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abstract: In this paper, we introduce bivariate kind of three-variable Fubini-Fibonacci polynomials and
their associated numbers within the approach of Golden F - Calculus. Utilizing generating functions, we
derive several fundamental properties, including summation theorems, recurrence relations, symmetry proper-
ties, and F -derivative identities. We further establish connections with, Bernoulli-Fibonacci, Euler-Fibonacci,
Genocchi-Fibonacci Stirling-Fibonacci numbers of the second kind and present mu,ltiple summation formulas
and convolution-type identities. The proposed approach enriches the theory of Fibonacci-based special poly-
nomials and opens new avenues for applications in combinatorics, number theory, approximation theory, and
matrix analysis.
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1. Introduction

It must be emphasized that special numbers, special polynomials, generating functions, and trigono-
metric functions are not only essential in applied mathematics but also play a crucial role in vari-
ous branches of mathematics, including number theory, matrix theory, and mathematical analysis (see
[5,7,8,9,10,24]). Lately, a number of scholars have advanced and obtained generating functions for sev-
eral new families of special polynomials, including those with one and two parametric types, such as
Bernoulli, Euler, Genocchi, Fubini, and others. We have presented a formal investigation into the re-
lationships between trigonometric functions and special polynomials, utilizing generating functions. By
implementing the partial derivative operator to these generating functions, we have derived a number
of formulae involving finite combinatorial sums and the aforementioned polynomials. These formulae
provide new insights into the behavior of these functions and numbers. (see [1,2,4,6,22,3,23].

As a special type of Appell polynomials the Fubini polynomials are defined as the sum

Fw(ξ) =

n∑
k=0

S2(w, k)k!ξ
k (1.1)

where S2(w, k) are the Stirling numbers of second kind [8]. These polynomials can be generated by [20]

1

1− ξ(ed − 1)
=

∞∑
w=0

Fw(ξ)
dw

w!
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Substituting ξ = 1 in Equation (1.1), we obtain the Fubini numbers. They have

1

1− (ed − 1)
=

∞∑
w=0

Fw
dw

w!

as the exponential generating function. For more details, please see [21,22,23].

We present certain definitions and properties associated with Golden Calculus (also known as F -
calculus). The Fibonacci sequence is characterized by the following recurrence relation:

Fw = Fw−1 + Fw−2, w ≥ 2

where F0 = 0, F1 = 1. Fibonacci numbers can be expressed explicitly as

Fw =
αw − βw

α− β
,

where α = 1+
√
5

2 (Golden ratio) and β = 1−
√
5

2 .
The use of the golden ratio in various branches of science and mathematics is well-documented.

Additionally, this mystical number also makes appearances in the fields of architecture and art. Recently,
the properties of F -calculus have been exhaustively defined and studied by Pashaev and Nalci [11] for
the first time. Please refer to the following papers for further reading: Krot [13], Özvatan [14], Pashaev
[12], and Kus et al. [15]. These sources provide additional information and insights on the topic at hand.

The F -factorial, a product arising from the Fibonacci numbers, was formally introduced as follows:

F1F2F3 . . . Fw = Fw!,

where F0! = 1. The following is the formal expression of the binomial theorem for the F -analogues, also
referred to as the Golden binomial theorem:

(a+ b)
w
F =

w∑
s=0

(−1)

(
s
2

) (
w

s

)
F

aw−sbs, (1.2)

in terms of the Golden binomial coefficients, called as Fibonomials(
w

s

)
F

=
Fw!

Fw−s!Fs!

with n and k being nonnegative integers, w ≥ s. The Golden derivative defined as follows:

∂F
∂F ξ

(g(ξ)) =
g (αξ)− g

(
− ξ

α

)
(
α−

(
− 1

α

))
ξ

=
g (αξ)− g (βξ)

(α− β) ξ
. (1.3)

respectively. The first and second types of Golden exponential functions are denoted as

eξF =

∞∑
s=0

(ξ)
s
F

Fs!
,

and

Eξ
F =

∞∑
s=0

(−1)

(
s
2

)
(ξ)

s
F

Fs!
.

Briefly, we use this notation throughout the article

eξF =

∞∑
s=0

ξs

Fs!
, (1.4)
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and

Eξ
F =

∞∑
s=0

(−1)

(
s
2

)
ξs

Fs!
. (1.5)

Using the Equations (1.4), and (1.5), the following equation can be given

eξFE
η
F = eξ+η

F . (1.6)

The Fibonacci cosine and sine functions, also known as the Golden trigonometric functions, are denoted
by the power series

cosF (ξ) =

∞∑
s=0

(−1)
s ξ2s

F2s!
, (1.7)

and

sinF (ξ) =

∞∑
s=0

(−1)
s ξ2s+1

F2s+1!
. (1.8)

For arbitrary number ϕ, Golden derivatives of eϕξF , Eϕξ
F , cosF (ϕξ) , and sinF (ϕξ) functions are

∂F
∂F ξ

(
eϕξF

)
= ϕekξF , (1.9)

∂F
∂F ξ

(
Eϕξ

F

)
= ϕE−ϕξ

F , (1.10)

∂F
∂F ξ

(cosF (ϕξ)) = −ϕ sinF (ϕξ) , (1.11)

and
∂F
∂F ξ

(sinF (ϕξ)) = ϕ cosF (ϕξ) . (1.12)

By virtue of (1), Pashaev and Özvatan [16] formalized the concept of Bernoulli-Fibonacci polynomials.
Subsequently, Kuş et al. [15] defined the Euler-Fibonacci numbers and polynomials, and provided identi-
ties and matrix representations for both Bernoulli-Fibonacci polynomials and Euler-Fibonacci polynomi-
als. Very recently, Tuglu and Ercan [17,18] generalized the concept of Bernoulli-Fibonacci polynomials
and Euler-Fibonacci polynomials of order α as follows:(

d

λedF − 1

)α

eξdF =

∞∑
w=0

Bα
w,F (ξ;λ)

dw

Fw!
, (1.13)

and (
2

λedF + 1

)α

eξdF =

∞∑
w=0

Eα
w,F (ξ;λ)

dw

Fw!
. (1.14)

In [19] Kızılateş and Öztürk defined the define two parametric types of the Apostol Bernoulli-Fibonacci
polynomials, the Apostol Euler-Fibonacci polynomials, and the Apostol Genocchi-Fibonacci polynomials
of order α, as follows: (

d

λedF − 1

)α

epdF cosF (qd) =

∞∑
w=0

B(c,α)
w,F (p, q;λ)

dw

Fw!
, (1.15)

(
d

λedF − 1

)α

epdF sinF (qd) =

∞∑
w=0

B(s,α)
w,F (p, q;λ)

dw

Fw!
, (1.16)

(
2

λedF + 1

)α

epdF cosF (qd) =

∞∑
w=0

E(c,α)
w,F (p, q;λ)

dw

Fw!
, (1.17)
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2

λedF + 1

)α

epdF sinF (qd) =

∞∑
w=0

E(s,α)
w,F (p, q;λ)

dw

Fw!
, (1.18)

(
2d

λedF + 1

)α

epdF cosF (qd) =

∞∑
w=0

G(c,α)
w,F (p, q;λ)

dw

Fw!
, (1.19)

(
2d

λedF + 1

)α

epdF sinF (qd) =

∞∑
w=0

G(s,α)
w,F (p, q;λ)

dw

Fw!
. (1.20)

In this paper, we define the bivariate kind of Fubini-Fibonacci polynomials and investigate their basic
properties and other associated results using Golden Calculus. We also establish relationships between
the bivariate type of Fubini-like polynomials and other polynomials. We introduce the generalized Fubini-
Fibonacci polynomials numbers and establish some properties of these newly defined sequences utilizing
generating functions and their functional equations. Furthermore, we introduce the concept of general-
ized Fubini-Fibonacci numbers and establish a relationship between these numbers and the parametric
Fubini-Fibonacci polynomials. Finally, we derive relation expressions for parametric for Fubini-Fibonacci
polynomials.

2. A parametric kind of Fubini-Fibonacci Numbers and Polynomials

This section extends the three-variable Fubini-Fibonacci polynomials by integrating parametric
trigonometric elements through the application of the golden cosine and sine functions. The fibono-
mial convolution of two sequences, uw and vw, was formally defined by Krot [13] as follows:

UF (d) =

∞∑
w=0

uw
dw

Fw!
and VF (d) =

∞∑
w=0

vw
dw

Fw!
,

then their F -convolution is defined as

lw = uw ∗F vw =

w∑
l=0

(
w

k

)
F

ul vw−l.

So, the generating function takes the form

LF (d) = UF (d)VF (d) =

∞∑
w=0

lw
dw

Fw!
.

Let p, q ∈ R. The Taylor series of the functions epdF cosF (qd) and epdF sinF (qd) can be express as follows:

epdF cosF (qd) =

∞∑
w=0

Cw,F (p, q)
dw

Fw!
, (2.1)

and

epdF sinF (qd) =

∞∑
w=0

Sw,F (p, q)
dw

Fw!
, (2.2)

where

CF,w (p, q) =

⌊w
2 ⌋∑

k=0

(−1)
k

(
w

2k

)
F

pw−2kq2k, (2.3)

SF,w (p, q) =

⌊w−1
2 ⌋∑

k=0

(−1)
k

(
w

2k + 1

)
F

pw−2k−1q2k+1. (2.4)
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Based on the aforementioned definitions of Cn,F (p, q) and Sn,F (p, q) , as well as the number of a FF,w,
we can specify two parameters for Fubini-Fibonacci polynomials as follows:

1

1− γ(edF − 1)
eξdF cosF ηd =

∞∑
w=0

F(c)
F,w(ξ, η; γ)

dw

Fw!
(2.5)

and
1

1− γ(edF − 1)
eξdF sinF ηd =

∞∑
w=0

F(s)
F,w(ξ, η; γ)

dw

Fw!
, (2.6)

respectively.

Remark 2.1 For ξ = 0 in (2.5) and (2.6), we get new type of F -cosine Fubini polynomials F(c)
w,F (η; γ)

and F -sine Fubini polynomials F(s)
w,F (η; γ) as

1

1− γ(edF − 1)
cosF ηd =

∞∑
w=0

F(c)
F,w(η; γ)

dw

Fw!
, (2.7)

and
1

1− γ(edF − 1)
sinF ηd =

∞∑
w=0

F(s)
F,w(η; γ)

dw

Fw!
. (2.8)

respectively.

Based on the aforementioned definitions, we have arrived at the following principal results.

Theorem 2.1 The following identities hold true:

F(c)
w,F (η; γ) =

[w2 ]∑
v=0

(
w + v
2v

)
F

(−1)vη2vFw−2v,F (γ), (2.9)

and

F(s)
w,F (η; γ) =

[w−1
2 ]∑

v=0

(
w + v
2v + 1

)
F

(−1)vη2v+1Fw−2v−1,F (γ). (2.10)

Proof: By (2.7) and (2.8), we can derive the following equations

∞∑
w=0

F(c)
w,F (η; γ)

dw

[w]q!
=

1

1− γ(edF − 1)
cosF (ηd)

=

∞∑
w=0

Fw,F (γ)
tn

[n]q!

∞∑
v=0

(−1)vq(2v−1)vη2v
dv

F2v!

=

∞∑
w=0

 [w2 ]∑
v=0

(
w + v
2v

)
F

(−1)vη2vFw−2v,F (γ)

 dw

Fw!
, (2.11)

and

∞∑
w=0

F(S)
w,q(η; γ)

dw

[w]q!
=

1

1− γ(edF − 1)
sinF (ηd)

=

∞∑
w=0

[w−1
2 ]∑

v=0

(
w
2v + 1

)
F

(−1)vη2v+1Fw−2v−1,F (γ)

 dw

Fw!
. (2.12)

Therefore, by (2.11) and (2.12), we get (2.9) and (2.10). 2
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Theorem 2.2 Let w ≥ 0. Then

F(c)
w,F (ξ, η; γ) =

w∑
k=0

(
w
k

)
F

Fk,F (γ)Cw−k,F (ξ, η), (2.13)

and

F(s)
w,F (ξ, η; γ) =

w∑
k=0

(
w
k

)
F

Fk,F (γ)Sw−k,F (ξ, η). (2.14)

Proof: Consider ( ∞∑
w=0

aw
dw

w!

)( ∞∑
k=0

bk
dk

k!

)
=

∞∑
w=0

(
w∑

k=0

aw−kbk

)
dw

w!
.

Now

∞∑
w=0

F(c)
w,F (ξ, η; γ)

dw

Fw!
=

1

1− γ(edF − 1)
eξdF cosF (ηd)

=

( ∞∑
k=0

Fk,F (γ)
dk

[k]F !

)( ∞∑
w=0

Cw,q(ξ, η)
dw

Fw!

)

=

∞∑
w=0

(
w∑

k=0

(
w
k

)
F

Fk,F (γ)Cw−k,q(ξ, η)

)
dw

Fw!
,

which proves (2.13). The proof of (2.14) is similar. 2

Theorem 2.3 Let w ≥ 0. Then

F(c)
w,F (ξ + r, η; γ) =

w∑
k=0

(
w
k

)
F

F(c)
k,F (ξ, η; γ)r

w−k, (2.15)

and

F(s)
w,F (ξ + r, η; γ) =

w∑
k=0

(
w
k

)
F

F(s)
k,q(ξ, η; γ)r

w−k. (2.16)

Proof: By changing ξ with ξ + r in (2.5) , we have

∞∑
w=0

F(c)
w,F (ξ + r, η; γ)

dw

[w]F !
=

1

1− γ(edF − 1)
eξdF cosF (ηd)e

rd
F

=

( ∞∑
w=0

F(c)
w,F (ξ, η; γ)

dw

Fw!

)( ∞∑
k=0

rk
dk

Fk!

)

=

∞∑
w=0

(
w∑

k=0

(
w
k

)
F

F(c)
k,F (ξ, η; γ)r

w−k

)
dw

Fw!
,

which complete the proof (2.15). The result (2.16) can be similarly proved.
2

Theorem 2.4 Let w ≥ 1. Then

∂

∂ξ
F(c)
w,F (ξ, η; γ) = FwF(c)

w−1,F (ξ, η; γ), (2.17)
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∂

∂η
F(c)
w,F (ξ, η; γ) = −FwF(s)

w−1,F (ξ, η; γ), (2.18)

and
∂

∂ξ
F(s)
w,F (ξ, η; γ) = FwF(s)

w−1,F (ξ, η; γ), (2.19)

∂

∂η
F(s)
w,F (ξ, η; γ) = FwF(c)

w−1,F (ξ, η; γ). (2.20)

Proof: Equation (2.5) yields

∞∑
w=1

∂

∂ξ
F(c)
w,F (ξ, η; γ)

dw

Fw!
=

1

1− γ(edF − 1)

∂

∂ξ
eξdF cosF (ηd) =

∞∑
w=0

F(c)
w,F (ξ, η; γ)

dw+1

Fw!

=

∞∑
w=1

F(c)
w−1,F (ξ, η; γ)

dw

[Fw!
=

∞∑
w=1

FwF(c)
w−1,F (ξ, η; γ)

dw

Fw!
,

proving (2.17). Other (2.18), (2.19) and (2.20) can be similarly derived. 2

Theorem 2.5 Let w ∈ N∗, the following formula holds true. Then

F(c)
w,F (2ξ, η; γ) =

w∑
k=0

(
w

k

)
F

F(c)
k,F (ξ, η; γ)ξ

w−k, (2.21)

and

F(s)
w,F (2ξ, η; γ) =

w∑
k=0

(
w

k

)
F

F(s)
k,F (ξ, η; γ)ξ

w−k. (2.22)

Proof: By using equations (2.5) and (2.6), we can easily proof of equations (2.21) and (2.22). We omit
the proof. 2

Theorem 2.6 For w ≥ 0, the following formula holds true:

Cw,F (ξ, η) = F(x)
w,F (ξ, η; γ)− γF(c)

w,F (ξ + 1, η; γ) + γF(c)
w,F (ξ, η; γ), (2.23)

and
Sw,F (ξ, η) = F(s)

w,F (ξ, η; γ)− γF(s)
w,F (ξ + 1, η; γ) + γF(s)

w,F (ξ, η; γ). (2.24)

Proof: By (2.5) and write

eξdF cosF (ηd) =
1− γ(edF − 1)

1− γ(edF − 1)
eξdF cosF (ηd) =

eξdF cosF (ηd)

1− γ(edF − 1)
− z(eq(t)− 1)

1− γ(edF − 1)
eξdF cosF (ηd).

Then using the equations (2.1) and (2.5), we have

∞∑
w=0

Cw,F (ξ, η)
dw

Fw!
=

∞∑
w=0

[
F(c)
w,F (ξ, η; γ)− γF(c)

w,F (ξ + 1, η; γ) + γF(C)
w,F (ξ, η; γ)

] dw

Fw!
.

Finally, comparing the coefficients of dw

Fw! , we get (2.23). The proof of (2.24) is similar. 2

Theorem 2.7 For w ≥ 0, we have

γF(c)
w,F (ξ + 1, η; γ) = (1 + γ)F(c)

w,F (ξ, η; γ)− Cw,F (ξ, η), (2.25)

and
γF(s)

w,F (ξ + 1, η; γ) = (1 + γ)F(s)
w,F (ξ, η; γ)− Sw,F (ξ, η). (2.26)
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Proof: From (2.5), we have

∞∑
w=0

[
F(c)
w,F (ξ + 1, η; γ)− F(c)

w,F (ξ, η; γ)
] dw

Fw!
=

eξdF cosF (ηd)

1− γ(edF − 1)
(eq(t)− 1) =

1

γ

[
eξdF cosF (ηd)

1− γ(edF − 1)
− eξdF cosF (ηd)

]

=
1

γ

∞∑
w=0

[
F(c)
w,F (ξ, η; γ)− Cw,F (ξ, η)

] dw

Fw!
.

Comparing the coefficients of dw

Fw! on both sides, we obtain (2.25). The proof of (2.26) is similar. 2

Theorem 2.8 Let w be integer. Then

w∑
k=0

(
w
k

)
F

F(c)
w−k,F (ξ1, η1; γ1)F

(c)
k,F (ξ2, η2; γ2) =

γ2F(c)
w,F (ξ1 + ξ2, η1 + η2; γ2)− γ1F(c)

w,F (ξ1 + ξ2, η1 + η2; γ1)

γ2 − γ1
,

(2.27)
and

w∑
k=0

(
w
k

)
F

F(s)
w−k,F (ξ1, η1; γ1)F

(s)
k,F (ξ2, η2; γ2) =

γ2F(s)
w,F (ξ1 + ξ2, η1 + η2; γ2)− γ1F(s)

w,F (ξ1 + ξ2, η1 + η2; γ1)

γ2 − γ1
.

(2.28)

Proof: The products of (2.5) can be written as

∞∑
w=0

∞∑
k=0

F(c)
w,q(ξ1, η1; γ1)F

(c)
k,q(ξ2, η2; γ2)

dw

Fw!

dk

Fw!
=

eξ1dF cosF (η1d)

1− γ1(edF − 1)

eF (ξ2d) cosF (η2d)

1− γ2(edF − 1)

∞∑
w=0

(
w∑

k=0

(
w
k

)
F

F(c)
w−k,F (ξ1, η1; γ1)F

(c)
k,F (ξ2, η2; γ2)

)
dw

Fw!

=
γ2

γ2 − γ1

e
(ξ1+ξ2)d
F cosF (η1d) cosF (η2d)

1− γ1(edF − 1)
− γ1

γ2 − γ1

e
(ξ1+ξ2)d
F cosF (η1d) cosF (η2d)

1− γ2(edF − 1)

=

∞∑
w=0

(
γ2F(c)

w,q(ξ1 + ξ2, η1 + η2; γ2)− γ1F(c)
w,q(ξ1 + ξ2, η1 + η2; γ1)

γ2 − γ1

)
dw

Fw!
.

By equating the coefficients of dw

Fw! on both sides, we get (2.27). The proof of (2.28) is similar. 2

Theorem 2.9 Let w be integer. Then

(1 + γ)F(c)
w,F (ξ, η; γ) = γ

w∑
k=0

(
w
k

)
F

F(c)
w−k,F (ξ, η; γ) + Cw,F (2.29)

and

(1 + γ)F(s)
w,F (ξ, η; γ) = γ

w∑
k=0

(
w
k

)
F

F(s)
w−k,F (ξ, η; γ) + Sw,F (2.30)

Proof: Consider the following identity

1 + γ

(1− γ(edF − 1))γedF
=

1

1− γ(edF − 1)
+

1

zeq(t)
.

Evaluating the following fraction using above identity, we find

(1 + γ)eξdF cosF (ηd)

(1− γ(edF − 1))γedF
=

eξdF cosF (ηd)

1− γ(edF − 1)
+

eξdF cosF (ηd)

γedF
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(1 + γ)

∞∑
w=0

F(c)
w,F (ξ, η; γ)

dw

Fw!
= γ

∞∑
w=0

F(c)
w,F (ξ, η; γ)

dw

Fw!

∞∑
k=0

dk

Fk!
+

∞∑
w=0

Cw,F (ξ, η; γ)
dw

Fw!
.

Applying the Cauchy product rule in the above equation and then equating the coefficients of like
powers of d in both sides of the resultant equation, assertion (2.29) follows. The proof of (2.30) is similar.

2

3. Relationship between F -Bernoulli, F -Euler and F -Genocchi polynomials and F -Stirling
numbers of the second kind

In this section, we prove some relationships for two bivariate kind of F -cosine Fubini polynomials
and F -sine Fubini polynomials related to F -Bernoulli polynomials, F -Euler polynomials and F -Genocchi
polynomials and F -Stirling numbers of the second kind. We start a following theorem.

Theorem 3.1 Each of the following relationships holds true:

F(c)
w ,F (ξ, η; γ) =

w+1∑
p=0

(
w + 1
p

)
F

[
p∑

k=0

(
p
k

)
F

Bp−k ,F (ξ)− Bp,F (ξ)

]
F(c)
w+1−p,F (η; γ)

Fw+1
(3.1)

and

F(s)
w ,F (ξ, η; γ) =

w+1∑
p=0

(
w + 1
p

)
F

[
p∑

k=0

(
p
k

)
F

Bp−k ,F (ξ)− Bp,F (ξ)

]
F(s)
w+1−p,F (η; γ)

Fw+1
(3.2)

Proof: By using (1.15) and (2.5), we have(
1

1− γ(edF − 1)

)
eξdF cosF (ηd) =

(
1

1− γ(edF − 1)

)
d

edF − 1

edF − 1

d
eξdF cosF (ηd)

=
1

d

∞∑
w=0

(
p∑

k=0

(
p
k

)
F

Bp−k ,F (ξ)

)
dp

Fp!

∞∑
w=0

F(c)
w ,F (η; γ)

dw

Fw !

− 1

d

∞∑
p=0

Bp,F (ξ)
dp

Fp !

∞∑
w=0

F(c)
w ,F (η; γ)

dw

Fw !

=
1

d

∞∑
w=0

[
w∑

p=0

(
w
p

)
F

p∑
k=0

(
p
k

)
F

Bp−k ,F (ξ)

]
F(c)
w−p,F (η; γ)

dw

Fw !

− 1

d

∞∑
w=0

[
w∑

p=0

(
w
p

)
F

Bp,F (ξ)

]
F(c)
w−p,F (η; γ)

dw

Fw !
.

By using Cauchy product and comparing the coefficients of dw

Fw! , we arrive at the required result (3.1).
The proof of (3.2) is similar. 2

Theorem 3.2 Each of the following relationships holds true:

F(c)
w ,q(ξ, η; γ) =

w∑
p=0

(
w
p

)
F

[
p∑

k=0

(
p
k

)
F

Ep−k ,F (ξ) + Ep,F (ξ)

]
F(c)
w−p,F (η; γ)

2
, (3.3)

and

Fs
w ,F (ξ, η; γ) =

w∑
p=0

(
w
p

)
F

[
p∑

k=0

(
p
k

)
F

Ep−k ,F (ξ) + Ep,F (ξ)

]
F(s)
w−p,F (η; γ)

2
, (3.4)
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Proof: By using definitions (1.16) and (2.5), we have(
1

1− γ(edF − 1)

)
eξdF cosF (ηd) =

(
1

1− γ(edF − 1)

)
2

edF + 1

edF + 1

2
eξdF cosF (ηd)

=
1

2

[ ∞∑
w=0

(
w∑

k=0

(
w
k

)
F

Ew−k ,F (ξ)

)
dw

Fw!
+

∞∑
w=0

Ew,F (ξ)
dw

Fw!

] ∞∑
w=0

F(c)
w ,F (η; γ)

dw

Fw !

=
1

2

∞∑
w=0

[
w∑

p=0

(
w
p

)
F

p∑
k=0

(
p
k

)
F

Ep−k ,F (ξ) +

w∑
p=0

(
w
p

)
F

Ep,F (ξ)

]
F(c)
w−p,F (η; γ)

dw

Fw !
.

Comparing the coefficients of dw

Fw! , we arrive at the desired result (3.3). The proof of (3.4) is similar. 2

Theorem 3.3 Each of the following relationships holds true:

F(c)
w ,F (ξ, η; γ) =

w∑
p=0

(
w + 1
p

)
F

[
p∑

k=0

(
p
k

)
F

Gp−k ,F (ξ) +Gp,F (ξ)

]
F(c)
w+1−p,F (η; γ)

2Fw+1
, (3.5)

and

F(s)
w ,F (ξ, η; γ) =

w∑
p=0

(
w + 1
p

)
F

[
p∑

k=0

(
p
k

)
F

Gp−k ,F (ξ) +Gp,F (ξ)

]
F(s)
w+1−p,F (η; γ)

2Fw+1
, (3.6)

Proof: By (1.17) and (2.5), we have(
1

1− γ(edF − 1)

)
eξdF cosF (ηd) =

(
1

1− γ(edF − 1)

)
2d

edF + 1

edF + 1

2d
eξdF cosF (ηd)

=
1

2d

[ ∞∑
w=0

(
w∑

k=0

(
w
k

)
F

Gw−k ,F (ξ)

)
dw

Fw!
+

∞∑
w=0

Gw ,F (ξ)
dw

Fw !

] ∞∑
w=0

F(c)
w ,F (η; γ)

dw

Fw !

=
1

2

∞∑
w=0

[
w∑

p=0

(
w
p

)
F

p∑
k=0

(
p
k

)
F

Gp−k ,F (x ) +

w∑
p=0

(
w
p

)
F

Gp,F (ξ)

]
F(c)
w+1−p,F (η; γ)

dw

Fw+1 !
.

Comparing the coefficients of dw

Fw! , then we have the asserted result (3.5). The proof of (3.6) is similar.
2

The subsequent definition delineates the r-Stirling–Fibonacci numbers of the second kind.

∞∑
k=m

SF
2,r(k + r,m+ r)

dk

Fk!
= erdF

(edF − 1)m

Fm!
. (3.7)

For r = 0, we have Stirling-Fibonacci numbers of the second kind [2]

∞∑
k=m

SF
2 (k,m)

tk

Fk!
=

(edF − 1)m

Fm!
. (3.8)

Theorem 3.4 Let w be integer. Then

F(c)
w,F (ξ, η; γ) =

w∑
l=0

(
w
l

)
F

Cw−l,F (ξ, η)

l∑
k=0

γkk!S2,F (l, k), (3.9)

and

F(s)
w,F (ξ, η; γ) =

w∑
l=0

(
w
l

)
F

Sw−l,F (ξ, η)

l∑
k=0

γkk!S2,F (l, k). (3.10)
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Proof: Using (2.5) and (3.8), we have

∞∑
w=0

F(c)
w,F (ξ, η; γ)

dw

Fw!
=

1

1− γ(edF − 1)
eξdF cosF (ηd) = eξdF cosF (ηd)

∞∑
k=0

γk(edF − 1)k

= eξdF cosF (ηd)

∞∑
k=0

γk
∞∑
l=k

k!S2,F (l, k)
dl

Fl!
=

∞∑
w=0

CF,q(ξ, η)
dw

Fn!

∞∑
l=0

γk
l∑

k=0

k!S2,F (l, k)
dl

Fl!

=

∞∑
w=0

(
w∑
l=0

(
w
l

)
F

Cw−l,F (ξ, η)

l∑
k=0

γkk!S2,F (l, k)

)
dw

Fw!
.

Comparing the coefficients of dw

Fw! in both sides, we get (3.9). The proof of (3.10) is similar. 2

Theorem 3.5 Let w integer. Then

F(c)
w,F (ξ + r, η; γ) =

w∑
l=0

(
w
l

)
F

Cw−l,F (ξ, η)

l∑
k=0

γkk!S2,F (l + r, k + r), (3.11)

and

F(s)
w,F (ξ + r, η; γ) =

w∑
l=0

(
w
l

)
F

Sw−l,F (ξ, η)

l∑
k=0

γkk!S2,F (l + r, k + r). (3.12)

Proof: Using (2.5) and (3.7), we have

∞∑
w=0

F(c)
w,F (ξ + r, η; γ)

dw

Fw!
=

1

1− γ(edF − 1)
e
(ξ+r)d
F cosF (ηd) = e

(ξ+r)d
F cosF (ηd)

∞∑
k=0

γk(edF − 1)k

= eξdF cosF (ηd)

∞∑
k=0

γk
∞∑
l=k

k!S2,F (l + r, k + r)
dl

Fl!
=

∞∑
w=0

CF,q(ξ, η)
dw

Fn!

∞∑
l=0

γk
l∑

k=0

k!S2,F (l + r, k + r)
dl

Fl!

=

∞∑
w=0

(
w∑
l=0

(
w
l

)
F

Cw−l,F (ξ, η)

l∑
k=0

γkk!S2,F (l + r, k + r)

)
dw

Fw!
.

Comparing the coefficients of dw

Fw! in both sides, we get (3.11). The proof of (3.12) is similar.
2

4. Conclusion

In the present paper, we have examined the F -analogues parametric types of the Fubini-Fibonacci
polynomials. By utilizing their generating functions, we have derived several fundamental properties of
these parametric kind of Fubini-Fibonacci polynomials. Furthermore, we have introduced the generalized
Fubini-Fibonacci numbers and derived some properties of these newly established numbers. We have
also presented some results related to these numbers and polynomials. Finally, we have provided some
relation expressions of parametric kind Fubini-Fibonacci polynomials. Our work suggests that the results
presented here may inspire further research in the field of other polynomial types using the Golden
Calculus.
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