Bol. Soc. Paran. Mat. (3s.) v. 2025 (43) 2 : 1-12.
©SPM - E-ISSN-2175-1188 ISSN-0037-8712
SPM: www.spm.uem.br/bspm do0i:10.5269/bspm.79474

A Parametric Kind of Fubini-Fibonacci Polynomials and their Generalizations

Waseem Ahmad Khan™ and Manoj Sharma

ABSTRACT: In this paper, we introduce bivariate kind of three-variable Fubini-Fibonacci polynomials and
their associated numbers within the approach of Golden F- Calculus. Utilizing generating functions, we
derive several fundamental properties, including summation theorems, recurrence relations, symmetry proper-
ties, and F'-derivative identities. We further establish connections with, Bernoulli-Fibonacci, Euler-Fibonacci,
Genocchi-Fibonacci Stirling-Fibonacci numbers of the second kind and present mu,ltiple summation formulas
and convolution-type identities. The proposed approach enriches the theory of Fibonacci-based special poly-
nomials and opens new avenues for applications in combinatorics, number theory, approximation theory, and
matrix analysis.

Key Words: Golden calculus, Fubini polynomials, Fubini-Fibonacci polynomials, generating func-
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1. Introduction

It must be emphasized that special numbers, special polynomials, generating functions, and trigono-
metric functions are not only essential in applied mathematics but also play a crucial role in vari-
ous branches of mathematics, including number theory, matrix theory, and mathematical analysis (see
[5,7,8,9,10,24]). Lately, a number of scholars have advanced and obtained generating functions for sev-
eral new families of special polynomials, including those with one and two parametric types, such as
Bernoulli, Euler, Genocchi, Fubini, and others. We have presented a formal investigation into the re-
lationships between trigonometric functions and special polynomials, utilizing generating functions. By
implementing the partial derivative operator to these generating functions, we have derived a number
of formulae involving finite combinatorial sums and the aforementioned polynomials. These formulae
provide new insights into the behavior of these functions and numbers. (see [1,2,4,6,22,3,23].

As a special type of Appell polynomials the Fubini polynomials are defined as the sum

FL(€) = 3 S, k)Hie* (1)
k=0

where So(w, k) are the Stirling numbers of second kind [8]. These polynomials can be generated by [20]
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Substituting £ = 1 in Equation (1.1), we obtain the Fubini numbers. They have

= F _
—(ed _ Wl
I—(et=1) 4= !
as the exponential generating function. For more details, please see [21,22,23].

We present certain definitions and properties associated with Golden Calculus (also known as F-
calculus). The Fibonacci sequence is characterized by the following recurrence relation:

Fw: w71+Fw72a w > 2

where Fy = 0, F} = 1. Fibonacci numbers can be expressed explicitly as

Fw:aw_ﬁw7
a—p

where a = % (Golden ratio) and § = 1_7‘/5
The use of the golden ratio in various branches of science and mathematics is well-documented.
Additionally, this mystical number also makes appearances in the fields of architecture and art. Recently,
the properties of F-calculus have been exhaustively defined and studied by Pashaev and Nalci [11] for
the first time. Please refer to the following papers for further reading: Krot [13], Ozvatan [14], Pashaev
[12], and Kus et al. [15]. These sources provide additional information and insights on the topic at hand.
The F-factorial, a product arising from the Fibonacci numbers, was formally introduced as follows:

FiFyFs... Fy = F,),

where Fy! = 1. The following is the formal expression of the binomial theorem for the F-analogues, also
referred to as the Golden binomial theorem:

(a+b)" = z: (—1)(3) <";’)F Ao, (1.2)

in terms of the Golden binomial coefficients, called as Fibonomials

w\ B!
5) @ T F,_JF.)

with n and k being nonnegative integers, w > s. The Golden derivative defined as follows:

900 -9(-5)  y(ae) (80

(9(8)) = =
(a—(=2))¢ (a—B)¢
respectively. The first and second types of Golden exponential functions are denoted as

- (9]
=2

=0

Ok
Or§

. (1.3)

w

and
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and -
=> (- (1.5)
5=0
Using the Equations (1.4), and (1.5), the following equation can be given
e%E}l = 5. (1.6)

The Fibonacci cosine and sine functions, also known as the Golden trigonometric functions, are denoted
by the power series

& 2s
cosr (€)= 3 (1) u (17)
and peit
. « s §7°
sing (€) = ;) (-1) Bl (1.8)
For arbitrary number ¢, Golden derivatives of % I8 Eﬁf, cosr (¢€) , and sing (¢€) functions are
OF
e ( ) ek (1.9)
OF (poe) _ o6
e (E ) = ¢E;%, (1.10)
g (cosr (96)) = —@sing (9). (1.11)
and
3 g(smp (¢€)) = ¢ cosp (H€) . (1.12)

By virtue of (1), Pashaev and Ozvatan [16] formalized the concept of Bernoulli-Fibonacci polynomials.
Subsequently, Kus et al. [15] defined the Euler-Fibonacci numbers and polynomials, and provided identi-
ties and matrix representations for both Bernoulli-Fibonacci polynomials and Euler-Fibonacci polynomi-
als. Very recently, Tuglu and Ercan [17,18] generalized the concept of Bernoulli-Fibonacci polynomials
and Euler-Fibonacci polynomials of order « as follows:

(/\6‘; ) Z B, le’ (1.13)

and

2 dw
(Ae%—i—l) Z e e (EGA) o (1.14)

In [19] Kizilateg and Oztiirk defined the define two parametric types of the Apostol Bernoulli-Fibonacci
polynomials, the Apostol Euler-Fibonacci polynomials, and the Apostol Genocchi-Fibonacci polynomials
of order «, as follows:

d “ pd (c,e) av
o) oF cosk (ad) = ZB (P, ) 7. (1.15)
r w=0 w*
d_\* sa )
()\ed _ 1) eF 51nF qd Z B ) p7 q7 Fa (116)
F w!
2 \° 60 )
()\6% + 1> eF COSF qd Z gq(u F pa q’ F 1 (117)
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: )a pd  o(5,0) dv
——— | esing (qd) = Eur D@ A) =, (1.18)
(AedF +1) °F wz;; F F,!
2d  \" dw
(Aei—a—Fl) eF COSF Zg p7q7 Fw!a (119)
2d )a pd . (s, Oz) d®
——— ) Y sing (qd) = G (05 A) = (1.20)
(Ae;é +1) F ZO F,!

In this paper, we define the bivariate kind of Fubini-Fibonacci polynomials and investigate their basic
properties and other associated results using Golden Calculus. We also establish relationships between
the bivariate type of Fubini-like polynomials and other polynomials. We introduce the generalized Fubini-
Fibonacci polynomials numbers and establish some properties of these newly defined sequences utilizing
generating functions and their functional equations. Furthermore, we introduce the concept of general-
ized Fubini-Fibonacci numbers and establish a relationship between these numbers and the parametric
Fubini-Fibonacci polynomials. Finally, we derive relation expressions for parametric for Fubini-Fibonacci
polynomials.

2. A parametric kind of Fubini-Fibonacci Numbers and Polynomials

This section extends the three-variable Fubini-Fibonacci polynomials by integrating parametric
trigonometric elements through the application of the golden cosine and sine functions. The fibono-
mial convolution of two sequences, u,, and v,,, was formally defined by Krot [13] as follows:

Up(d)=)_ o gy and Vi (d) = wZ:oUwFW

then their F'-convolution is defined as
L fw
lu) = Uy *F Uy = Z <k>F'U,l Vw—1-
1=0

So, the generating function takes the form

Le(d) = Up(d)Vie(d) = > b
w=0 w:

pd

Let p, ¢ € R. The Taylor series of the functions e} cosp (¢d) and e%d sing (gqd) can be express as follows:

b cosp (qd) = ZC“’F D, q F ik (2.1)
and
eF sing (qd) = ZSwF (p,q F ik (2.2)
where
EII
Crw(poq) =) (1) P, (2.3)
2k) .

L#2*]

w—1

2

w w — —

Sra(p) = 30 (1 ()" ) pr e (2.4
k=0 F
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Based on the aforementioned definitions of C,, ¢ (p, q) and S, r (p, q) , as well as the number of a Fr,,
we can specify two parameters for Fubini-Fibonacci polynomials as follows:

1 av
&d —
————¢€5 cospnd = F W& y) = (2.5)
1—v(edk—1) F wzo F, F,!
and
L St sing nd = Z IF § 0Y) = d” (2.6)
rod = .
1—q(ed—1) F b F,l
respectively.

Remark 2.1 For £ =0 in (2.5) and (2.6), we get new type of F-cosine Fubini polynomials ]FgU)F(n v)

and F-sine Fubini polynomials IFEE))F(n; v) as

1 c
cosF nd = Z IF%)M (n; v (2.7)
Tt —1)
and
1 dw
sm d= Fis 2.8
Ty e Z Fwnv o (2.8)
respectively.

Based on the aforementioned definitions, we have arrived at the following principal results.

Theorem 2.1 The following identities hold true:

S

(%]

2
+ v v
FOrmn) =3 (5,77 ) (0 Fuar(o) (2.9
’ v
v=0 F
and
e
N=> ( 2+ 1 ) (=1)"n** Fy—20-1,r (7). (2.10)
v=0 F

Proof: By (2.7) and (2.8), we can derive the following equations

w=0 4" y=0
) (5]
w+ v dw
= Z ( 2 > (_1) ]Fw 2v F(’)/) =1 (2 11)
w=0 \ v=0 F w:*
and
Zqu (n; 7 T = 1d sinp(nd)
w=0 }Q' 1_'7(€F—1)
o (125 §
= w v, 2v+1 d
o ZO Z;) ( 20+ 1 )F (71) n ]Fw—Zv—l,F(’V) ﬁ (212)

Therefore, by (2.11) and (2.12), we get (2.9) and (2.10). O
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Theorem 2.2 Let w > 0. Then

F (€, 7:7) Z( v ) Foor (7)Cui (6,1, (2.13)
k=0 F
and w
ng}p(fﬂ?ﬂ) => < Z) ) Fr,r (V)Sw—k,7 (&) (2.14)
k=0 F
Proof: Consider
o] k oo w w
(Ee5) () - (Bee) 5
= w= =0

Now

R
F,l  1—n~fel —1) F°°F

V(e )
0o d* 9] dw
<kz_0 k,F(’V) [k] '> (;}Cw,q( ’77) Fw‘)
) w w dw
- 11)2::0 (kz_o ( k )F Fk,F(’y)wak,q(gv 77)) Fw!’

which proves (2.13). The proof of (2.14) is similar.

O
Theorem 2.3 Let w > 0. Then
[ w c o
Fp( +rmy) = Z( k ) i (6 m ), (2.15)
k=0 F
and w
FOp(e+rm7) = Z( ) D& my)r T (2.16)
k=0 F
Proof: By changing £ with £ +r in (2.5) , we have
= dv 1 cd J
+r = €5 cosp(nd)el
w (©) wk | 4"
= ]F N e
z (g( ), Fkemr ) i
which complete the proof (2.15). The result (2.16) can be similarly proved.
O

Theorem 2.4 Let w > 1. Then

0 (¢ .
o€ 1(11)F(g ) = FwF&;)—l,F(&UW)» (2.17)
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0

oy Furle(§137) = ~FuF Ly o (€m57), (2.18)
and 5
% FOn(€m7) = FuFS) ) p(€m7), (2.19)
S F (€ 57) = FuFS) pl6757) (2:20)
an w, F\& T w—1,F\S> T57)- .
Proof: Equation (2.5) yields
0 w 0 w1
FO (€, 9) e = 1 )4
Z:: ’wF f n’V)Fw' - 1_7( )ageF COSp Wd z:: § s 7 Fw~
o (e dv dv
Z 1(1))1F )[F ZFU)Fw 1F(£77FY)F|5
w=1 w w=1
proving (2.17). Other (2.18), (2.19) and (2.20) can be similarly derived. O

Theorem 2.5 Let w € N*| the following formula holds true. Then

. w w . Y
]Ffu,)F(2€777;7) => (k> F;ﬁ}(f, n;7)EF, (2.21)
k=0 F
and .
s w s w—
]Ffu,)F(2§7nw) => (k) F;ﬁ}(ﬁ, n;Y)EF. (2.22)
k=0 F

Proof: By using equations (2.5) and (2.6), we can easily proof of equations (2.21) and (2.22). We omit
the proof. O

Theorem 2.6 For w > 0, the following formula holds true:

Cur(&,0) = Fn(Em7) = YF 5 (€ + 1,m57) +9F S p (€ m), (2.23)
and ‘
Sw.r(&m) = FOp(&,m7) — AF F(f +1,m7) + V]Fw e (E.7). (2.24)

Proof: By (2.5) and write
1—~(ed —1 e84 cosp(nd z(eq(t) — 1

r)/( 5 )e%d CObF(’I]d) F F(n ) ( q( )d ) &d . (nd)
I—v(ex—1) 1- (F ) 1—rylex—1)

Then using the equations (2.1) and (2.5), we have

e%d cosp(nd) =

e dv e © dw
ZO(Cw,F(ﬁ,n)F | = 2) [Fw,F(&nw) D€+ 1) +AES h(Em; 7)} il
Finally, comparing the coefficients of %, we get (2.23). The proof of (2.24) is similar. O

Theorem 2.7 For w > 0, we have

VFOn (€ +1,m579) = (1+9)FS 0 (€,m9) — Cup(E,1), (2.25)

and

(s) €+ 1Lmy) = (L+9)ES (5,77 Y) = Sw,r (&, n). (2.26)
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Proof: From (2.5), we have

kad dav 5 cosg (nd) 1| €& cosp(nd)
F(C) 1 . _ F(C) . i F 1 == F _ &d
wZ:O |: E"’ 77777) w,F(&v”LFY)] ! 1_’)’(6%‘ _1) (eq(t) ) v 1= (61}17 _1) €r COSF(nd)
1 av
;Z[wF§7IV wF(gn)]F'
Comparing the coefficients of F—w, on both sides, we obtain (2.25). The proof of (2.26) is similar. O
Theorem 2.8 Let w be integer. Then
[ w e . Yo B (€1 + Ea,m1 +112392) — NFL (€1 + Ea,m1 + 1125 m1)
Z k w kF(glvnlfyl) k,F(§27n2772) = — s
k=0 Y2—MN
] (2.27)
an

72F7(5,)p(§1 + &2, M1+ M2372) — ’Yl]FS,)F(& +&,m +n257)

M=

w s s
( k ) FS o p (€005 ) F (62,725 72) =
F

k=0 Y2
(2.28)
Proof: The products of (2.5) can be written as
2 - dv d* 51 cosp(md) ep(€xd) cosp(nad)
F{ 517771771) 9 (2,712 72) 7 = £
DR R e T S e
oo w w ’ v
Z (Z < k > Ff,j)_k,F(fl,TIl;Vl)Fg:’(an772; ’Yz)) 1
w=0 \k=0 F w
_ efﬁ_&)d cosF(md) cosp(ned)  m e&fﬁgz)d cosp(n1d) cosp(n2d)
Y2 — M 1—m(ef —1) Y2 =M 1 —9o(eh — 1)
_ Z 1Py (€1 + E2,m + 125 72) — NF(Er + &2, + 123m) dav
w=0 72T Fw' .
By equating the coefficients of Iff—:! on both sides, we get (2.27). The proof of (2.28) is similar. O
Theorem 2.9 Let w be integer. Then
A+ NE ) =7 ( ) F . o (€m7) + Cur (2.29)
k=0 F
and w
R =v Y () B plemn) +Sur (2.30)
k=0
Proof: Consider the following identity
144 B 1 1

(A= A(eh = Dved  T—(eh—1)  zeq(t)

Evaluating the following fraction using above identity, we find

(1+ v)e%d cosp(nd) e%d cosp(nd) e%d cosp(nd)

(I —v(ef —1))yed — 1—~(ef —1) ves,
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w

—WZ £1MF,Z Z F(€m57)

Applying the Cauchy product rule in the above equation and then equating the coefficients of like
powers of d in both sides of the resultant equation, assertion (2.29) follows. The proof of (2.30) is similar.
O

(1+7) Z]Fng,
w=0

3. Relationship between F-Bernoulli, F'-Euler and F-Genocchi polynomials and F-Stirling
numbers of the second kind

In this section, we prove some relationships for two bivariate kind of F-cosine Fubini polynomials
and F-sine Fubini polynomials related to F-Bernoulli polynomials, F-Euler polynomials and F-Genocchi
polynomials and F-Stirling numbers of the second kind. We start a following theorem.

Theorem 3.1 Fach of the following relationships holds true:

w1 [ p T F(C) :
FEUC,)F(fam”Y) _ Z ( w41 > Z < z ) By 5.5 (€) — By r(€) M (3.1)
F k=0 F ]

p=0 p Fw+1

and

. w41 P T F(S) :
FOEmn) =Y ( vl > 3 < P ) By r(6) — By ()| Trtiznr ) gy
F F

p=0 p Fw+1

Proof: By using (1.15) and (2.5), we have

. & 1 d et =1 ¢
I R q) — ]
(1_7(6%_1)> e cosp(nd) (1_7(6% _1)) T 1 d ey cosp(nd)

I : (= p P & v
2 (X(F) Benr@) 5 LE
k=0 F .wO w

1 dP & © v
- gZBp,F(f)FT)! Z For (03 ’Y)ﬁ

w=0

0
1A | w " . dw
:dzl (), 24 FBM,F@)] P )
P

= [Z( v )FBP,F@)] B, )

we

By using Cauchy product and comparing the coefficients of 2 #1, We arrive at the required result (3.1).
The proof of (3.2) is similar. O

Theorem 3.2 Fach of the following relationships holds true:

F (& m7) = i < 11: )F [

p=0

P (c)
> < i )F]Ep—k,F(f) +Ep,F(§)1 wv (3.3)

and

e =3 (1) [Z (% )FEp_k,F@HEp,F(g)] Tompr ) (34

p=0
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Proof: By using definitions (1.16) and (2.5), we have

! 1 2 et +1
———— ) ¥/ d) = F &d d
(17(6%1)> e5 cosp(nd) (17(6%1)> T +1 2 e cosp(nd)

= % [Z (Z ( Z} )FEw—k,F(§)> % +> Ew,F(E)%

w=0 \k=0 w=0 w=0

1 s w w P <p> w <w> ‘| © qv
=5 E,_ + E F 1Y) —.

2§[§<p )F; L) B @+ 1 (5)) Enr©) 2, ntn

Comparing the coefficients of g—w!, we arrive at the desired result (3.3). The proof of (3.4) is similar. O

Theorem 3.3 Fach of the following relationships holds true:

w p (c)
c w+ 1 Fot1—pr(m:7)
F(€mn) =) ( ) > ( ' ) Gy, p(§) + Gy p(§)| 222 (35)
p F F QFU,+1

p=0 k=0
and
d w—+1 u p ) ]ng-)u—p,F(UW)
RO (i) = Z( )FL;(,c Gpnr(©)+ Gy <f>] e Y

Proof: By (1.17) and (2.5), we have
d

1 1 2 el +1
&d L a d) = F &d d
() o) = (7)) e o o o)

2w v av
(k 0( 1 )FGw—k,F(f)> FTU!‘F ZGw,F(g)j

w=0 = w=0
B 1 [e'e] w w p P (C) . dw
_Ql;)lg(p >sz_%< k >F p—k.F ( +Z( ) F(§) Ferl*p,F(na'y)iFerI!'

Comparing the coefficients of g—w!, then we have the asserted result (3.5). The proof of (3.6) is similar.

O
The subsequent definition delineates the r-Stirling—Fibonacci numbers of the second kind.
S d* (ef — D)™
F rd
k;n SQ’T(]C-I-T,m-i-’I“)Fk' (Yol T (37)
For r = 0, we have Stirling-Fibonacci numbers of the second kind [2]
CER
k=m
Theorem 3.4 Let w be integer. Then
w l
c w
F’E{),)F(f7 m; ’Y) = Z ( l > (wahF(gv 77) Z’Ykk!527p(l, k)v (39)
1=0 F k=0
and l
s w
Feoemy) =Y ( l ) Sworp(En) YA KIS2 (1K), (3.10)
F k=0
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Proof: Using (2.5) and (3.8), we have

Z (&)= o meF cosp(nd) = eF cosg(nd) kz::
00 S dl 0 l dl
= €§f cosp(nd) Zv’“Zk'sz B) g = 2 Cral&m) Fn, Zv D> k1S m (1 k)
k=0 1=k w=0 =0 k=0
=S (Z () cu,_z,ﬂs,n)Zv’“k!sgfu,k)) o
w=0 \1=0 r k=0 v
Comparing the coefficients of % in both sides, we get (3.9). The proof of (3.10) is similar. m

Theorem 3.5 Let w integer. Then

w l
F0 (€ +r,m7) = Z( ! ) Cotr(En) S VRIS p (1 4+ 1,k + 1), (3.11)
1=0 F k=0
and l
FS,)F(f + T, 7) = Z ( ’lw ) Swfl,F(é-v 77) Zlykk!SZ,F(l + T, k + ’f’). (3]‘2)
1=0 F k=0
Proof: Using (2.5) and (3.7), we have
i p(E+7m57) dw, 1 17d el T cosp(nd) = e T cosr(nd) ivk
— F,' 1—~(e% —1) Pt
00 ] dl o) l dl
7eF cosp(nd) Z Zk!SQ,F(l+T,k+T)F Z Crq(&m) F'Z'y Zk!SZF( +r, k+r)F
k=0  i=k = =0 k=0 !
oo w dw
=y (Z < ;“ > cw_l,F(g,n)Zykk!sw(ur,kw)) o
=0 \1=0 F k=0 we

Comparing the coefficients of - #—7 in both sides, we get (3.11). The proof of (3.12) is similar.

4. Conclusion

In the present paper, we have examined the F-analogues parametric types of the Fubini-Fibonacci
polynomials. By utilizing their generating functions, we have derived several fundamental properties of
these parametric kind of Fubini-Fibonacci polynomials. Furthermore, we have introduced the generalized
Fubini-Fibonacci numbers and derived some properties of these newly established numbers. We have
also presented some results related to these numbers and polynomials. Finally, we have provided some
relation expressions of parametric kind Fubini-Fibonacci polynomials. Our work suggests that the results
presented here may inspire further research in the field of other polynomial types using the Golden
Calculus.
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