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On Certain Classes of Univalent Functions Associated with Riemann Fractional Derivative
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abstract: In this paper, by making use of the concepts of fractional calculus, we define the subclass
S(r, λ, δ, t) of analytic function by using Ωδf(τ). For function belonging to this class, we obtain co-efficient
estimates, inclusions relations, extreme points and some more properties.
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1. Introduction

Let A denote the class of all analytic functions of the form

f(τ) = τ +

∞∑
t=2

atτ
t, (1.1)

defined in the unit disc U = {τ : |τ | < 1}.

Let T denote the subclass of A in U , consisting of analytic functions whose non-zero coefficients from
the second onwards are negative. That is, an analytic function f ∈ T if it has a Taylor expansion of the
form

f(τ) = τ −
∞∑
t=2

atτ
t (at ≥ 0),

which are analytic in the open disc U .

Definition 1.1 [5] The fractional derivative operator Dδ
τ of a f(τ) of order δ(0 ≤ δ < 1) is defined by

Dδ
τ f(τ) =

1

Γ(1− δ)
D

∫ τ

0

f(p)

(τ − p)δ
dp

where 0 ≤ δ < 1, f is an analytic function in a simply connected region of the τ -plane containing the
origin and the multiplicity of (τ−p)−δ is removed by requiring log(τ−p) to be real when (τ−p) is greater
than 0. Clearly f(τ) = lim

δ→0
Dδ

τ f(τ) and f′(τ) = lim
δ→1

Dδ
τ f(τ).
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Definition 1.2 For an analytic function f(τ) of the form (1.1), we put

Ωδf(τ) = Γ(2− δ)τ δDδ
τ f(τ) = τ +

∞∑
t=2

K(t, δ)atτ
t,

where K(t, δ) =
Γ(t+ 1)Γ(2− δ)

Γ(t+ 1− δ)
. The operator Ωδ were defined by Owa and Srivatsava [7].

Definition 1.3 A function f(τ) of the form (1.1) is in S(r, λ, δ, t) if it satisfies the condition:∣∣∣∣∣∣∣∣
τ(Ωδf(τ))′

(1− λ)Ωδf(τ) + λτ(Ωδf(τ))′
− 1

τ(Ωδf(τ))′

(1− λ)Ωδf(τ) + λτ(Ωδf(τ))′
+ 1

∣∣∣∣∣∣∣∣ < r,

where 0 < r ≤ 1, 0 ≤ λ < 1 and 0 ≤ δ < 1.

It can be seen that, the special cases of the class S(r, λ, δ, t) for different choices of parametrs we get the
following results:

(i) The class S(r, 0, 0, 0) = S(r) was studied by Owa [6].

(ii) The class S(r, 0, 0, 0) = S(r) was introduced by Padmanabham [8].

(iii) We note the class S(r, λ, 0, 0) = S(r, λ) (See [1,2]).

(iv) Mogra [4] has shown a sufficient condition for a function in the class S(r).

2. Main Results

Theorem 2.1 A function f(τ) = τ −
∞∑
t=2

atτ
t is in the class S(r, λ, δ, t) if and only if

∞∑
t=2

K(r, δ)at[(1− λ)(t− 1) + r(t(1 + λ) + (1− λ))] < 2r. (2.1)

Proof: Suppose f ∈ S(r, λ, δ, t). Then∣∣∣∣∣∣∣∣
τ(Ωδf(τ))′

(1− λ)Ωδf(τ) + λτ(Ωδf(τ))′
− 1

τ(Ωδf(τ))′

(1− λ)Ωδf(τ) + λτ(Ωδf(τ))′
+ 1

∣∣∣∣∣∣∣∣ < r

=⇒

∣∣∣∣∣∣∣∣∣∣
(1− λ)[τ −

∞∑
t=2

K(t, δ)attτ
t − τ +

∞∑
t=2

K(t, δ)atτ
t]

(1 + λ)(τ −
∞∑
t=2

K(t, δ)attτ
t) + (1− λ)(τ −

∞∑
t=2

K(t, δ)atτ
t)

∣∣∣∣∣∣∣∣∣∣
< r

=⇒

∣∣∣∣∣
∞∑
t=2

K(t, δ)atτ
t((1− λ)(t− 1) + r[t(1 + λ) + (1− λ)])

∣∣∣∣∣ < 2r|τ |.

Letting |τ | → 1, we get (2).

Conversley, f(τ) ∈ T and satisfies (2).
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Since for any |τ |, we have |Re(τ)| ≤ |τ |. So

∣∣∣∣∣∣∣∣∣∣
Re



∞∑
t=2

K(t, δ)at(1− λ)(t− 1)τ t

2t−
∞∑
t=2

K(t, δ)atτ
t[t(1 + λ) + (1− λ)]



∣∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣∣

∞∑
t=2

K(t, δ)at(1− λ)(t− 1)

2−
∞∑
t=2

K(t, δ)at[t(1 + λ) + (1− λ)]

∣∣∣∣∣∣∣∣∣∣
< |r| ≤ 1.

Choose values of τ , so that
τ(Ωδf(τ))′

(1− λ)Ωδf(τ) + λτ(Ωδf(τ))′
is real.

Therefore, ∣∣∣∣∣∣∣∣
τ(Ωδf(τ))′

(1− λ)Ωδf(τ) + λτ(Ωδf(τ))′
− 1

τ(Ωδf(τ))′

(1− λ)Ωδf(τ) + λτ(Ωδf(τ))′
+ 1

∣∣∣∣∣∣∣∣ < 1,

that is

f(τ) ∈ S(r, λ, δ, t).

2

Corollary 2.1 If f(τ) ∈ S(r, λ, δ, t) then

|at| ≤
2r

K(t, δ)[(1− λ)(t− 1) + r(t(1 + λ) + (1− λ))]
.

Theorem 2.2 Let 0 ≤ r < 1, 0 ≤ λ1 ≤ λ2 < 1 then S(r, λ1, δ, t) ⊂ S(r, λ2, δ, t).

Proof: For f(τ) ∈ S(r, λ2, δ, t), we have

∞∑
t=2

K(t, δ)at[(1− λ2)(t− 1) + r(t(1 + λ2) + (1− λ2))]

≤
∞∑
t=2

K(t, δ)at[(1− λ1)(t− 1) + r(t(1 + λ1) + (1− λ1))].

Hence f(z) ∈ S(r, λ1, δ, t). 2

Theorem 2.3 Let f(τ) ∈ S(r, λ, δ, t). Define f1(τ) = τ and

ft(τ) = τ − 2r

K(t, δ)[(1− λ)(t− 1) + r(t(1 + λ) + (1− λ))]
τ t,

where t = 2, 3, · · · for r, λ(0 ≤ λ < 1) and τ ∈ U .
Then f(τ) ∈ S(r, λ, δ, t) if and only if f(τ) can be expressed as

f(τ) =

∞∑
t=1

µtft(τ),

where µt ≥ 0 and

∞∑
t=1

µt = 1.
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Proof: If f(τ) =

∞∑
t=1

µtft(τ) where µt ≥ 0 and

∞∑
t=1

µt = 1, then

f(τ) =

∞∑
t=1

µtft(τ) = µ1f1(z) +

∞∑
t=2

µtft(τ)

= τ −
∞∑
t=2

2rµt

K(t, δ)[(1− λ)(t− 1) + r(t(1 + λ) + (1− λ))]
.

From Theorem 2.1, Consider

∞∑
t=2

2rµtK(t, δ)[(1− λ)(t− 1) + r(t(1 + λ) + (1− λ))]

K(t, δ)[(1− λ)(t− 1) + r(t(1 + λ) + (1− λ))]

=

∞∑
t=2

µt2r

=

∞∑
t=2

(1− µ1)2r

≤ 2r.

Hence f(τ) ∈ S(r, λ, δ, t).

Conversley, let f(τ) = τ −
∞∑
t=2

atτ
t ∈ S(r, λ, δ, t), define

µt = K(t, δ)[(1− λ)(t− 1) + r(t(1 + λ) + (1− λ))],

for t = 2, 3, · · · , and µ1 = 1−
∞∑
t=2

µt.

From Theorem 2.1,

∞∑
t=2

µt ≤ 1 and hence µ1 ≥ 0.

Since

µtft(τ) = µt

[
τ − 2rτ t

K(t, δ)[(1− λ)(t− 1) + r(t(1 + λ) + (1− λ))]

]
= µtτ − 2rµtτ

t

K(t, δ)[(1− λ)(n− 1) + r(t(1 + λ) + (1− λ))]

= µtτ − atτ
t,

then

∞∑
t=1

µtft(τ) =

∞∑
t=1

µtτ − atτ
t

=

∞∑
t=1

µtτ −
∞∑
t=1

atτ
t

= τ −
∞∑
t=1

atτ
t = f(τ).

2
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Theorem 2.4 The class S(r, λ, δ, t) is closed under convex linear combination.

Proof: Let f(τ), g(τ) ∈ S(r, λ, δ, t) and f(τ) = τ −
∞∑
t=2

atτ
t and g(τ) = τ −

∞∑
t=2

btτ
t. For x such that

0 ≤ x < 1, it suffices to show that the function defined by h(τ) = (1− x)f(τ) + xg(τ), τ ∈ (U) belongs to
S(r, λ, δ, t).
Now

h(τ) = (1− x)f(τ) + xg(τ)

= (1− x)[τ −
∞∑
t=2

atτ
t] + x[τ −

∞∑
t=2

btτ
t]

h(τ) = τ −
∞∑
t=2

((1− x)at + xbt)τ
t.

Applying Theorem 2.1 to f(τ), g(τ) ∈ S(r, λ, δ, t), we have

∞∑
t=2

K(t, δ)[(1− λ)(t− 1) + r(t(1 + λ) + (1− λ))][(1− x)at + xbt]

= (1− x)

∞∑
t=2

K(t, δ)[(1− λ)(t− 1) + r(t(1 + λ) + (1− λ))]at

+ x

∞∑
t=2

K(t, δ)[(1− λ)(t− 1) + r(t(1 + λ) + (1− λ))]bt

≤ (1− x)2r + x2r

= 2r.

That is h(τ) ∈ S(r, λ, δ, t). 2

Corollary 2.2 If f1(τ), f2(τ) are in S(r, λ, δ, t) then the function defined by g(τ) = 1
2 [f1(τ) + f2(τ)] is

also in S(r, λ, δ, t).

Theorem 2.5 Let for j = 1, 2, ..., n, fj(τ) = τ −
∞∑
t=2

at,jz
t ∈ S(r, λ, δ, t) and 0 < λj < 1 such that

n∑
j=1

λj = 1, then the function F (τ) defined by F (τ) =

t∑
j=1

λjfj(τ) is also in S(r, λ, δ, t).

Proof: For each j ∈ {1, 2, · · · , n}, we obtain

∞∑
t=2

K(t, δ)[(1− λ)(t− 1) + r(t(1 + λ) + (1− λ))]at < 2r.

We have

F (τ) =

t∑
j=1

λj(τ −
∞∑
t=2

at,jτ
t)

=

t∑
j=1

λjτ −
∞∑
t=2

(

t∑
j=1

λjat,j)τ
t

= τ −
∞∑
t=2

(

t∑
j=1

λjat,j)τ
t.
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Consider

∞∑
t=2

K(t, δ)[(1− λ)(t− 1) + r(t(1 + λ) + (1− λ))].

t∑
j=1

λjat,j

=

t∑
j=1

λj [

∞∑
t=2

K(t, δ)[(1− λ)(t− 1) + r(t(1 + λ) + (1− λ))]]at,j

<

t∑
j=1

λj(2r)

< 2r.

Hence F (τ) ∈ S(r, λ, δ, t). 2

Theorem 2.6 If f ∈ S(r, λ, δ, t) then

|τ | − 2r

K(2, δ)[(1− λ) + r(3 + λ)]
|τ |2 ≤ |f(τ)| ≤ |τ |+ 2r

K(2, δ)[(1− λ) + r(3 + λ)]
|τ |2.

Proof: Since

ξ(t) = K(t, δ)[(1− λ)(t− 1) + r(t(1 + λ) + (1− λ))] (2.2)

is an increasing function of t(t ≥ 2), from Theorem 2.1,

K(2, δ)[(1− λ) + r(3 + λ)]

∞∑
t=2

|at|

≤
∞∑
t=2

K(t, δ)[(1− λ)(t− 1) + r(t(1 + λ) + (1− λ))]|at|

< 2r.

That is,
∞∑
t=2

|at| ≤
2r

K(2, δ)[(1− λ) + r(3 + λ)]
.

Thus,

|f(τ)| = |τ +

∞∑
t=2

atτ
t|

≤ |τ |+
∞∑
t=2

|at|τ |2

≤ |τ |+ 2r

K(2, δ)[(1− λ) + r(3 + λ)]
.

Similarly, we get

|f(τ)| ≥ |τ | −
∞∑
t=2

|at|τ |2

≥ |τ | − 2r

K(2, δ)[(1− λ) + r(3 + λ)]

|τ | − 2r

K(2, δ)[(1− λ) + r(3 + λ)]
≤ |f(τ)| ≤ |τ |+ 2r

K(2, δ)[(1− λ) + r(3 + λ)]
.

2
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Theorem 2.7 Let f(τ) ∈ S(r, λ, δ, t) then

1− 4r

K(2, δ)[(1− λ) + r(3 + λ)]
|τ | ≤ |f′(τ)| ≤ 1 +

4r

K(2, δ)[(1− λ) + r(3 + λ)]
|τ |.

Proof: Since {t(ξ(t))}, where ξ(t) given by (2.2), is an increasing function of t, In view of Theorem 2.1,
we have

K(2, δ)[(1− λ) + r(3 + λ)]

2

∞∑
t=2

t|at|

≤ K(t, δ)[(1− λ)(n− 1) + r(t(1 + λ))]

< 2r.

That is
∞∑
t=2

t|at| <
4r

K[(1− λ) + r(3 + λ)]
.

Thus,

|f′(τ)| = |1 +
∞∑
t=2

tatτ
t−1|

≤ 1 +

∞∑
t=2

t|at||τ |

< 1 +
4r

K(2, δ)[(1− λ) + r(3 + λ)]
|τ |.

Similarly, we get

|f′(τ)| ≥ 1− 4r

K(2, δ)[(1− λ) + r(3 + λ)]
|τ |.

2

Theorem 2.8 Let f(τ) ∈ S(r, λ, δ, t) and Komato operator [3] of f is defined by

k(τ) =

∫ 1

0

(c+ 1)γ

Γ(γ)
pc
(
log

1

p

)(γ−1)
f(pτ)

p
dp,

c > −1, γ ≥ 0. Then k(τ) ∈ S(r, λ, δ, t).

Proof: We have

∫ 1

0

pc
(
log

1

p

)γ−1

dp =
Γ(γ)

(c+ 1)γ
.

=⇒
∫ 1

0

pt+c−1

(
log

1

p

)γ−1

dp =
Γ(γ)

(c+ t)γ
, t = 2, 3, . . .

=⇒ k(τ) =
(c+ 1)γ

Γ(γ)

[ ∫ 1

0

pc
(
log

1

p

)γ−1

τdp+

∞∑
t=2

τ t
∫ 1

0

atp
t+c−1

(
log

1

p

)γ−1

dp

]

= τ +

∞∑
t=2

(
c+ 1

c+ t

)γ

atτ
t.
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Since f ∈ S(r, λ, δ, t) and

(
c+ 1

c+ t

)γ

< 1, we have

∞∑
t=2

K(t, δ)[(1− λ)(t− 1) + r(t(1 + λ) + (1− λ))]

(
c+ 1

c+ t

)γ

at < 2r.

2

Theorem 2.9 Let f ∈ S(r, λ, δ, t) then for every 0 ≤ α ≤ 1 the function

Hα(τ) = (1− α)f(τ) + α

∫ τ

0

f(p)

p
dp.

Proof: We have

Hα(τ) = τ +

∞∑
t=2

(1 +
α

t
− α)atτ

t.

Since (1 +
α

t
− α) < 1, t ≥ 2. So by Theorem (2.1),

∞∑
t=2

(1 +
α

t
− α)K(t, δ)at[(1− λ)(t− 1) + r(t(1 + λ) + (1− λ))]

<

∞∑
t=2

K(t, δ)at[(1− λ)(t− 1) + r(t(1 + λ) + (1− λ))]

< 2r.

Therefore,
Hα(τ) ∈ S(r, λ, δ, t).

2

3. Conclusion

In this paper, we have introduced a new subclass S(r, λ, δ, t) of analytic functions by employing the
operator (Ωδf(τ)) associated with the concept of fractional calculus. For functions belonging to this class,
various significant results have been established, including coefficient estimates, inclusion relations, and
the determination of extreme points. Furthermore, several geometric and analytical properties of the
defined subclass have been discussed in detail. The results obtained in this study provide a founda-
tion for further investigations into more generalized subclasses of analytic functions and their potential
applications in geometric function theory.
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