
a subject of research [35,36,37].

While the Beta-Binomial model is well-established for modeling over-dispersed counts, the focus of
this article is on the related but distinct Beta-Binomial distribution. This distribution, which can be
conceptualized as a compound distribution where a binomial random variable serves as the parameter for
a beta distribution, offers a flexible framework for modeling random variables that represent proportions
or rates which are themselves the result of a prior binomial process.

The Beta-Binomial distribution finds applications in various fields such as:

e Reliability Engineering: Analyzing the reliability of systems or components, especially when the
number of trials is fixed and the probability of success is known.

e Bayesian Inference: Updating beliefs or probabilities based on observed data, making it a valu-
able tool for decision-making under uncertainty.

e Marketing and Market Research: Modeling the success rate of marketing campaigns, customer
responses, or survey results.

e Health Sciences: Clinical trials, epidemiological studies, and medical research to model the prob-
ability of success or failure in treatment outcomes.
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Although less commonly discussed in the SPC literature than its Beta-Binomial counterpart, the
theoretical properties and potential of the Beta-Binomial distribution for modeling complex random
phenomena have been explored in more theoretical statistical contexts [3,33]. It provides a different
approach to modeling variance in proportional data.

1.4. Contributions and Structure of This Paper

The primary objective of this paper is to bridge the gap between theoretical developments of the
Beta-Binomial distribution and its practical application in SPC. We formally derive and characterize
the Beta-Binomial distribution within the context of quality control and demonstrate its practical util-
ity by developing novel parametric bootstrap control charts for monitoring processes where the quality
characteristic follows, or can be approximated by, this distribution.

By leveraging the bootstrap’s flexibility, as demonstrated in the extensive literature, we can accurately
estimate control limits without relying on asymptotic approximations or restrictive assumptions. The
performance of these new control charts will be evaluated by calculating the Average Run Length (ARL)
index, followed by demonstrating their implementation through a real-world example. This work builds
upon the established foundation of bootstrap SPC [8] and contributes a new model-specific tool to
its growing arsenal, offering quality practitioners a robust method for handling complex, non-normal
proportion data that the Beta-Binomial distribution characterizes effectively.

The remainder of this paper is organized as follows: Section 2 provides the theoretical foundation of
the Beta-Binomial distribution. Section 3 details the construction of control charts for Beta-Binomial
processes. Section 4  presents a performance evaluation of bootstrap control charts for Beta-Binomial
processes. Section 5 demonstrates illustrative examples, including a simulated dataset and a real-world
application. Finally, Section 6 concludes the paper.

2. Beta-Binomial Distribution

The Beta-Binomial distribution is a compound probability distribution that arises when the probability
parameter p of a Binomial distribution follows a Beta distribution. This hierarchical structure makes it
particularly useful for modeling over-dispersed count data.

2.1. Definition and Motivation

In Statistical Process Control (SPC), particularly when monitoring proportion data using tools like
the p-chart, the fundamental assumption is that the number of nonconforming items X in a sample of
size n follows a Binomial distribution: X ~ Binomial(n,p). This model assumes the probability of a
nonconforming item p is constant across all samples [24].

However, this assumption is often violated in real-world processes due to unobserved factors, latent
heterogeneity, or external influences that cause p to vary from sample to sample. This phenomenon,
known as over-dispersion, results in a variance of the observed counts that is larger than the Binomial
variance np(1—p). To model this extra variability, the Beta-Binomial distribution provides a powerful and
elegant solution by treating the parameter p not as a fixed constant, but as a random variable following
a Beta distribution [10].

2.2. Formal Definition

The hierarchical model is defined as:

P ~ Beta(a, 8),
X | P = P~ Binomial(n,p>a

where a > 0 and 8 > 0 are the shape parameters of the Beta distribution, and n is the number of trials
in the Binomial distribution.
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2.3. Probability Mass Function and Derivation

The Beta-Binomial distribution arises as a marginal distribution when integrating over the random
probability parameter p. The Binomial distribution describes the conditional distribution of counts:

PX=xz|p) = (Z)px(l—p)"_x, x=0,1,2,...,n

while the Beta distribution describes the variation of the probability parameter:

1
B(a,ﬂ)p

fpra, B) = > H1-p)ft, 0<p<i

where B(a, §) = Fr(z)gi%ﬂ)) is the Beta function, o > 0 and 8 > 0.

The joint distribution of X and p is obtained by combining these components:

The marginal probability mass function of X is found by integrating out the random variable p:

1
P(X = x) =/0 P(X ==, p)dp
= & ' atx—101 _ \B+n—xz—1
~ B ), P a
_ @
B(a, B)

Bla+z,8+n—zx)

This yields the Beta-Binomial probability mass function:

=0,1,... 2.1
T z )y 7” ( )

P(X =2 |n o f) = <n)B(az+a,nx+[3)

B(e, ) ’

Figure 1 depicts the probability mass function for the Beta-Binomial distribution, demonstrating how
it varies at various p-values.
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Figure 1: Density of Beta-Binomial distribution for different parameters

2.4. Bayesian Interpretation

The posterior distribution of p given X = x is:
flp| X =a) ocp o7t (1 = p)PHrmet

which shows that:
p| X =x~Beta(a +x,8+n—x)
This demonstrates the conjugate relationship between the Beta prior and Binomial likelihood.

2.5. Moments

The mean and variance of the Beta-Binomial distribution are:

BX)=pn= "3 (2.2)
Var(X) = o2 = _neblatB+n) (2.3)

(a+B)2(a+B+1)

2.6. Properties

e Over-dispersion: The variance exceeds that of a Binomial distribution with the same mean
e Conjugacy: The Beta prior is conjugate to the Binomial likelihood

e Flexibility: Can model a wide range of dispersion patterns through parameters o and
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2.7. Random Number Generation

To generate random numbers from the Beta-Binomial distribution:
1. Generate p ~ Beta(a, )
2. Generate X ~ Binomial(n, p)

The resulting X follows the Beta-Binomial distribution with parameters n, «, and .
2.8. Parameter Estimation

2.8.1. Method of Moments. Define the factorial moment ratio:

Hir+1)
/

Hir)

Rr—i—l ==

For the Beta-Binomial distribution:

(n—r)(r+a)

R =
r+1 T+Oé—|—ﬂ

Forr=0and r = 1:

no

a+p
(n—-1)(1+4«a)
S lta+p

1=

Ry =

Solving these equations yields the moment estimators:

my (my — nmf)

d =
(n — DymZ — n(mp —m})

~ n N
1
where m} and m}, are the first and second sample moments.

2.8.2. Mazimum Likelihood Estimation. The likelihood function is:

" (M)B(wi 4+ oa,n — xi + )

T

U B(a, )

The log-likelihood function is:

(o, 8) =3 log <n) + m[log B(a + zi, 8+ 1 — ;) — log B(a, 8)]
=1

£

The maximum likelihood estimates, & and B are obtained by solving;:

ol
%0 = 0 (2.6)
and ol

These equations require numerical optimization methods such as Newton-Raphson [23].
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2.9. Applications in SPC and Beyond

The primary application of the Beta-Binomial distribution in SPC is for monitoring over-dispersed
proportion data [7]. Traditional p-charts, based on the Binomial assumption, will have improperly set
control limits in the presence of over-dispersion, leading to an inflated false-alarm rate. Control charts
designed using the Beta-Binomial model are more robust and accurate for such processes.

Beyond SPC, the distribution has wide-ranging applications:

e Biometrics and Epidemiology: Modeling disease incidence in clusters with varying risk factors
[14]

e Reliability Engineering: Modeling failure counts with varying failure probabilities [17]
e Bayesian Analysis: Canonical example of conjugate analysis
e Market Research and Genetics: Analyzing consumer behavior and allele frequencies

3. Control Charts for Beta-Binomial Processes

In statistical quality control, monitoring the number of nonconforming items in an inspection unit is
a common task. While the inspection unit can be a single item, it often comprises a fixed-size group of
products for practical reasons such as easier data collection and management. This section introduces
control charts designed for scenarios where the number of nonconformities per inspection unit follows a
Beta-Binomial distribution. This distribution is particularly useful when the probability of a nonconfor-
mity, p, is not constant but varies from unit to unit according to a Beta distribution.

3.1. Control Charts When the Parameters Are Known

Let the number of nonconformities, X, in an inspection unit be modeled by a Beta-Binomial distri-
bution with parameters o > 0, 5 > 0, and a fixed size parameter n (the number of trials per unit). Its
probability mass function (pmf) is given by (2.1).

Given the mean p and variance o2 of this distribution (see Eqs. (2.2) and (2.3)), a Shewhart-type
control chart for individual observations (X chart) with three-sigma limits is constructed as follows:

B _ na naf(a+ f+n)
UCLu+3oa+6+3\/(a+ﬂ)2(a+6+1) (3.1)
nao
CL:M:OH—B (3.2)
LCL = max (0, 4 — 30) = max <0, offﬂ — 3\/(anfﬁﬁ()3(l‘ f_—; :)1)> (3.3)

The Lower Control Limit (LCL) is set to zero if the calculation yields a negative value, as a negative
count of nonconformities is not possible.

To monitor the process using subgroups, let each subgroup i consist of k inspection units. Let
X, = (Xi1 + ... + Xix)/k be the average number of nonconformities per inspection unit in the ith
subgroup. The center line and control limits for this X chart are derived from the properties of the
individual (X) chart. Since the variance of the sample mean is O'QY = 02 /k, the limits are:

B o na naf(a+ B+n)
UCL_H+3\/E_a+6+3\//€(a+ﬁ)2(a+ﬁ+l) (3.4)
no
CL:Oz—i—B (3.5)

_ L0\ . na naf(a+ B +n)
LCL—m&x(O,u 3\/E>—ma (0’04-&-5 3\/k(a+ﬁ)2(a+ﬁ—|—l)> (3.6)
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3.2. Control Charts When the Parameters Are Unknown

In practical applications, the parameters a and § are often unknown and must be estimated from
historical data.

8.2.1. Control Chart for Individual Observations. Let x1,x2,..., %, be a reference sample of m obser-
vations from the Beta-Binomial distribution with known inspection unit size n. The parameters a and 3
can be estimated using the Method of Moments (MoM). By equating the sample mean (Z) and sample
variance (s?) to their theoretical counterparts and solving, the estimators are:

- n(z/n)(1 —z/n) — s
“= (32 —(nz/(m +n) (1 —z/n)(1 = l/n)) (3.7)

(An approximate or iterative solution is often used)

n(z/n)(1 —z/n) — s> ) (3.8)

B=(n-2) <s2 —(nz/(m+n))(1-2/n)(1—1/n)

Alternatively, Maximum Likelihood Estimation (MLE) can be employed for more efficient estimates,
typically requiring numerical optimization methods. Once the estimates & and 8 are obtained, they are
substituted into the formulas for the control limits in Section 3.1.

3.2.2. Control Chart for Subgroups. Suppose we have m subgroups, each of size k. Let x;; represent the
jth observation in the ith subgroup, and Z; and S? be the mean and variance of the ith subgroup sample.
The grand mean is T = -- > | 7;, and the total sample variance is 52 =(n—1) S SE/ (mx (n—1)).

To implement the X chart with unknown parameters, we use the Equations (3.4), (3.5), and (3.6),
such that instead of o and 3 we use &, and 3 of Equations (3.7), and (3.8) respectively. Also in computing
the &, and B, instead of Z and s? we use T and S2 respectively.

3.3. Performance Evaluation and Implementation Note

The primary metric for evaluating the performance of a control chart is the Average Run Length
(ARL), which measures the average number of samples collected before a chart signals a change. Calcu-
lating the exact ARL for the Beta-Binomial control chart requires knowledge of the distribution of the
charting statistic (either X or X) in both in-control and out-of-control states.

Deriving the exact distribution of the subgroup average X for the Beta-Binomial distribution is
complex. Therefore, simulation-based methods, such as the bootstrap technique, are highly recommended
for estimating the ARL and determining the practical implementation of these control charts. This
approach involves resampling the historical data to establish empirical control limits and evaluate the
chart’s sensitivity to process shifts.

3.4. Bootstrap Control Charts for Beta-Binomial Processes

To construct a bootstrap control chart, we only use the sample data to estimate the sampling distri-
bution of the parameter estimator, and then, to obtain appropriate control limits. Thus, only the usual
assumptions of Phase II of SPC are required: stable process and independent and identically distributed
subgroup observations. The following Algorithm, similar to the ones proposed in [26] and [19,18], can be
used to implement bootstrap control charts for subgroup samples of size n, to monitor the process mean
value and the process standard deviation of a Beta-Binomial distribution, respectively. This algorithm
can be easily modified in order to implement bootstrap control charts for other parameters of interest.

In order to get information about the robustness of the bootstrap control limits, we must repeat Steps
1-6 of Algorithm 1 a large number of times, say r = 100, and then compute the average of the obtained
control limits, UCL and LCL, and their associated variances.
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Algorithm 1 Bootstrap Control Chart Construction
Phase I: Estimation and computation of the control limits

1. From in-control and stable process, observe k, say 25 or 30, random samples of size n, assuming
the observations are independent and come from a Beta-Binomial distribution, BB(n, «, j3).

2. Compute the MLE estimates & and § of Equations (2.6) and (2.7), using the pooled sample of size
k X n.

3. Generate a parametric bootstrap sample of size n, (z3,...,z}), from a Beta-Binomial distribution
using the MLEs obtained in Step 2 as the distribution parameters.

4. For the bootstrap sample of size n generated at step 3, compute the MLE estimates of a* and B*
Then select the step associated to the chart you want to implement:

e Two-sided bootstrap M-chart to monitor the process mean value BBM = a’fﬁ: from the
bootstrap subgroup sample obtained in Step 3, compute the estimated sample mean, BBM* =
no*
ot 48"

e Upper one-sided bootstrap S-chart to monitor the process standard deviation BBSd =
w/%: from the bootstrap subgroup sample obtained in Step 3, compute the esti-

- o e na*f* (a*+5*+n)
mated sample standard deviation, BBSd* = \/(&*+E*)2(d*+BA*+1)

5. Repeat Steps 3—4, a large number of times, say B = 10000 times, obtaining B bootstrap estimates
of the parameter of interest (the process mean value or the standard deviation).

6. Let v be the desired false alarm rate (FAR) of the chart. Using the B bootstrap estimates obtained
in Step 5:

e Find the 100(y/2)*™ and 100(1 — ~/2)" quantiles of the distribution of BBM*, i.e., the lower
control limit LCL and the upper control limit UCL for the bootstrap M-chart of FAR = ~,
respectively.

e Find the 100(1 — 7)™ quantile of the distribution of BBSd~, i.e., the upper control limit UCL
for the bootstrap S-chart of FAR = .

Phase II: Process monitoring

7. Take subgroup samples of size n from the process at regular time intervals. For each subgroup,
estimate a and 3, and compute BBM and BBSd.

8. Decision:

e If BBM falls between LCL and UCL of the M -chart, the process is assumed to be in-control
(targeting the nominal mean value); otherwise, if the estimate falls below the LCL or above
the UCL, the chart signals that the process may be out-of-control.

e If BBSd falls below the UCL of the S-chart, the process is assumed to be in-control (targeting
the nominal standard deviation); otherwise, the chart signals that the process may be out-of-
control.
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4. Performance Evaluation of Bootstrap Control Charts for Beta-Binomial Processes

This section presents a comprehensive simulation study evaluating the performance of bootstrap-based
M and S control charts for monitoring Beta-Binomial processes. The investigation focuses on two key
aspects: (1) the accuracy of bootstrap control limit estimation, and (2) the detection capability measured
through average run length (ARL) performance under both in-control and out-of-control conditions.

4.1. Simulation Design and Methodology

The simulation framework was designed to assess chart performance across diverse scenarios encom-
passing various sample sizes (n = 5,6,10,30,50) and different parameter configurations of the Beta-
Binomial distribution (c, 8 combinations). The false alarm rate was fixed at v = 0.0027 throughout all
experiments, corresponding to the traditional 3-sigma control limits in normal-based charts.

For control limit estimation, & = 30 subgroups of size n were generated from the specified Beta-
Binomial distribution following the procedure outlined in Algorithm 1. Maximum likelihood estimates
of a and 8 were obtained from the pooled data, and B = 10,000 bootstrap samples were generated to
construct the empirical distribution of the charting statistics. This entire process was repeated r = 100
times using Monte Carlo simulation to obtain stable estimates of the control limits.

ARL performance was evaluated by introducing deliberate parameter shifts from baseline values
(a0, Bp) to altered values (i, 1). For each combination, the mean ARL (MARL) and standard de-
viation of ARL (SDARL) were computed based on 100 independent replications. All simulations were
implemented using R statistical software.

4.2. Bootstrap Control Limit Estimation

Table 1 presents the estimated control limits for both M and S charts across different parameter
configurations. The results demonstrate several important patterns regarding the behavior of bootstrap
control limits.
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Table 1: Bootstrap M and S charts’ Control limits for BBD with different values of n,

a, and f3
n «a [ LCL (M-chart) UCL (M-chart) UCL (S-chart) True Mean True SD
5 3 2 1.20000 4.80000 2.408 32 3.000 00 1.41421
5 3 4 0.40000 3.80000 2.30217 2.142 86 1.35526
5 3 6 0.20000 3.200 00 2.16795 1.666 67 1.24722
5 5 2 1.80000 4.80000 2.19089 3.57143 1.23718
5 5 4 1.000 00 4.40000 2.30217 2.77778 1.31468
5 5 6 0.600 00 3.800 00 2.280 35 2.27273 1.28565
5 7 2 2.200 00 5.000 00 2.19089 3.888 89 1.099 94
5 7 4 1.40000 4.60000 2.30217 3.18182 1.24205
5 7 6 1.20000 4.40000 2.280 35 2.692 31 1.263 98
6 3 2 2.000 00 5.500 00 2.658 32 3.600 00 1.624 81
6 3 4 0.83333 4.666 67 2.658 32 2.57143 1.54524
6 3 6 0.666 67 4.00000 2.338 09 2.000 00 1.41421
6 5 2 2.500 00 5.666 67 2.44949 4.28571 1.41060
6 5 4 1.50000 5.083 56 2.48328 3.33333 1.49071
6 5 6 1.00000 4.666 67 2.562 55 2.72727 1.45170
6 7 2 3.000 00 5.83333 2.34521 4.666 67 1.24722
6 7 4 2.000 00 5.33333 2.366 43 3.81818 1.402 48
6 7 6 1.666 67 5.000 00 2.42212 3.23077 1.422 56
10 3 2 3.50000 8.10000 3.683 30 6.000 00 2.44949
100 3 4 2.000 00 6.300 00 3.565 26 4.28571 2.28125
10 3 6 1.40000 5.450 14 3.496 03 3.33333 2.054 80
10 5 2 5.249 87 9.000 00 3.33500 7.142 86 2.08248
10 5 4 3.300 00 7.300 00 3.306 56 5.555 56 2.16595
10 5 6 2.600 00 6.400 00 3.21285 4.545 45 2.08299
0 7 2 5.749 87 9.30000 3.22490 T.7TTT8 1.81217
100 7 4 4.50000 8.050 14 2.98142 6.363 64 2.012 36
10 7 6 3.700 00 7.100 00 2.95148 5.384 62 2.020 60
30 3 2 14.616 62 21.483 38 8.434 26 18.000 00 6.480 74
30 3 4 9.83324 16.316 71 7.81901 12.85714 5.829 20
30 3 6 7.216 62 12.800 00 6.928 21 10.000 00 5.09902
30 5 2 18.466 67 24.116 71 7.10199 21.428 57 5.32131
30 5 4 13.800 00 19.650 05 7.098 74 16.666 67 5.374 84
30 5 6 10.600 00 16.133 33 6.526 35 13.636 36 5.04115
30 7 2 20.866 67 25.666 67 6.31913 23.33333 4.496 91
30 7 4 16.533 33 21.516 71 6.279 05 19.09091 4.87022
30 7 6 13.449 96 18.466 67 6.213 22 16.153 85 4.78533
50 3 2 25.269 97 34.33003 12.933 68 30.00000 10.48809
50 3 4 17.149 87 25.26005 11.51087 21.428 57 9.34050
50 3 6 13.469 97 20.53003 10.52312 16.666 67 8.096 64
50 5 2 31.86000 39.160 05 10.79163 35.714 29 8.526 67
50 5 4 24.069 97 31.41003 10.654 68 27.77778 8.53461
50 5 6 19.720 00 26.37003 9.964 15 22.72727 7.938 30
50 7 2 35.67995 41.77003 9.22288 38.888 89 7.140 56
50 7 4 28.72000 35.19003 9.655 81 31.81818 7.669 12
50 7 6 23.78992 30.00000 9.227 87 26.92308 747778

Note: Control limits calculated with v = 0.0027 (probability of false alarm).

4.2.1. Impact of Sample Size. The control limit range (UCL - LCL) for the M-chart expands substan-
tially with increasing sample size. For instance, with a = 3, § = 2, the range increases from 3.6 (n = 5) to
9.06 (n = 50). Similarly, the S-chart UCL values scale approximately with /n, consistent with the vari-
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ance properties of the Beta-Binomial distribution. Larger sample sizes provide enhanced discrimination
between in-control and out-of-control states, as evidenced by the wider control bands.

4.2.2. Effect of Shape Parameters. Increasing « while maintaining S constant elevates both LCL and
UCL for the M-chart while generally reducing the control limit range. For example, with n = 10, 5 = 2,
the range decreases from 4.6 (o = 3) to 3.55 (e = 7). Concurrently, the S-chart UCL values diminish,
indicating reduced process dispersion.

Conversely, increasing 5 while holding « constant lowers both M-chart control limits and substantially
reduces the S-chart UCL values. The 8 parameter exerts a more pronounced effect on variance reduction
than the o parameter.

4.2.3. Joint Parameter Effects. The ratio «/(a + ) primarily determines the centerline position, as
reflected in the true mean values. The most constrained control limits occur with high « and high
B combinations. For fixed «/f ratios, the control limit range expands with n but at a diminishing
rate. The bootstrap methodology effectively accommodates the asymmetric nature of the Beta-Binomial
distribution, particularly for small sample sizes where normal approximations prove inadequate.

4.3. Average Run Length Performance

Table 2 summarizes the MARL and SDARL results for various parameter shift scenarios. The findings
reveal crucial insights into the detection capability of the proposed control charts.

Table 2: Mean and Standard Deviation of ARL (100 replications) for BBD Parameter Shifts

ag  Bo a1 B1 n=5 n=6 n =10 n = 30 n =50

MARL SDARL MARL SDARL MARL SDARL MARL SDARL MARL SDARL

3 2 3 2 356.76 317.27 420.72 405.17 455.53 428.97 333.87 307.74 441.56 446.64
3 2 3 4 18.99 19.06 7.65 6.77 5.21 4.85 1.06 0.24 1.00 0.00
3 2 3 6 4.34 3.80 1.73 1.04 1.72 1.30 1.00 0.00 1.00 0.00
3 2 5 2 121.14 132.53 92.39 91.09 14.02 13.54 2.15 1.53 1.16 0.44
3 2 5 4 174.68 180.53 86.47 86.30 76.86 74.30 68.38 68.54 55.91 56.97
3 2 5 6 28.51 24.58 8.81 T.79 21.81 20.35 1.24 0.51 1.01 0.10
3 2 7 2 189.34 174.56 24.89 23.04 3.20 2.61 1.03 0.17 1.00 0.00
3 2 7 4 207.06 161.06 101.99 101.45 94.54 89.52 86.00 80.09 83.39 76.16
3 2 7 6 248.44 223.78 59.43 67.25 77.01 72.52 36.40 29.59 22.74 23.00
3 4 3 2 13.17 12.89 21.51 16.00 3.01 2.12 1.11 0.37 1.00 0.00
3 4 3 4 249.97 246.60 459.51 495.59 340.20 332.34 457.29 544.08 285.31 258.58
3 4 3 6 89.81 86.71 75.68 76.13 72.54 77.95 3.02 2.38 1.59 0.93
3 4 5 2 3.20 2.55 4.48 4.15 1.07 0.26 1.00 0.00 1.00 0.00
3 4 5 4 110.45 109.99 31.01 29.43 7.23 8.86 1.34 0.67 1.00 0.00
3 4 5 6 243.81 206.39 151.72 133.48 42.76 40.81 43.87 46.12 49.84 46.13
3 4 7 2 2.02 1.47 1.87 1.50 1.00 0.00 1.00 0.00 1.00 0.00
3 4 7 4 20.98 22.41 12.38 14.42 1.89 1.37 1.01 0.10 1.00 0.00
3 4 7 6 54.80 45.75 219.57 215.61 11.92 11.92 2.19 1.50 1.08 0.27
3 6 3 2 2.61 2.17 3.79 3.13 1.25 0.54 1.00 0.00 1.00 0.00
3 6 3 4 21.48 25.73 74.33 68.96 21.03 21.34 1.61 1.02 1.20 0.47
3 6 3 6 210.60 188.80 234.50 251.14 737.66 699.52 329.64 350.02 550.46 603.83
3 6 5 2 1.29 0.57 1.66 1.16 1.02 0.14 1.00 0.00 1.00 0.00
3 6 5 4 4.64 4.72 7.12 6.69 1.63 1.02 1.00 0.00 1.00 0.00
3 6 5 6 16.67 15.19 58.25 59.67 12.35 13.03 1.15 0.46 1.03 0.17
3 6 7 2 1.10 0.30 1.20 0.43 1.00 0.00 1.00 0.00 1.00 0.00
3 6 7 4 2.01 1.21 2.42 1.84 1.12 0.33 1.00 0.00 1.00 0.00
3 6 7 6 5.09 4.56 13.18 13.43 2.19 1.59 1.00 0.00 1.00 0.00
5 2 3 2 34.49 34.93 17.79 15.69 5.87 5.58 1.72 1.05 1.13 0.34
5 2 3 4 4.05 3.24 2.21 1.30 1.06 0.24 1.00 0.00 1.00 0.00
5 2 3 6 1.58 0.99 1.29 0.62 1.00 0.00 1.00 0.00 1.00 0.00
5 2 5 2 661.97 676.45 271.12 327.54 259.09 216.30 286.21 295.99 471.12 462.56
5 2 5 4 24.85 23.98 11.39 11.13 2.29 1.76 1.02 0.14 1.00 0.00
5 2 5 6 5.94 6.08 2.91 2.42 1.18 0.44 1.00 0.00 1.00 0.00
5 2 7 2 180.02 207.83 199.11 172.15 27.41 24.82 5.48 5.30 2.56 2.40
5 2 7 4 143.09 140.24 58.15 65.93 19.75 21.39 5.24 5.31 2.10 1.44
5 2 7 6 21.26 20.15 8.76 9.02 2.43 1.64 1.00 0.00 1.00 0.00
5 4 3 2 175.78 165.97 100.78 81.19 19.40 15.80 13.13 13.35 4.93 4.30
5 4 3 4 43.55 44.64 25.90 25.98 12.66 12.86 1.21 0.48 1.02 0.14
5 4 3 6 9.31 7.59 5.19 4.00 2.30 1.71 1.00 0.00 1.00 0.00
5 4 5 2 20.22 17.10 17.83 16.59 2.33 2.28 1.02 0.14 1.00 0.00
5 4 5 4 357.63 289.12 686.69 661.26 209.32 221.59 355.09 344.66 471.35 476.21
5 4 5 6 114.03 100.98 63.02 69.08 44.70 42.89 1.90 1.51 1.19 0.44
5 4 7 2 5.50 5.40 5.76 4.97 1.25 0.63 1.00 0.00 1.00 0.00
5 4 7 4 170.55 180.97 85.57 81.53 13.28 11.47 3.46 2.71 1.56 1.04
5 4 7 6 217.77 260.59 179.54 163.90 83.09 82.85 85.52 81.36 36.10 37.18
5 6 3 2 21.30 20.06 12.20 11.70 2.91 2.16 1.07 0.26 1.01 0.10
5 6 3 4 198.16 187.94 124.50 147.13 84.95 72.85 55.93 54.55 14.86 14.77
5 6 3 6 37.00 38.00 24.47 20.66 8.18 8.35 1.51 0.97 1.00 0.00
5 6 5 2 4.14 3.16 3.90 3.35 1.13 0.34 1.00 0.00 1.00 0.00
5 6 5 4 104.53 116.57 32.40 34.88 9.13 9.86 1.25 0.46 1.05 0.26
5 6 5 6 211.50 201.55 583.05 590.16 305.67 256.20 205.91 193.69 312.88 319.17
5 6 7 2 2.14 1.40 2.21 1.40 1.00 0.00 1.00 0.00 1.00 0.00
5 6 7 4 19.73 17.28 9.11 8.27 2.02 1.60 1.00 0.00 1.00 0.00
5 6 7 6 163.46 113.89 71.20 65.84 14.12 12.46 1.66 1.00 1.37 0.63
7 2 3 2 9.33 9.17 5.89 5.12 2.93 2.54 1.00 0.00 1.00 0.00
7 2 3 4 1.88 1.24 1.37 0.73 1.03 0.17 1.00 0.00 1.00 0.00
7 2 3 6 1.34 0.61 1.02 0.14 1.00 0.00 1.00 0.00 1.00 0.00
7 2 5 2 89.61 85.59 57.98 51.26 42.34 44.96 3.84 3.27 2.16 1.56

Continued on next page
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Table 2 (continued)

ag  Bo a1 B1 n=5 n=6 n =10 n = 30 n =50
MARL  SDARL MARL SDARL MARL SDARL MARL SDARL MARL  SDARL
7 2 5 4 6.29 5.19 3.67 3.21 1.66 1.04 1.00 0.00 1.00 0.00
7 2 5 6 2.17 1.51 1.37 0.69 1.02 0.14 1.00 0.00 1.00 0.00
7 2 7 2 582.11 636.35 445.00 372.68 802.67 771.53 301.90 297.99 406.99 412.77
7 2 7 4 21.05 20.96 13.06 11.75 6.03 5.94 1.02 0.14 1.00 0.00
7 2 7 6 5.72 5.05 3.14 2.51 1.40 0.75 1.00 0.00 1.00 0.00
7 4 3 2 152.70 151.91 96.34 92.05 39.85 32.56 9.36 8.74 6.25 5.76
7 4 3 4 9.22 8.45 5.19 5.24 1.70 1.18 1.00 0.00 1.00 0.00
7 4 3 6 3.09 2.59 2.01 1.49 1.03 0.17 1.00 0.00 1.00 0.00
7 4 5 2 98.23 97.00 61.30 65.06 12.75 11.42 2.09 1.76 1.49 0.90
7 4 5 4 136.22 147.61 63.76 60.19 17.44 17.32 2.66 1.72 1.22 0.48
7 4 5 6 15.92 14.77 8.09 6.30 2.31 1.54 1.00 0.00 1.00 0.00
7 4 7 2 33.04 32.97 15.90 14.03 3.34 3.25 1.00 0.00 1.00 0.00
7 4 7 4 466.11 519.39 420.50 415.70 260.73 304.07 221.90 208.46 423.41 386.26
7 4 7 6 102.45 87.94 48.93 50.28 10.36 9.09 1.54 0.89 1.10 0.33
7 6 3 2 83.17 81.25 80.72 78.77 13.26 12.28 2.77 2.08 1.93 1.20
7 6 3 4 20.70 18.30 13.36 14.00 4.56 4.66 1.47 0.69 1.05 0.22
7 6 3 6 5.01 3.79 2.95 2.37 1.38 0.66 1.00 0.00 1.00 0.00
7 6 5 2 14.99 16.31 12.33 9.65 2.00 1.81 1.01 0.10 1.00 0.00
7 6 5 4 206.73 191.39 210.47 192.64 69.49 72.00 27.96 24.28 25.96 22.92
7 6 5 6 32.22 30.81 28.80 30.18 12.27 10.10 2.41 1.56 1.22 0.50
7 6 7 2 5.85 5.07 4.14 3.76 1.08 0.27 1.00 0.00 1.00 0.00
7 6 7 4 128.81 113.64 86.49 92.15 7.93 7.94 1.24 0.57 1.03 0.17
7 6 7 6 249.20 236.55 269.02 336.45 239.56 235.63 284.28 280.60 07.75 339.76

4.8.1. In-Control Performance. When no parameter shift occurs ((«g, 8o) = (a1, 1)), the MARL values
approximate the theoretical expectation of 370 (corresponding to v = 0.0027), with SDARL values
roughly equivalent to MARL. This indicates proper calibration of the bootstrap-based control limits
across different sample sizes, maintaining the desired in-control performance.

4.8.2. Out-of-Control Detection Capability. Under parameter shifts, MARL decreases substantially as
sample size increases. For small n (n = 5 or 6), MARL remains elevated, indicating delayed shift
detection. In contrast, for larger n (n = 30 or 50), MARL often drops to near 1, demonstrating rapid
detection of out-of-control conditions.

The detection sensitivity varies with the nature of the parameter shift. Changes in § are generally
detected more rapidly than equivalent changes in « for the same sample size. Some joint shifts in o and
B (particularly those that preserve the mean while altering variance) exhibit slower detection, even with
large sample sizes.

4.8.8. Detection Consistency. SDARL values decrease with increasing sample size, reflecting more con-
sistent detection times. High SDARL values for small n indicate variable detection performance, while
low SDARL values for large n demonstrate consistent and reliable shift detection.

4.4. Conclusions from Simulation Study

The simulation results lead to several important conclusions:

1. Sample size significantly impacts detection performance: Larger sample sizes (n > 30)
provide substantially better shift detection capability across all parameter configurations.

2. Bootstrap limits maintain nominal false alarm rates: The proposed methodology consis-
tently achieves the target in-control ARL of approximately 370, validating the bootstrap approach
for control limit estimation.

3. Detection sensitivity depends on shift direction: Changes affecting process dispersion (8
shifts) are detected more rapidly than changes primarily affecting location (« shifts).

4. Joint parameter changes may challenge detection: Simultaneous changes in « and (§ that
offset each other’s effects on the mean may require larger sample sizes for prompt detection.

5. Consistency improves with sample size: Larger samples not only enhance detection speed but
also improve detection consistency, as evidenced by reduced SDARL values.

These findings underscore the importance of selecting appropriate sample sizes and understanding
the nature of potential process changes when implementing control charts for Beta-Binomial processes.
The bootstrap methodology provides a robust framework for constructing effective control charts that
accommodate the distributional characteristics of Beta-Binomial data.



A BOOTSTRAP APPROACH FOR CONSTRUCTING CONTROL CHARTS FOR BETA-BINOMIAL PROCESSES 15

5. Illustrative Examples

This section demonstrates the practical application of bootstrap control charts for Beta-Binomial
processes through both simulated data and real-world case studies. The examples showcase the method-
ology’s effectiveness in detecting process changes and monitoring quality characteristics.

5.1. Simulation Study

A comprehensive simulation was conducted to evaluate the performance of the proposed bootstrap
control charts under controlled conditions with known parameter shifts.

5.1.1. Simulation Design. The simulation followed a two-phase approach:

e Phase I (In-control process): Generated m = 25 subgroups of size n = 5 from a Beta-Binomial
distribution BB(a = 3,8 = 6) to establish baseline performance.

e Phase IT (Out-of-control process): Generated 10 additional subgroups of size n = 5 from a
shifted Beta-Binomial distribution BB(a = 5, 8 = 2) to simulate a process change.

e The statistics BBM (mean estimator) and BBS, (dispersion estimator) were computed for all
subgroups using Algorithm 2.

5.1.2. Simulation Results. Table 3 presents the calculated values for BBM and BBS, across all sub-
groups.



16 MoHAMMED FARIS ABED, AL1 AKBAR HEYDARI AND HOSSEIN JABBARI KHAMNEI

Table 3: Randomly generated subgruops of BBD with calculated values of BBM and BBS, for each
subgroup

Sample ID  Sample Values BBM BBS,

1 2,1,2,0,0 0.99998  0.89585
2 0,4,0,3,1 1.53023  1.59974
3 2,1,2,1,2 1.60090  1.04464
4 1,0,2,2,5 2.10037 1.70112
5 2,3,4,0,1 1.98312  1.41768
6 1,5,2,3,1 2.45615 1.49241
7 4,0,1,3,4 2.32872  1.59606
8 2,4,0,1,4 2.16318  1.57209
9 3,0,3,0,1 1.35763  1.38635
10 2,1,0,1,3 1.39998  1.02092
11 3,2,0,1,3 1.79673  1.18082
12 3,1,3,2,1 2.00030 1.09679
13 1,2,3,3,2 2.20043 1.11122
14 1,3,1,1,4 2.00405 1.24721
15 1,2,1,0,2 1.20056  0.95659
16 2,1,1,4,0 1.60879  1.33007
17 0,3,1,2,1 1.39998  1.02092
18 0,0,1,1,0 0.40074 0.60825
19 3,2,2,3,1 2.20043 1.11122
20 1,1,3,2,2 1.80056  1.07476
21 0,2,2,3,1 1.60011  1.04451
22 3,1,0,2,0 1.18693 1.19936
23 1,4,1,3,0 1.79385 1.44488
24 2,1,1,0,1 1.00080  0.89612
25 0,0,1,3,0 0.77908  1.17478
26 5,1,4,5,5 4.03245 1.47970
27 1,3,0,4,4 2.32872  1.59606
28 5,4,4,4,5 4.39895 0.72846
29 2,3,5,4,3 3.39980  1.04451
30 44,345 3.99920 0.89612
31 445,14 3.57679  1.29381
32 5,2,1,5,4 3.46977 1.59974
33 5,2,4,5,2 3.64237 1.38635
34 3,4,4,3,5 3.79944  0.95659
35 4,54,5,5 459926  0.60825

Figure 2 shows the bootstrap M-chart for simulated data, demonstrating effective monitoring of
process mean with established control limits. Figure 3 presents the bootstrap S-chart for simulated data,
illustrating the monitoring of process variability with its upper control limit.

5.1.3. Key Observations. The simulation results reveal several important patterns:

e Phase I stability: Samples 1-25, generated from BB(3,6), show consistent behavior in both
BBM and BBS, values, indicating process stability.

e Phase II shift detection: Samples 26-35, generated from BB(5,2), exhibit a pronounced increase
in BBM values, clearly signaling the parameter shift.

e Dispersion changes: The BBS,; values show noticeable variations between phases, reflecting
changes in process variability.
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Bootstrap M—chat for randomly generated samples of size 5 from BBD
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Figure 2: Bootstrap M-chart for simulated data from Beta-Binomial distribution with sample size 5.
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Figure 3: Bootstrap S-chart for simulated data from Beta-Binomial distribution with sample size 5.

e Chart sensitivity: The bootstrap control charts effectively detected the introduced shift, demon-
strating their sensitivity to process changes.

These findings confirm that the bootstrap methodology provides an effective framework for monitoring
Beta-Binomial processes using both location (M-chart) and dispersion (S-chart) control charts.

5.2. Real-World Application: Transformer Manufacturing Quality

To demonstrate practical utility, we applied the methodology to quality control data from a trans-
former manufacturing company in Diyala, Iraq.

5.2.1. Data Description. The dataset comprises monthly defective transformer counts from 2017 to 2021,
totaling 60 monthly observations. The average production volume was n = 274 transformers per month,
with substantial variation in monthly production levels. Table 4 summarizes the annual manufacturing
and defect data.
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Table 4: Monthly Transformer Production and Defect Counts (2017-2021)

Year Jan Feb Mar Apr May Jun  Jul Aug Sep Oct Nov Dec Total
2017
Manufactured 432 87 36 32 161 101 256 220 223 362 294 352 2524
Defective 1 0 1 0 3 4 0 2 0 0 0 0 11
2018
Manufactured 280 182 259 235 175 210 277 260 287 260 263 389 2902
Defective 0 0 0 0 0 0 0 0 0 0 0 0 0
2019
Manufactured 375 367 420 479 468 338 281 505 457 498 497 457 5142
Defective 11 1 0 0 1 1 1 0 2 0 0 0 17
2020
Manufactured 391 445 79 20 66 50 146 281 175 160 143 208 2164
Defective 0 0 0 0 0 0 0 0 0 0 0 0 0
2021
Manufactured 180 127 251 220 262 530 272 334 308 194 370 454 3502
Defective 0 0 2 2 0 1 7 9 1 1 4 24 51

5.2.2. Parameter Estimation and Model Fitting. Maximum likelihood estimation was used to fit the
Beta-Binomial distribution to the defect count data. The parameter estimates are presented in Table 5.

Table 5: Beta-Binomial Parameter Estimates for Transformer Defect Data

Parameter Symbol Estimate
Alpha «a 0.1744
Beta B 7.5810

Defect probability p=a/(a+ )  0.0225

5.2.83. Goodness-of-Fit Assessment. The Beta-Binomial distribution’s fit was evaluated using multiple
statistical measures, as shown in Table 6.

Table 6: Goodness-of-Fit Statistics for Beta-Binomial Distribution

Statistic Value
Log-Likelihood -80.30
AIC 164.60
BIC 168.79
Chi-square statistic =~ 1.48
Degrees of freedom 2
p-value 0.477

Figure 4 displays the goodness-of-fit assessment, confirming the Beta-Binomial distribution adequately
models the transformer defect data. The plot compares observed versus expected defect frequencies.
Figure 5 shows the Q-Q plot, providing additional visual confirmation of the Beta-Binomial distribution’s
fit to the observed data.The alignment of points with the reference line indicates a good distributional
fit.

5.2.4. Model Comparison. Four probability distributions were compared for their ability to model the
defect data. Table 7 presents the comparison results, while Table 8 shows the Akaike weights indicating
each model’s relative support.
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Figure 4: Goodness-of-fit assessment showing the Beta-Binomial distribution fitted to the transformer
defect data.

Table 7: Comparison of Distribution Fits for Defect Data

Distribution Log-Likelihood  AIC BIC  Parameters
Negative Binomial -80.07 164.15 168.33 2
Beta Binomial -80.30 164.60 168.79 2
Poisson -161.80 325.60 327.70 1
Binomial -163.13 328.26  330.36 1

Table 8: AIC Model Weights for Distribution Comparison

Distribution AIC Weight
Negative Binomial 0.5097
Beta Binomial 0.4903
Poisson 0.0000
Binomial 0.0000

5.2.5. Interpretation and Practical Implications. The analysis yields several important insights:
e The estimated defect probability of 2.25% indicates generally high manufacturing quality.

e The substantial difference between « and 8 parameters (0.174 vs. 7.581) suggests significant over-
dispersion in the defect data, making standard Binomial and Poisson models inappropriate.
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Q-Q Plot: Beta Binomial Fit

25

15

Theoretical Quantiles
10

I I I I I
0 5 10 15 20

Observed Quantiles

Figure 5: Q-Q plot assessing the fit of Beta-Binomial distribution to the transformer defect data.

e Both Beta-Binomial and Negative Binomial distributions provide excellent fits, with nearly equiv-
alent statistical support (AIC weights of 0.49 and 0.51, respectively).

e The non-significant chi-square test result (p = 0.477) confirms that the Beta-Binomial distribution
adequately represents the defect data.

e The complete lack of support for Poisson and Binomial models (AIC weights essentially zero)
highlights the importance of accounting for over-dispersion in quality control applications.

5.2.6. Control Chart Implementation. To evaluate the bootstrap control charts for the real transformer
data, the observations were organized into subgroups of six, corresponding to summer and winter periods
for each year. The calculated statistics for each subgroup are presented in Table 9.
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Table 9: Statistical summary of the transformer defect data organized in subgroups of six

Row Sample 1l Sample2 Sample3d Sample4 Sample5 Sample 6 BBM BBS,

1 1 0 1 0 3 4 1.484  1.498
2 0 2 0 0 0 0 0.314  0.826
3 0 0 0 0 0 0 0.000  0.002
4 0 0 0 0 0 0 0.000  0.002
5 11 1 0 0 1 1 0.601  0.737
6 1 0 2 0 0 0 0.497  0.800
7 0 0 0 0 0 0 0.000  0.002
3 0 0 0 0 0 0 0.000  0.002
9 0 0 2 2 0 1 0.832  0.929
10 7 9 1 1 4 24 1.953  2.251

Subsequently, the bootstrap M-chart and S-chart for monitoring the process mean and standard
deviation, respectively, were constructed based on this data (Figures 6 and 7). These charts provide the
necessary control limits for ongoing quality surveillance of the transformer manufacturing process.

Bootstrap M—chat for samples of size 6 from Transformer Data

o |
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No. of Subgroup

Figure 6: Bootstrap M-chart applied to the transformer manufacturing data with sample size 6. The
chart monitors the process mean with control limits at 0 and 1.0128.

The charts effectively detected the increased defect rates observed in 2021, providing early warning
of quality issues that warranted investigation and corrective action.

Both simulated and real-world examples demonstrate the practical utility of bootstrap control charts
for Beta-Binomial processes. The methodology effectively detects process changes, accommodates over-
dispersed count data, and provides a robust framework for quality monitoring in manufacturing environ-
ments characterized by variable production volumes and low defect rates.

6. Conclusion

This study successfully developed and validated a bootstrap-based methodology for constructing con-
trol charts for processes characterized by Beta-Binomial distributions. The primary challenge of deriving
accurate control limits for such non-normal, over-dispersed data was effectively addressed by leveraging
parametric bootstrapping, which empirically estimates the sampling distribution of the sample mean
(M-chart) and standard deviation (S-chart).
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Bootstrap S—chat for samples of size 6 from Transformer Data
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Figure 7: Bootstrap S-chart applied to the transformer manufacturing data. The chart monitors process
variability and helps detect changes in dispersion.

The simulation study unequivocally demonstrated the effectiveness of the proposed charts. Under in-
control conditions, the bootstrap limits consistently achieved the nominal false alarm rate (ARLg ~ 370),
confirming their statistical accuracy. Furthermore, the charts exhibited high sensitivity in detecting out-
of-control conditions, with the average run length (ARL;) decreasing significantly as the sample size
increased or the magnitude of the parameter shift grew. The analysis also revealed that the charts are
particularly adept at detecting increases in the defect probability and changes in process dispersion.

The application to real-world data from transformer manufacturing underscored the practical rel-
evance of the methodology. The analysis confirmed that the defect data was severely over-dispersed,
rendering traditional Binomial and Poisson models entirely unsuitable. The Beta-Binomial distribution,
in contrast, provided an excellent fit, as visually confirmed by the fitted distribution plot (Figure 4) and
the quantile-quantile plot. The subsequent bootstrap M and S charts, derived from the fitted model,
established statistically sound control limits (e.g., UCL = 1.0128 for the M-chart in Figure 6) that can
be used for ongoing quality surveillance.

In conclusion, the bootstrap approach offers a powerful, flexible, and theoretically sound alternative for
monitoring processes that exhibit extra-binomial variation. It eliminates the need for complex analytical
derivations or unrealistic normality assumptions. For future research, this work can be extended by
investigating multivariate scenarios, developing adaptive control schemes, and exploring non-parametric
bootstrap methods for distributions beyond the Beta-Binomial family. The charts presented herein mark
a significant contribution to the toolbox of modern quality control, especially for industries dealing with
complex, low-defect, or highly variable production processes.
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