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Applications of the Cauchy-Schwarz Inequality for the Numerical Radius

Mojtaba Bakherad* and Fuad Kittaneh

ABSTRACT: The main goal of this article is to establish several new norm and numerical radius inequalities
for operators based on the angle between two vectors in Hilbert space. These enhancements and extensions are
achieved through the use of the polar and Cartesian decompositions of operators. In particular, it is proved

that, if X € # () has the polar decomposition X = U|X| and u(v) = i(2 + cos 1 cot 1 log( }f:ﬁﬁ)), then

1 1
() <027 0) | XD + g (x|
p q
where 0x o+ = Z¢(|X)a,g(|X|)U*a> €ither 0 <O < Ox . < 5 or § <0x, <0 <7 for all unit vectors z € 7,
f, g are nonnegative continuous functions on [0, +00) satisfying the relation f(¢)g(t) =t (¢ € [0,+0)), r > 1,
p,q>1and%+%:1.

Keywords: Angle, numerical radius, operator norm, cartesian decompositions, Cauchy-Schwarz in-
equality.
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1. Introduction

Let % () present the C*-algebra containing all bounded linear operators that act on a nontrivial
complex Hilbert space 4 with the inner product (-,-) and the associated norm || - [|. For X € £ (J¢),
the symbol X* denotes the adjoint of X, and |X| = (X*X)z. Every operator X € % () has the
polar decomposition X = U|X|, where U is a partial isometry, and admits the Cartesian decomposition
X = S +4T, in which S and T are self-adjoint operators. Recall that the numerical radius and the
operator norm are defined as follow:

w(X)= ”81”1p [(Xx,x)| and || X]| = H51”1p (1 X
x||=1 x||=1

It is well known that w (-) is a norm on £ (J), see [9]. This norm is equivalent to the operator norm.
In fact, the following inequalities hold

1
7 X s w (X) < |IX]].

For more information, we refer to [1,2,6,3,5,4,7], as well as their respective references.
Let X € #(4). In the work presented in [15], it has been firmly established that

1 * 1 *
NP+ X R < w?(X) < SIIXP + X (1)

The second inequality in (1.1) is simply a specific instance of a broader result outlined in [11], which
states that

T 1 T * |27
w(X) < SIIXPT+ X P (1.2)
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for all » > 1. Furthermore, numerous refinements and extensions of this recent inequality have been
developed, underscoring its significance in the field.

EL-Haddad et al. in their work [11], demonstrated that if X, Y € Z(), with 0 < a <1 and r > 1,
then the following inequality holds:

1X + Y17 <272 (X2 4 Y22+ 20700 4 [y 20-o))).
Furthermore, they proved that:

WT(X + Y) < 27,_2 H|X|2CW -+ |Y|2°‘T + ‘X*|2(1—0¢)7" + |Y*|2(1—o¢)r

for X,Y € B(), with 0 < a < 1 and r > 1. Moreover, in the work of [19], the authors showed that if
X € B(H°) can be expressed in its Cartesian decomposition X = S + iT, then the following inequality
is applicable:

1 ar —x)Tr ar —x)T
w(X) < SIS+ SO 4 [T]2er [T (1.3)

This holds for any 0 < o < 1. For related inequalities, we refer to [8,10,13,16,18,20,22,23,25], as well as
their respective references.

Our results will effectively utilize the angle 2, , between two vectors z,y € C" or =,y € 4. For such
vectors, we apply the Cauchy-Schwarz inequality, which asserts that |(z,y)| < ||z||||y||. This foundational
principle allows us to confidently define the angle between the non-zero vectors z and y as follows:

Lyy =cos! (\IISLHHgll\) In [24, Theorem 2.3], Sababheh et al. establish that for any operator X € % (J¢)

possessing the polar decomposition X = U|X]|, and for any vectors z,y € .7, the following inequality
holds:

(X, y)| < u(9x,z,y)\/<|X|2‘”‘ffax><|X*I2(1*“)y7y>~ (1.4)
where 0 < o« < 1. This result provides a clear framework for estimating the inner product involving the
operator X such that p(¢) := (2 + coswcotwlog(ifiﬁz)) and Ox 2y = Z|x|op,|X|1-oUy-

The function p(t) := 1(24 cos ) cot ¢ log( 1smv )y ig defined on R — {n7}pez. Since limy . p(i) = 1,

1—sin¢
we define p(nm) = 1. It was also shown that the function 4 is decreasing on the interval [0, 5] and
is increasing on [F,7], and the inequalities 3 < (1) < 1 hold for all ¥ > 0. In fact, the following

inequalities hold
(1) Ifo<6;, <0, < g, then [L(GQ) < u(&l),
(11) If g <6 <6y < T, then /J(gl) < /1,(02)

In this paper, we discuss enhancements to the operator norm and the numerical radius related to
the addition and multiplication of two operators on a Hilbert space. We achieve these improvements by
applying the Cauchy-Schwarz inequality to the angle between two vectors x and y, as well as utilizing
the concepts of the polar decomposition and the Cartesian decomposition. Furthermore, we present
enhancements to some existing results.

2. Main Results

In this section, we present a version of the Cauchy-Schwarz inequality that is expressed in terms of
the angle between the vectors z and y. By using this version, we offer improvements on some inequalities
related to the numerical radius.

To present our main findings, we require the following lemmas.

Lemma 2.1 [24, Corollary 2.1] Let x,y € . Then

9| < 1)l 1yl (2.1)
where O,y = Ly and p(y) = 3(2+ cos  cot ¢ log(£1557))-

The following lemma is a simple consequence of the classical Jensen and Young inequalities (see [12]).
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Lemma 2.2 [1}] Let a,b > 0 and p,q > 1 be such that % + % = 1. Then forr >1,
O R I AN
ab< —+ —< ( + )
p q p q
Lemma 2.3 [17] If X € B () is positive and x € F is a unit vector, then

(Xz,z)" <(X"z,2) forallr >1.
The following lemma shows an extension of the inequality (1.4), see also [3].

Lemma 2.4 Let X € B () have the polar decomposition X = U|X| and x,y € . If f,g are
nonnegative continuous functions on [0, +00) satisfying the relation f(t)g(t) =t (t € [0,—|—oo)), then

(X2, )] < p(0x,00)VP2(IX D2, 2) (01X )y, ), (2.2)

where 0x oy = Zp(1x)a,g( XUy end p(¥) := (2 + cosy cot i log( F:Ei))

Proof: Assume X € % () has the polar decomposition X = U|X|. We have

(X, )| = [(U|X]z,)]
= [{Ug(I XD (1 XDz, )]
= [{(f(I XDz, g(|XNUy)]
< p(0x ) IFIXD [ g((XDUTy[l (by (2.1))
(FUXDz, F(XD) (g(XDU*y, g(IX[)U*y)
(
(

= u(Ox,z y)\/
(HX I7y)\/
(Ox.0.0)V

9X T,y

(XD, 2)(Ug?(IX)U*y, y)
XD, ) (g (1X )y, ),

as required. O

=p

=p

First, we obtain a refinement and a generalization of the recent inequalities as follows.

Theorem 2.5 Let X € B () have the polar decomposition X = U|X|, x € A, and p(¢) = +(2 +
cos 1) cot 1) log( }f:ﬂ;ﬁ)), and let f, g be nonnegative continuous functions on [0, +00) satisfying the relation

f(t)g(t) =t (t € [0,400)). If either 0 <0 < Ox,, < T or 5 < Ox, <0 <7 for all unit vectors x € I,
then

< (2.3)

cﬁWX)<u%ww;F“GXD+;f”ﬂXﬂ)

where Ox 5 = 4f(|XDa:,g(|XDU*w; r>1,p,g>1and Il) + % =1.

Proof: Assume X € # () has the polar decomposition X = U|X| and « € 5. Applying the inequality
(2.2), we deduce that

(X, )T < i (Ox,0) (FP(1 X ), 2)(g? (| X )2, 7))

Sﬁ%ﬁwﬁ(ﬂﬂﬂﬂwy+émeW%@ﬁr(wmewzm

1
p
< u”(é’x@)((%ﬁz(le)%x>’” + é(gz(lX*l)ww)“)%)r (by Lemma 2.2)

= j(Ox )2 (S (L2 X D ) + (g (1X ), ) )

1
p
1
p
(

= Q

< 1 (Ox,) (- (P (1X )z, @) + §<92‘”(|X*|)w, z)) (by Lemma 2.3)

=M”WXH<%F”OXD+$f”OXﬂ»Lx%



4 M. BAKHERAD AND F. KITTANEH

where 0x o = Z (X |)a.g(x|)U*as 7 > 1, p,¢ > 1 and 5 + ¢ = 1. Hence,
T r 1 T 1 T *
[(Xz,2)|*" < p? (9X,x)<(];f2p (1X1) + 692q (1X*))z, ). (2.4)

Therefore, if 0 < 0 < 0x , < T for all unit vectors x € S, then

(X, )2 < u27'(9x,x)<(%f2p"(|X|) + §g2m'<|X*|>>x,x>
< me)«%f%r(\m) + ggwux*\))m (by the property (i) of ).

Moreover, if £ < 0x , < 6 < 7 for all unit vectors = € J#, we have

%
(X, )2 < uzr(ﬁx,m)«%f%’"(le) + ggwwm))x, z)
< mo)«%f?p’"uxn + égwux*mx,w (by the property (i) of ).

Now, by taking the supremum over z € S with ||z|| = 1 in the above inequalities, we get the desired
results. O

Remark 2.6 It follows from § < p(0) <1 for all & >0 and the inequality (2.5), that we have

T r 1 T 1 r *
00 < 0)| L) + L)
By setting f(t) = t* and g(t) = 1% for 0 < a < 1, we achieve the following result.

Corollary 2.7 [21] Let X € B (H) have the polar decomposition X = U|X|, x € J, and pu(y) =
%(2 + coszbcoti/xlog(}f;ﬁi)). If either 0 < 0 < 0x, < 5 or § < Ox, < 0 < for all unit vectors
x € J, then

1 2pr } 2qr *
S”pf (XD + S (X7

which is a refinement and a generalization of the inequality (1.2).

1 1
WZT(X) < M2r(6) Hp|X2apr + a|)(>'=‘2(1—04)qr

: (2.5)

where 0x » = Z|x|ag,|x|1~oU 2, 0 S a<1,r>1,pqg>1and zl: + % =1.

To show that the set of angles 6 is non-empty for the cases where either 0 < 0 < 0x, < § or
5 < 0x,. <0 <, as stated in Theorem 2.5, we consider the following example, which is also discussed

in [21].
Example 2.8 Consider the matric X = {_12 g} € M,,(R). Then, we have the polar the composition of
X as follows:

X =UX| = [ 0.7673 0.6392} [ 2.0523 —0.9032

—0.6425 0.7681| [—0.9032 5.7582 |~

L. | o we can calculate the angle Ox 5 as follows:
2

. X1
For any unit vector x = [

(X|22,|X|2U*x)
cos(0x z) = T N
11X 2 2|[l|X|2 U]
_ (141331 — 0.23822)(0.932z1 — 1.091z2) + (—0.238z1 + 2.388x2)(1.344x1 + 1.9873)
/(141321 — 0.23822)2 + (—0.238z1 + 2.38872)2+/(0.932x1 — 1.091x2)2 + (1.362z1 + 1.98722)2
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Therefore,
0.404289 < cos(Or,5) < 0.921583,
whence
22.841° < 07, < 66.122°.

~

Now, we can consider 0 < 6 < 22.841°. Moreover, for the matrizc X = [
calculate the angle Ox ., as follows

(X2, |X|2 U )

cos(Ox 5) = T T
X2 |l[[| X]2 U]
3 (1.429z1 — 0.08722)(—1.409z1 + 0.264z2) + (—0.08721 + 1.40522)(—0.088z1 + —1.403x2)
/(1.4292; — 0.08722)2 4 (—0.087x1 + 1.40529)2+/(—1.4092 + 0.264x2)% + (—0.088z1 + —1.40372)2
Therefore,
—0.951078 < cos(fx,.) S —0.968691,
whence

162.004° < Oy o < 165.625°.
So, we can consider 165.625° < 0 < 7.
Theorem 2.9 Let X € B () have the Cartesian decomposition X = S +iT, x € 3, S = U|S|,
T = V|T| be the polar decompositions of S and T, 0s. = Zf(s)w,g(1S)Uzr OTc = Zf(T)a,g(|T))V 2>
and let p(1p) = (2 + cos ¢ cot 4 log( if;ﬂi)) and f,g be nonnegative continuous functions on [0,+00)
satisfying the relation f(t)g(t) =t (t € [0,+00)). Then
(i) If0< 0" <05, <5 and 0 < 0" <O, <7 for all unit vectors x € S, then

w(x) < PO p280) + 2 + £201) + 920D (2.6
where § = min{#’,6"};

(ii) If 5 <05, <0 <7 and § < Or, <" <7 for all unit vectors x € J, then

w(x) < PO 218)) 4 g2 + 2(71) + 62(S)

| (2.7)
where § = max{6’,0"}.

Proof: Assume X € # () has the Cartesian decomposition X = S+iT, g, = Z(1sa,g(|s)U+y and
010y = ZLi(T)z.g(T)Vy- We have

[(Xz,y)]
= (S +iT)z,y)]
< |{(Sz,y)| + [{Tx,y)| (by the triangle inequality)

< 1l05.0,9)V (2SN, @) (P (IS Dy, ) + 1(O07.2) V(2 (T, 2) (g (1T )y, )
(by the inequality (2.2))

= 10s.2,5)V (215D, 2) (g2 (1SD)y, v) + p(Or,2.)V (T Dz, 2) (9> (T )y, y)
(since S and T are self-adjoint)

< o x /(F2(ISNz, 2) (g (151)y, y) + 1o x /(2 T]z, 2)(g*(IT 1)y, y)
(by po = max{p(0s.e.y), 1(07.2,4)})

= o x /(218D 2)(g*(1S))y, v) + V(F2(T )z, 2)(g*(I T )y, y)

< o X (L2, ) + (ST, )/ (g*(1SDy, v) + (9> (I Ty, v)
(by the Cauchy-Schwarz inequality),
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whence

(X, )| < po x V/(F2(IS])z,z) + (2T, 2)v/ (g2 (1S)y. y) + (g (T Dy, ),
where pg = max{(0s.,y), 1(01,2,4)}. Hence
[Tz, z)| = [((S + Tz, z)|
< o x V{(f2(IS]) + f2(T])z, @)V {(9*(1S]) + g2 (IT1) ), z)
< % (CF2AS) + 24T D)z, z) + (g*(|S]) + ¢*(IT1))z, 2))
(by the arithmetic-geometric mean inequality)
= %<(f2(|5|) + f2(T1) + g% (1S) + ¢*(IT])z, z)

< %HfQ(ISI)+f2(|T\)+g2(ISD+92(ITD}7 (2.8)

where (g = max{y(0s.), #(07r.)}. Hence, we have two cases as follow:
(i) f0<O <5, <% and0<0" <fp, <7 for all unit vectors = € J#, then put § = min{6’,0"}. It
follows from the monotonicity of u, # < 6" and 6 < 6" that

p(0) < p(@)  and  p(@”) < pu(d). (2.9)
Moreover, by the monotonicity of u, 8’ < 07, and 8” < g ,, we have
#(0sa) < p(0) and  p(fre) < p(@”). (2.10)
Therefore, applying (2.9) and (2.10), we obtain
po = max{p(fs.0), 1(0s.2)} < max{u(0'), n(6”)} < p(9). (2.11)

Hence, using (2.8) and (2.11), we have

(X, z)| = [((S +iT)z,z)]

AN

228D + £2(T0) + g*(S1) + (17|

(6
< MO 281y + 2471 + 92D + 2]
where § = min{¢’,0"}. By taking the supremum in the above inequalities over z € J with ||z| = 1, we
get
X) < /’(‘(0) 2 S 2 T 2 S 2 T
w(X) < == [I£238D) + £2UT) + g*(IS]) + ¢ (ITD ||

2
where § = min{6’,6"}.

(i) If F <Os, <0 <mand § <0r, <0 < for all unit vectors x € J#, then put 6 = max{0',0"}.
It follows from the monotonicity of u, 8 < 6 and 6” < # that

p(0) < p(0) and  p(0”) < p(o). (2.12)
Moreover, by the monotonicity of y, 0s, < 6’ and 67, < 6", we get
1(0sz) < (@) and  p(brg) < p@”). (2.13)
Thus, by using (2.12) and (2.13), we obtain
po == max{pu(0s.a), 1(07.2)} < max{u(0"), u(6")} < p(0). (2.14)

Applying (2.8) and (2.14), we have

[(Xa, 2)| = [((§ +iT)x, z)]

IN

% 728D + £2(71) + g*(IS]) + g*(1T])]|

OV 281y + 207D + 92080) + 6271

AN

K
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Now, by taking the supremum in the above inequalities over z € 5 with ||z| = 1, we get

w(X) < @ /2081 + 271 + g*(1S) + ¢*(171)

where 0 = max{¢’,0”}. As the required result. O

In the following theorem, we present a refinement and an improvement of the inequality (1.3).

Theorem 2.10 Let X, Y € B () have the polar decompositions X = U|X|, Y = V|Y|, x € 52,
O0x.e = Zi(XD2g(XNU 2 Ovie = Zi(vDeg(yhvee, 0 < a < 1 and r > 1, and let p() = 3(2 +
coswcotg[}log(}f:ﬂz)) and f,g be nonnegative continuous functions on [0,+00) satisfying the relation

ft)g(t) =t (t € [0,+00)). Then
(i) If0< 0" <Ox, <5 and 0 < 0" < by, < T for all unit vectors x € A, then
WX Y) <272 (0) || £2UX]) + £V + (X)) + g2 (YD) (2.15)
where § = min{6’,0"};

(it) If 5 <O0x, <0 <mand 5 <Oy, <0 <7 for all unit vectors v € J, then
WX +Y) <272um(0) || (X)) + (YD + g (X)) + (YD) (2.16)
where 6 = max{0’,6"}.

Proof: Assume X,Y € Z () have the polar decompositions X = U|X|, Y =V|Y|, z,y € A, and let
Ox.2y = L1(x 291X DUy 80 Oy.ay = Ly(v))e,g(y)v+y- Then, we have
(X +Y)z,y)]
< [(Xz,y)| + (Y, y)|
(by the triangle inequality)

< (O ) VP2 (IX D, 2) (g2 (1X )y, y) + 1Oyia) VP2 D, 2) (g2 (Y )y, y)
(by the inequality (2.2))

<(<f2(|X|)x,x>’" T (P(X ) )i

< M(eX,x,y) 9

+ w(Oyzy) (by Lemma 2.2)

<(<f2<|Y|>x,x>T +
2

<g2<|Y*>y,y>r>>i

IU/(HX,w,y)

<(<f2T(|X|)x,w> @ (X)) ) ’

2

1(ly,zy) (by Lemma 2.3)

<(<f2’”(lYl)x,x> +
2

<g2r<|Y*|>y,y>))i

(F2r (X ), @) + (g2 (X Dy, m) \ 7
o (D) ) +

<<f2T(IY|)w7w> + (g (IY* )y, ) ) i)
2

(by pe = max{u(axx,y) (HY,x,y)})
(211 f” (X)), z) + <g2r(|X*)y,y>+<f2T(|Y|)w,x>+<92T(IY*I)y,y>>i>

\ A

’ 2

(by the concavity of f(t) = t7 for r > 1),
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where (g = max{p(0x o), £(0y,z,y)}. Thus

(X + Y)a,2)|" < 272 (P2 (IX]) + g* (1Y D, ) + (£ (T + 97 (1S )z, 2))
=272 pp((f2(IX1) + g (YD) + £ (X)) + g* (YD), @), (2.17)
where pg = max{p(0x ), #(0y,)}. Now, we have two cases as follows:

HI0<H <Ox, <% and0<0" <Oy, <% forall unit vectors x € 5, then put = min{¢’,0"}. It
follows from the monotonicity of p, 8 < 6" and 6 < 6” that

p(0) < p@) and  p(@”) < pu(d). (2.18)
Moreover, by the monotonicity of y, 8’ < 6x , and 8” < 0y, we have
p(0x:) < p(@)  and  p(By,e) < p(0”). (2.19)
Applying (2.18) and (2.19), we obtain
po := max{u(0xz), n(0y,2)} < max{p(0'), n(0")} < p(0). (2.20)

Hence, using (2.17) and (2.20), we have
(X + Y )z, )" <27 2 (X7 4 Y P 4 (X PO 4 [y PO, )
<2 (X P YT 4 X PO YO .

(i) If § <Ox, <0 <mand § <y, <6’ <7 for all unit vectors x € 2, then put § = max{6’,0"}.
It follows from the monotonicity of u, 8’ < 6 and 6” < 6§ that

p(0) < p(0) and  p(0”) < p(0). (2.21)
Moreover, by the monotonicity of u, 7, < 6" and s, < 6", we have
p(0x,) < @)  and  p(By,e) < p(0”). (2:22)
Applying (2.21) and (2.22), we obtain
f1o := max{p(0x ), 1(0y,.)} < max{p(8'),1(6")} < p(0). (2.23)

Hence, using (2.17) and (2.23), we have
(X +Y)z, )" < 27 2 (X7 4 Y27 4 [ X PO 4 [y PO, )
<22 @)X P Y7 4 X POy U= .
where 8 = max{6’,0”}. Now, by taking the supremum over all € S with ||z|| = 1 in the above
inequalities, we get desired results. ]
By choosing f(t) = t* and g(t) = t' = for 0 < a < 1, we confidently achieve the following result.

Corollary 2.11 [21] Let XY € % () have the polar decompositions X = U|X|, Y = V|Y|, = €
A, 6‘X,x = 4‘X|0I7‘X|1—QU*$, ey’z = ZIY‘Q$7|Y‘1—QV*$7 0<a<landr > 1, and let /J(ib) = %(24—
cos ¥ cot 1) log( }f:ﬂ $ )). Then

(i) If0<O <O0x,<T and 0 < 0" <Oy, <5 for all unit vectors x € S, then

wT(X T Y) S 2r—2ur(9) H‘X|2a 4 |Y|2a + ‘X*|2—2a + |Y*|2—2a|| ,

where § = min{6’,0"};
(i) If 5 < Ox . <0 <mand § <Oy, <" < for all unit vectors x € S, then

WX +Y) <2727 (0) ||| X PP+ [Y P 4 [ X P2 4 Y|
where 6 = max{60’,6"}.
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