Bol. Soc. Paran. Mat. (3s.) v. 2026 (44) : 1-9.
©SPM - E-ISSN-2175-1188 ISSN-0037-8712
SPM: www.spm.uem.br/bspm d0i:10.5269/bspm.79357

On Certain Classes of Univalent Functions Associated with Riemann Fractional Derivative
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ABSTRACT: In this paper, by making use of the concepts of fractional calculus, we define the subclass
S(r, \, 8,t) of analytic function by using Q%f(7). For function belonging to this class, we obtain co-efficient
estimates, inclusions relations, extreme points and some more properties.
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1. Introduction

Let A denote the class of all analytic functions of the form
fr) =7+ ar, (1.1)
t=2

defined in the unit disc U = {7 : |7| < 1}.
Let 7 denote the subclass of A in U, consisting of analytic functions whose non-zero coefficients from

the second onwards are negative. That is, an analytic function § € 7 if it has a Taylor expansion of the
form

firy=1— Z a;tt (at > 0),
t=2

which are analytic in the open disc U.

Definition 1.1 [5] The fractional derivative operator DS of a §(1) of order §(0 < & < 1) is defined by

5 _ 1 T f(p)
PO = 5P )

where 0 < § < 1, f is an analytic function in a simply connected region of the T-plane containing the
origin and the multiplicity of (T —p)~? is removed by requiring log(T — p) to be real when (T —p) is greater
than 0. Clearly f(1) = %ir% D3§(7) and §' (1) = ;iml Do§(T).
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Definition 1.2 For an analytic function f(7) of the form (1.1), we put

Q% (1) =12 — )T Df(r) = 7 + i K(t, 8)a;r,
t=2
L(t+1)I(2-9)

where KC(t,0) = T+ 1—9)

. The operator Q° were defined by Owa and Srivatsava [7].

Definition 1.3 A function (1) of the form (1.1) is in S(r, X, 0,t) if it satisfies the condition:

(NP Ty |
(5 "
(L= NH(7) + AT (F))

where 0 <r<1,0<A<1land0<d < 1.

It can be seen that, the special cases of the class S(r, A, d,t) for different choices of parametrs we get the
following results:

(i) The class S(r,0,0,0) = S(r) was studied by Owa [6].
(ii) The class S(r,0,0,0) = S(r) was introduced by Padmanabham [8].
(iii) We note the class S(r, A,0,0) = S(r, \) (See [1,2]).

)

(iv) Mogra [4] has shown a sufficient condition for a function in the class S(r).

2. Main Results

Theorem 2.1 A function f(1) =7 — Zaﬂt is in the class S(r, A, 6,t) if and only if
t=2

i/c (r, 8)ae[(1 — A)(t — 1) + r(¢(1 + X) + (1 — \))] < 2r-. (2.1)

Proof: Suppose § € S(r, A, d,t). Then

(7)) L
(L= N0+ A @Y |,
()Y O

(1= XN)Q%(7) + AT (Q°F(7))’

ZICt(SattT —T+ZICt5atT]
t=2

— — =2 __ <r
14+ N)(r— ZIC(t,(S)attT )+ ZIC (t,8)asth)
t=2 t=2
i K, 0)am (1 =N (t—1) +r[t(1+X) + (1= N])| < 2r|7|.

Letting |7| — 1, we get (2).

Conversley, (1) € T and satisfies (2).
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Since for any |7|, we have |Re(7)| < |7|. So

ilC(t,(S)at(l —N)(t—1)7t ilC(t, 8as(1—N)(t—1)
Re tzz < 20_2 <|r| < 1.
2t — > K(t,)ar [t(1+A) + (1= N)] 2= K(t,8)art(1+ A) + (1 - N)]
t=2 t=2
7(Q%5(7))’

Choose values of 7, so that is real.

(1= X)Q5(r) + Ar(Q°§(7))’

Therefore,
r(©f(r)) B
(1 = N)Qf(7) + AT (Q5(7))’ <1
(i) o
(1 = XN)QF(7) + AT(Qf(7))’
that is

f(T) € S(r, A, 6, ).

Corollary 2.1 Iff(1) € S(r, A\, d,t) then

2r
K, 0)[(1 =Xt —=1)+r{t1+ )+ (1=X)]
Theorem 2.2 Let 0 <7 < 1,0 < X\ < Ao <1 then S(r,\1,6,t) C S(r,Aa,0,1).

la| <

Proof: For f(7) € S(r, A2, 6,t), we have

i/c t8)an[(1— A)(t — 1) +7(t(1 4 Ao) + (1 — A2))]

t=2

t (5 CLt 1 — )\1)(t — 1) +T(t(1 + M)+ (0= )\1))]

Mg

Hence f(z) € S(r, A1,6,1).

Theorem 2.3 Let f(7) € S(r, A\, 6,t). Define f1(7) =7 and

2r "

fi(r) =7 — K(t,0)[(1-Nt—1)+ (t(1+)\)+(1*>\))]7— 7

where t =2,3,-+- forr, A\(O<A<1)andT€eU.
Then §(1) € S(r, A, 0,t) if and only if §(7) can be expressed as

)= ufe(r)

where py > 0 and Zut =1.
t=1
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Proof: If f(7 Z wefe(T) where py > 0 and i uy = 1, then
t=1
)= wfi(r) = mafi(z) + Zutft
t=1
_ i 2r
T T AR D e N+ AN
From Theorem 2.1, Consider
o 2rw () [(1 =N (= 1) +rt1+ 1) + (1= V)]
2 TR 01— Mt — 1)+ {1+ ) + (1— V)
= Z,uﬂr
t=2
= Z(l — )2
t=2
< 2r.
Hence §(1) € S(r, A, 0,1).
Conversley, let f(7) = 7 — Z a; € S(r, \, 8, t), define
t=2
pe =Kt 0)[(1 =)t —1)+rEL+A)+ (1 =N
fort =2,3,--+, and zl—i,ut.
t=2
From Theorem 2.1, Zut < 1 and hence p; > 0.
Since =
flr) = - S
T T TR A =N = 1)+ (T + N + (1= )
_ _ 27 7t
ST T RO = N — 1) + (I + N + (1= )]
= WtT — atTta
then
ZMtft(T) = ZMtT — 0T
t=1 t=1
= ZMtT - ZatTt
t=1 t=1
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Theorem 2.4 The class S(r, A\, d,t) is closed under convex linear combination.

Proof: Let f(7),g(7) € S(r, A, 4,t) and f(7) = 7 — Zaﬂt and g(1) = 7 — thrt. For x such that
=2

0 <z < 1, it suffices to show that the function deﬁned by h(r) = (1 —z)f(r) + zg(7), T € (U) belongs to

S(r, A, 6,1).

Now

h(7) = (1 = 2)f(7) + za(7)

=(1-a)r- Zaﬂt] + [T — me’t]
t=2
= i 1 —x)a; + xby) 7t
t=2

Applying Theorem 2.1 to f(7), g(7) € S(r, A, 0,t), we have

oo

ZIC(t,cS)[(l - ANt—-1)+rtl+ N+ 1 =) —2z)ar + xb]
1-=z ilc MNE=1)+rE1+ 1)+ (1= X))]a

+ xZIC(t, A =Nt =1)+rE1+N) + (1= \)]b,

< (1—2)2r+ x2r
= 2r.

That is (1) € S(r, A, 0,1). O

Corollary 2.2 If §1(7),f2(7) are in S(r,\,6,t) then the function defined by g(7) = 3[f1(7) + f2(7)] is
also in S(r, A, 0,1).

Theorem 2.5 Let for j = 1,2,..,n, fj(t) = 7 — Zat’jzt € S(r,A6,t) and 0 < A\; < 1 such that
t=2

Z)\j =1, then the function F(7) defined by F(r Z Aifi(T) is also in S(r, X, 6,t).

J=1

Proof: For each j € {1,2,--- ,n}, we obtain ZIC(t, NA=XNE—=1)+rt1+X)+ (1 —A))]ar < 2r.
t=2
We have
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Consider

oo

D K[ =Nt — 1) +r(t(1+ ) + Z/\ ar.j

t=2

_ Z)\ (32 K8 = At~ 1)+ r(H(1 4 3) + (1= )

¢
<> xj(2r)
j=1
< 2r.
Hence F(1) € S(r, A, 6,1). O

Theorem 2.6 Iff € S(r, A\, 0,t) then

2r )
K@= N r@en | hmi<i+

2r 9
K201 - N +rB+N)] 7l

Il =

Proof: Since

§(t) = K& )1 =Nt = 1) + 71 +A) + (1 = X)) (2.2)
is an increasing function of ¢(t > 2), from Theorem 2.1,

oo

K201 =X +rB+N] D lad

t=2

[M]8

< SRS = At — 1) r(t(1+A) + (1 — Al
< 2r.
That is,
i 2r
2l S e SN e
Thus,

F(Ol = I+ ar|
t=2

o0
< Irl+ - Jadrf?
t=2

2r
K2,0)[(1 =N +r(B+N)]

<|rl+

Similarly, we get

O 2 17l = 3 Jarle?
- 2r
K(2,0)[(1=X)+r(3+ )]
2r 2r
e (Y Sy e A U R VoW | (VN yI§

> || -

7] =
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Theorem 2.7 Let f(7) € S(r, A\, d,t) then

4r 4r

S R T Y LU < v [ S Y=y

7]

Proof: Since {t(£(t))}, where £(t) given by (2.2), is an increasing function of ¢, In view of Theorem 2.1,
we have

K(2,0)[(1 =X +7(3+A)] it\aﬂ

2 =2
< K(t,0)[(1 = A)(n—1) + r(t(1 4+ \))]
< 2r.
That is
] < or
;2 UK =N +rB+ A
Thus,

() =1+ tar" |
t=2

<14 tla|r|
t=2

<1
tx

4r
(2,0)[(1 =N +rB3+N)] |7].

Similarly, we get
4r

Fml=1- K(2,0)[(1— N +73+ )] 7l

Theorem 2.8 Let f(7) € S(r, A, d,t) and Komato operator [3] of  is defined by

B 1<C+1)'y . 1 (’Y*l)f(piT)
w0 = [ ”(bgp> p P

¢>—1,7>0. Then k(1) € S(r, \,4,¢t).

1 -1
1 I'(v)
P f: We h ‘[ log — dp =
roo e ave/o P <ogp> D 1)
' 1\ I'(v)
— / pt“l(log) dp = L t=2.3,...
0 D (c+1t)7
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c+1

Since f € S(r, A, d,t) and <
c+t

) < 1, we have

izc )(t—1)+r(t(1+)\)+(1—)\))](c+1)Vat<2r.

pt c+t
O
Theorem 2.9 Let f € S(r, A, 6,t) then for every 0 < a < 1 the function
Har) = (1= aftr) +a [ 124
o P
Proof: We have -
HQ(T) =7+ Z(l + — — O[)atTt
t=2
Since (1 + % —a) < 1,t > 2. So by Theorem (2.1),
Z + — — ), 0)a (1 =Nt =1 +rt1+A)+(1—=A)]
t=2
< Z/c (t,8)ar[(1 = A)(t — 1) +r(t(1 + ) + (1 = \))]
t=2
< 2r.
Therefore,
Ha(T) € S(r, A, 0,1).
O

3. Conclusion

In this paper, we have introduced a new subclass S(r, A, d,t) of analytic functions by employing the
operator (Q°f(7)) associated with the concept of fractional calculus. For functions belonging to this class,
various significant results have been established, including coefficient estimates, inclusion relations, and
the determination of extreme points. Furthermore, several geometric and analytical properties of the
defined subclass have been discussed in detail. The results obtained in this study provide a founda-
tion for further investigations into more generalized subclasses of analytic functions and their potential
applications in geometric function theory.
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