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On Mersenne-Narayana and Mersenne-Narayana-Lucas Sequences

D. Maheswari®, S. Devibala, M. A. Gopalan

ABSTRACT: The objective is to generate Mersenne-Narayana and Mersenne-Narayana-Lucas Sequences.
Third-order recurrence relations corresponding to Mersenne-Narayana and Mersenne-Narayana-Lucas Se-
quences are introduced. For the aforementioned sequences, recurrence relations, generating functions, and
Binet formulas are then found. These sequences have been verified through some well-known identities. Some
identities have been provided using the matrix approach. This paper presents the introduction of two novel se-
quences, specifically the Mersenne-Narayana and Mersenne-Narayana-Lucas Sequences, accompanied by their
respective recurrence relations, Binet formulas and some connected identities.
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1. Introduction

The Fibonacci sequence is the most popular positive integer series. This series, with different starting
circumstances, can be used to create numerous fundamental arrangements, including the Lucas, Pell,
Padovan and Jacobsthal sequences [1]-[4]. A number of the type M,, = 2" — 1, where n is an integer,
was first developed in 1644 by the French mathematician Marin Mersenne. The Mersenne sequences
have been investigated as part of numerous studies. The definition of Mersenne-Lucas sequences is
ML, =2"+1, n>2, with MLy =2, ML, = 3. In [5]-[7] the Mersenne-Lucas sequences, including its
generating functions and Binet formulas were discussed.

The usual Mersenne sequence is defined as My =0, M; =1 and M, 41 =3M,, —2M,,_1, n > 1

and with the initial parameters My = 2, M; = 3, the Mersenne-Lucas sequence satisfies the same

recurrence relation.

The Narayana sequence is a third-order one and is defined as No = 0, Ny = Ny = 1 and N1 =

N, + N,,_o for n > 2

The Binet’s formula for the Narayana sequence is given by N,, =
11 V3 1 V3

1+a-+b _ —2(a+b)—z 5 (a—b) . 1—2(a+b)+z 5 (a—D) _ 3/2043,93

T3 o M= 3 » €= 3 A=\ T

b= /B A = (Q— p)( Q= (=)A= (u—)(1—p—e).

The Jacobsthal-Narayana and Jacobstal-Narayana-Lucas sequences were studied in [8], which inspired
us to embark on this article. One may refer to [9], [10] to know more on this context.
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2. Main Definitions and Results

Definition 2.1 We define the Mersenne-Narayana sequence M N, by the recurrence relation M N, =
SMN,_1—2MN,_3, n >3 with the initial values MNyg=0, MN, = MNy, = 1.
The first few values of Mersenne-Narayana sequence are 0, 1, 1, 8, 7, 19, 51, 139, ...
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Definition 2.2 The Mersenne-Narayana-Lucas sequence M N L,, is defined by the recurrence relation
MNL, =3MNL,_1—2MNL,_3, n > 3 with the initial values MNLy =2, MNL, = MNLy = 3.
The first few values of Mersenne-Narayana sequence are 2, 8, 8, 5, 9, 21, 53, 141 ...

According to our definitions, there is a third order linear homogeneous difference equation, with constant
coefficients, in the form
Ty = 3Tp_1 — 2Tp_3. (2.1)

It can then explore a solution to the above equation as z,, = ¢", where ¢ is an unknown constant. On
the substitution of this linear solution into our difference equation, we obtain

©® = 3p? — 2. (2.2)
From the cubic formula for the roots, three independent solutions are obtained as follows:

Y=1-—X\ —i

1+iv3 V3+i
(5

T:1+<1_2i\/§>)\1+<_\/§+i>

where i = /=1, A\; = V/i. Furthermore, a linear combination of the solutions in the above equations
satisfies equation (2.2). Hence, M N,, = C19"™ 4+ Co(™ 4+ C37™, with the initial terms given by

Ci1+Co+C3=0

YO +(Cy+7C3 =1
P20+ PO+ 7205 =1

and obtain the solution

P —2
="
W0 W-T)
-2
Oy > =
T C-0C-T)
-2
Coe 7742
T =) (10
Besides, repeating the same technique for the Mersenne-Narayana-Lucas sequence gives the solution
o 3 —2) 27
T W-OW-T)
o, = 22+ 2y
C=v)(C—T1)

Cs = 3(1=2)+2¢¢

= =90-0 respectively.

Theorem 2.1 (Binet’s formulas) Let n be any integer. Binet’s formula for the Mersenne-Narayana
sequence and the Mersenne-Narayana-Lucas sequence are
(-2 T—2

QZ]*Q n n
@ 0w T e Tr—we_pn"

ot ML = KGR0 + Y 0 R ity

MN,, =

P+
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Remark 2.1 For ¢, ( and 7 some interesting properties between the roots of the cubic equation
2% — 322 +2 = 0 are given by

Ly+¢+7=3

2. YP(r = -2

3. Y+ (r+yYT=0
4. K1+ Ko+ Ks=0

_ 2—T1
5. K1t Kx= g
_ 2—¢
6. K1+ Ks = 50
7. Ko+ Ky = —2=%

[CESIc)
S R N = B - S
where K1 = =gy K2 = @i K8 =m0

Theorem 2.2 The generating functions for the Mersenne-Narayana sequence and the Mersenne-
Narayana-Lucas sequence are

e o] ro__ 93(1*2?5) e o] ro__ 2—3x—62> .
ZT=O MNTQC = 1-3z+2a3 and ZT=O MNLT.T = 1377243 T’eSpeCtZUely,

Proof:
Define g (z) = Y. ,-, MN,z". Then, summing the statements g (z), —3zg (z),
2239 (x), with some mathematical manipulations, the proof can be completed.

Theorem 2.3 Let r > 0 be an integer and k be an arbitrary integer. Then,

2k _ r—k 2k _ r—k
MN, s+ MN,_y = @+ @ -2y (¢ +1) (€-2)¢

W-Q@W-1) =) (C—7)
(T2k + 1) (r—2) 7=k
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(p2F —1) (p —2)yp* N (CF=1)(¢C—2)¢ "
W= @—r7) C=9v) (-7
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_B@W=2+2r) @ +1)yrE (B2 +20n) (1) TE
MN Bt ML = @-0w-1 y C—DC-1
(B(r=2)+2¢¢) (r2k + 1) 77—k
r=9) (7 =0
~ B2+ @ - Dyrh B2 +2¢r) (-
MR e = e = @-Ow-7 ’ C9C
(B(r—2)+2¢¢) (r2k — 1) 77—k
r=9) (T -0

In particular, for k =1, we get the following cases:

2 _ r—1 2 _ r—1
MNos 4 0N,y = AN @ =D (@) (C-2)8

W-0O@W—1 C-9 -7
(7'2 + 1) (r—2) 71
(r—4) (70
- @D (-2t (1) (C—2) ¢!
MNrey = MNr = =0 G C—9) (-7

(7’2 — 1) (r—=2)77"1
(r=¥) (-0
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_ 2 r—1 _ 2 r—1
MNLygs + MNLy_y = 8@ =220 @2+ Dyt | (3((=2) +2¢7) (E+1)¢

W-Q@W-r1) C=¥)(¢—7)
(B(r—2)+2¢¢) (r*+1) 7!
(r=9)(r-¢)
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MNLyy1 — MNL,_1 =
. ' @-Qw-1 " B9 (-7
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Theorem 2.4 (Vajda identity) Let n, rand s be positive integers. Then, we have

(¥ —-2)(r-2)
W= -1 (w—1)°

-2 (-2 e e

(€=2)(r—2)
W-Q@W-71)(~-7)

For r = —s, the Catalan’s identity is obtained:

MNpyrMNpyrs — MNyMNyyrys = " —=7") (7% —¥°) (¥1)™

5 (" =77 (¢ =) (Cn)"

(p—2)(r-2)

W= -7)(W-1)
—-2)(¢ -2 s

@ —(f) G z(f) @ )— 2@ Yo
_ (C_Z)(T_2) 57T52Tn—s
w—o(w—v)(c—ﬂz(c et

For s= —r = 1, the Cassini’s identity is obtained:

MNp_ MNpyy — MN2 = =2 (=2
1 —+1 n (1)[)7() (CiT)
=2 (T=2) . \n-1
sy O
For s= m —n and r = 1, the d’Ocagne’s identity is obtained:
! men _ mem
T IR LA A A

F(C=2)(r=2) (""" = (") + (¥ = 2) (T = 2) (7Y — TP

MN,_sMNp4, — MN2 =

5 (75— ) (¥r)"

(v —=2)(C=2)

_ n—1
W-mc—n "

(pr)"

MNp i1 MNpy — MN,MNpy1 =

01 0
Definition 2.3 (Matrix approach) Define the matriz ¢ = [ 0 0 -1 ] .

2 0 3
This is a spiral matriz that satisfies the characteristic equation ¢* — 302 + 21 = 0 where I is the identity
matrix. This result can be seen from the well-known Cayley Hamilton theorem.

Theorem 2.5 For any integer n, we have
o] = =2
" = (-1)"2" = (=2)".

Theorem 2.6 For the matriz @, we have the matriz polynomial identity
(pn+5 _ 3<pn+4 o SD’rLJr?) 4 <pn+2 o QSD’H
Proof: From the equation ¢® — 3p? + 21 = 0 we can write
1 1
I=2¢"BI-¢)=5¢" (30" =" +1-¢)

1
I=§(<p2—<p3+3<p4—905)

Multiplying both sides of the above equality by ¢", the proof is completed.
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Theorem 2.7 Let r > 0 be an integer. Then, we have
MN,y5=3MN;y4—MN,;3+ MN, o —2MN,
and MNL, 5 =3MNL,y4 —MNL,; 3+ MNL,; 2 —2MNL,

Proof: We prove by induction on r.
Since, MNg =3MN5 — MN4+ MN3 — 2M N1, the result is true for r = 1.
Now based on the assumption that
MNyy5 =3MNyyg — MNyps+ MNyypo — 2M Ny is satisfied for all ¢t < r.
Then we write MN 45 =3MN 44 —2MN 42
= 3(3MNT+3 — MNT+2 +MNT+1 — QMNr_l) — 2(3MN,«+1 — MN,+ MN,._1 — 2MNT_3)
=3(3MN,43—2MN, ;1) — (3MN,j2 — 2MN,) +3(3MN 41 —2MN,_1) —2(3MN,_1 — 2MN,_3)
=3MN,44 — MNy13+ MN, 12 —2MN, which is the desired result.
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