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Identification of the Source Term of an Ill-Posed Inverse Fractional Parabolic Problem

Fatma Achab, Iqbal M. Batiha∗, Taki Eddine Oussaeif and Imad Rezzoug

abstract: In this paper, we investigate an ill-posed inverse fractional problem in the sense of Hadamard.
Our objective is to identify the source term using Tikhonov regularization. Since the initial condition is
missing, the no-regret control approach is employed to solve the regularization problem. The source term is
characterized through an associated optimality system.
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1. Introduction

Recent advances in fractional calculus have provided powerful tools for modeling various physical and
engineering phenomena described by integro-differential and parabolic equations. Several numerical and
analytical methods have been developed to address fractional and variable-order systems, including effi-
cient algorithms for solving linear and nonlinear Volterra integro-differential equations [1] and fractional
differential equations involving conformable operators [2]. The influence of stochastic perturbations and
fractional-order effects on nonlinear dynamical systems has also been analyzed to improve stability and
accuracy [3,4]. Moreover, fractional diffusion and parabolic models with integral or over-determination
conditions have been extensively investigated to study the existence, uniqueness, and solvability of inverse
and direct problems [5,6,7,8,9,10,11,12]. These works demonstrate the increasing importance of fractional
modeling techniques in understanding complex diffusion, reaction–diffusion, and control systems, as well
as their applications in engineering and applied sciences [13].

The modeling of wave equations has drawn significant attention from researchers due to its wide range
of applications in physics, mechanics, and engineering problems (see [14,15] and their references). Many
studies have addressed various aspects of the wave equation. The direct problem of the wave equation
consists of determining the field when all relevant data are known. If some of this information is missing,
the problem becomes an inverse wave problem (see [16]). The classification of inverse wave problems
according to the type of missing data is discussed in [17]: if the initial condition is missing, the problem
is referred to as a retrospective problem; if the boundary condition is unknown, it is termed a boundary
problem; and when the source term is unknown, the problem is known as an inverse source problem.

Inverse wave problems have numerous practical applications and play a vital role in predicting earth-
quakes, exploring oil and gas reserves, and advancing medical imaging technologies. This research focuses
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on the inverse source problem of electromagnetic waves, which involves identifying the electric current
density from the tangential trace of the electric field obtained through boundary measurements. How-
ever, the considered inverse fractional wave problem is ill-posed in the sense of Hadamard. To address
this challenge, we employ Tikhonov regularization to identify the unknown source term. Several earlier
studies have successfully used the Tikhonov regularization method to handle similar ill-posed problems
(see [18,19]).

The no-regret control approach, initially introduced by Lions [20] and later extended by Nakoulima
[21,22], has been applied by several authors (see [16,23]) and is adopted here to deal with the absence of
wave speed information. The unknown source term is characterized through an optimality system. This
paper is organized as follows. We begin with some fundamental definitions and concepts from fractional
calculus. Next, we present the Tikhonov regularization technique for the ill-posed fractional problem.
Since our problem involves missing data, both the no-regret and low-regret control methods are applied,
and their corresponding characterizations are provided.

2. Preliminaries

In this section, we present fundamental concepts on fractional differentiation and integration that are
essential for our research ( [24,25]).

Definition 1. For α ∈ R+, we define the fractional integral of a function f belonging to L1([0, T ], X)
with respect to α as follows:

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s) ds,

where the function Γ is the Gamma function.

Definition 2. Let 1 < α < 2. We define:

1. The left Caputo derivative:

cDα
t f =

1

Γ(2− α)

∫ t

0

(t− s)1−αf (2)(s) ds,

2. The right Caputo derivative:

c
tD

αf =
1

Γ(2− α)

∫ T

t

(s− t)1−αf (2)(s) ds,

3. The left Riemann–Liouville derivative:

RDα
t f =

1

Γ(2− α)

d2

dt2

∫ t

0

(t− s)1−αf(s) ds,

4. The right Riemann–Liouville derivative:

R
t D

αf =
1

Γ(2− α)

d2

dt2

∫ T

t

(s− t)1−αf(s) ds.

The right Caputo and Riemann–Liouville derivatives are connected by the following relationship:

RDα
t f = cDα

t f +
f(0)t−α

Γ(1− α)
+

f ′(0)t1−α

Γ(2− α)
.

If f(0) = 0 and f ′(0) = 0, then RDα
t and cDα

t coincide, i.e.,

RDα
t f = cDα

t f.
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Definition 3. Let us define the semi-norms for any value of σ > 0 as follows:

|f |2ιHσ(Ω) = ∥RDσ
t f∥2L2(Ω),

|f |2rHσ(Ω) = ∥Rt Dσf∥2L2(Ω),

|f |2cHσ(Ω) =

∣∣∣∣∣∣
(
RDσ

t f,
R
t D

σf
)2
L2(Ω)

cos(σπ)

∣∣∣∣∣∣
1
2

.

and the norms

∥f∥2ιHσ(Ω) =
(
∥f∥2L2(Ω) + |f |2ιHσ(Ω)

) 1
2

,

∥f∥2rHσ(Ω) =
(
∥f∥2L2(Ω) + |f |2rHσ(Ω)

) 1
2

,

and

∥f∥2cHσ(Ω) =
(
∥f∥2L2(Ω) + |f |2cHσ(Ω)

) 1
2

.

The spaces ιHσ
0 (Ω) and

rHσ
0 (Ω) can be defined as the closure spaces of C∞

0 (Ω) with respect to the norms
∥ · ∥2ιHσ(Ω) and ∥ · ∥2rHσ(Ω), respectively.

Lemma 1. If f belongs to ιHσ(Ω) and g ∈ C∞
0 (Ω), for any real σ ∈ R+, then(

RDσ
t f, g

)
L2(Ω)

=
(
f,Rt D

σg
)
L2(Ω)

.

Lemma 2. For 0 < σ < 2, σ ̸= 1, and f ∈ H
σ
2
0 (Ω), we have

RDσ
t f = RD

σ
2
t

RD
σ
2
t f.

Lemma 3. For σ ∈ R+ such that σ ̸= n + 1
2 , the semi-norms | · |ιHσ(Ω), | · |rHσ(Ω), and | · |cHσ(Ω) are

equivalent. Hence, we introduce the following notation:

| · |ιHσ(Ω)
∼= | · |rHσ(Ω)

∼= | · |cHσ(Ω).

Lemma 4. For σ > 0, the space rHσ(Ω) is complete under the norm ∥ · ∥rHσ(Ω).

Definition 4. Let ϕ ∈ C([0, T ], X) be such that Dαϕ ∈ L2((0, T ), X), and let y be such that Dα
t y ∈

L2((0, T ), X) and y(0) ∈ X. Then∫ T

0

∫
Ω

cDα
t y(x, t)ϕ(x, t) dx dt =

∫
Ω

∂

∂t
y(x, T ) I2−αϕ(x, T ) dx−

∫
Ω

∂

∂t
y(x, 0) I2−αϕ(x, 0) dx

−
∫
Ω

y(x, T )
∂

∂t
I2−αϕ(x, T ) dx+

∫
Ω

y(x, 0)
∂

∂t
I2−αϕ(x, 0) dx

+

∫ T

0

∫
Ω

y(x, t)Dα
RLϕ(x, t) dx dt.

3. Description of the Problem

This section concerns the inverse source fractional problem associated with an ill-posed wave equation.
The objective is to determine the source function using the Tikhonov regularization method. We consider
the following fractional wave equation:

∂β
0+y(x, t)−∆y(x, t) = f(x, t), (x, t) ∈ Ω× (0, T ),

y(x, t) = 0, (x, t) ∈ Γ× (0, T ),

y(x, 0) = g1(x), x ∈ Ω,

yt(x, 0) = g2(x), x ∈ Ω.

(3.1)
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Here, y represents the propagation of the wave equation, f is the unknown source term representing the
density of electric current, and (g1, g2) are the missing speed components of the wave equation. The

operator ∂β
0+ denotes the Caputo fractional derivative of order β.

Proposition 1 ( [23]). If f ∈ L2(Q) and (g1, g2) ∈ H1
0 (Ω)×H1

0 (Ω), then the system (3.1) has a unique
continuous solution denoted by y(f, g1, g2) = y(t, x, f, g1, g2) ∈ L2(Q).

Problem (3.1) is classified as an ill-posed problem in the sense of Hadamard. This implies that the
solution does not depend continuously on the given data. However, by applying a regularization method,
we can obtain an identification of the source term based on the final boundary observation

y(x, T ) = h(x).

The Tikhonov regularization problem is to find f ∈ L2(Q) satisfying

inf
f∈L2(Q)

J(f, g1, g2), (3.2)

where J is defined by
J(f, g1, g2) = ∥y(T, f, g1, g2)− h∥2L2(Q) + λ∥f∥2L2(Q), (3.3)

and λ is the regularization parameter. Thus, the Tikhonov regularization problem becomes an optimal
control problem with incomplete data. Since the functions (g1, g2) are unknown, problem (3.2) has no
sense in its current form. Therefore, to solve our Tikhonov regularization problem, we use the no-regret
control approach.

Remark 1. We choose the control function as the source term f . Solving the optimal control problem
with incomplete data provides an identification of the source term.

4. No-Regret and Low-Regret Controls Method

As discussed previously, the Tikhonov regularization problem becomes an optimal control problem
with incomplete data. For this reason, we apply the method of no-regret and low-regret controls. We
aim to solve the following infsup problem:

inf
f∈L2(Q)

sup
(g1,g2)∈H1

0 (Ω)×H1
0 (Ω)

J(f, g1, g2). (4.1)

In this situation, we have sup(g1,g2)∈H1
0 (Ω)×H1

0 (Ω) J(f, g1, g2) is equal to infinity. Therefore, we only
consider the functions f satisfying

J(f, g1, g2) ≤ J(0, g1, g2). (4.2)

Then, we solve the following problem:

inf
f∈L2(Q)

sup
(g1,g2)∈H1

0 (Ω)×H1
0 (Ω)

[J(f, g1, g2)− J(0, g1, g2)] . (4.3)

Definition 5. A function w is called a no-regret control for problems (3.1) and (3.3) if and only if it
solves problem (4.3).

Lemma 5. For every f ∈ L2(Q), problem (4.3) is equivalent to

inf
f∈L2(Q)

[
J(f, 0, 0)− J(0, 0, 0) + 2 sup

(g1,g2)∈H1
0 (Ω)×H1

0 (Ω)

[
(I2−αξ(0), g1)L2(Ω) −

(
∂

∂t
I2−αξ(0), g2

)
L2(Ω)

]]
,

where ξ = ξ(f, t, x) is the solution of

Dα
RLξ −∆ξ = y(f, 0), (x, t) ∈ Ω× (0, T ),

ξ = 0, (x, t) ∈ Γ× (0, T ),

I2−αξ(T ) = 0, x ∈ Ω,

∂

∂t
I2−αξ(T ) = 0, x ∈ Ω.

(4.4)
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Proof. By the linearity of the state y, we can write

y(f, g1, g2) = y(f, 0, 0) + y(0, g1, g2).

Using this relation, we easily obtain

J(f, g1, g2)− J(0, g1, g2) = J(f, 0, 0)− J(0, 0, 0) + 2 (y(f, 0, 0), y(0, g1, g2))L2(Q) .

By introducing the adjoint state ξ that satisfies (4.4), and applying integration by parts, we get

J(f, g1, g2)− J(0, g1, g2) = J(f, 0, 0)− J(0, 0, 0) + 2

[
(I2−αξ(0), g1)L2(Ω) −

(
∂

∂t
I2−αξ(0), g2

)
L2(Ω)

]
.

Since the no-regret control exists only on the following subset:

K =

{
∀f ∈ L2(Q) such that (I2−αξ(0), g1)L2(Ω) = 0,

(
∂

∂t
I2−αξ(0), g2

)
L2(Ω)

= 0

}
.

Constructing this subset is difficult. To overcome this problem, we relax our problem by introducing a
quadratic perturbation to (4.2), obtaining

J(f, g1, g2) ≤ J(0, g1, g2) + γ
(
∥g1∥2 + ∥g2∥2

)
.

The infsup problem then becomes

inf
f∈L2(Q)

sup
(g1,g2)∈H1

0 (Ω)×H1
0 (Ω)

[
J(f, g1, g2)− J(0, g1, g2)− γ

(
∥g1∥2 + ∥g2∥2

)]
= inf

f∈L2(Q)

[
J(f, 0, 0)− J(0, 0, 0) + sup

(g1,g2)∈H1
0 (Ω)×H1

0 (Ω)

[
(2I2−αξ(0), g1)L2(Ω)

−
(
2
∂

∂t
I2−αξ(0), g2

)
L2(Ω)

− γ
(
∥g1∥2 + ∥g2∥2

) ]]
.

This means that

inf
f∈L2(Q)

Jγ(f), (4.5)

where

Jγ(f) = J(f, 0, 0)− J(0, 0, 0) +
1

γ

(
∥I2−αξ(0)∥2 +

∥∥∥∥ ∂

∂t
I2−αξ(0)

∥∥∥∥2
)
. (4.6)

Hence, the problem becomes a classical optimal control problem. 2

4.1. Low-regret control (definition, existence, uniqueness, and characterization)

This section is divided into two parts. First, we prove the existence and uniqueness of the low-regret
control. Then, using the first-order Euler–Lagrange optimality condition, we obtain the characterization
of the low-regret control.

Definition 6. A function wγ is called a low-regret control for problems (3.1) and (4.6) if and only if it
solves problem (4.5).
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4.1.1. Existence and uniqueness of a low-regret control. The problem admits a unique low-regret control.
From (4.6), it can be deduced that

Jγ(f) ≥ −J(0, 0, 0) = constant.

This means that inff∈U Jγ(f) exists, and we denote it by dγ . Let {fγ
n} be a minimizing sequence satisfying

lim
n→∞

Jγ(fγ
n ) = inf

f
Jγ(f) = dγ .

We have

−J(0, 0, 0) ≤ Jγ(fγ
n ) = J(fγ

n , 0, 0)− J(0, 0, 0) +
1

γ

(
∥I2−αξ(0)∥2 +

∥∥∥∥ ∂

∂t
I2−αξ(0)

∥∥∥∥2
)

≤ dγ + 1,

which implies that

∥y(T, fγ
n , 0, 0)− h∥2 + λ∥fγ

n∥2 +
1

γ

(
∥I2−αξn(0)∥2 +

∥∥∥∥ ∂

∂t
I2−αξn(0)

∥∥∥∥2
)

≤ dγ + J(0, 0, 0) + 1 = Cγ .

Considering that the constant Cγ is independent of n, we deduce that

∥fγ
n∥L2(Q) ≤ Cγ ,

∥y(T, fγ
n , 0, 0)∥L2(Q) ≤ Cγ ,

∥I2−αξn(0)∥L2(Q) ≤
√
γ Cγ ,∥∥∥∥ ∂

∂t
I2−αξn(0)

∥∥∥∥
L2(Q)

≤ √
γ Cγ .

We have that yγn = y(T, fγ
n , 0, 0) is the solution of

CDαyγn −∆yγn = fγ
n , (x, t) ∈ Ω× (0, T ),

yγn(x, t) = 0, (x, t) ∈ Γ× (0, T ),

yγn(x, 0) = 0, x ∈ Ω,

∂

∂t
yγn(x, 0) = 0, x ∈ Ω.

(4.7)

Since yγn(x, 0) = 0 and
∂

∂t
yγn(x, 0) = 0, the Caputo and Riemann–Liouville derivatives coincide:

CDα = Dα
RL.

Hence, we can apply the previous lemma. By introducing a multiplier yγn, we multiply the first equation
in (4.7) by yγn and integrate over Q:∫

Q

(
CDαyγn −∆yγn

)
yγn dx dt =

∫
Q

fγ
ny

γ
n dx dt.

and ∫
Q

(CDαyγn)y
γ
n dx dt =

(
C
0 D

α
2
t

C
0 D

α
2
t yγn, y

γ
n

)
L2(Q)

=
(
C
0 D

α
2
t yγn,

C
t D

α
2

T yγn

)
L2(Q)

= cos
(απ

2

)
|yγn|2cH α

2 (Q)
≃ cos

(απ
2

)
|yγn|2ιH α

2 (Q)

= cos
(απ

2

)∥∥∥C0 D α
2
t yγn

∥∥∥2
L2(Q)

.
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Moreover, we have

−
∫
Q

∆yγn yγn dx dt = ∥∇yγn∥2L2(Q).

By adding the two equalities, we obtain

cos
(απ

2

)∥∥∥C0 D α
2
t yγn

∥∥∥2
L2(Q)

+ ∥∇yγn∥
2
L2(Q) =

∫
Q

fγ
ny

γ
n dx dt.

Using the Cauchy inequality, we have

2 cos
(απ

2

)∥∥∥C0 D α
2
t yγn

∥∥∥2
L2(Q)

+ 2 ∥∇yγn∥
2
L2(Q) ≤ ∥fγ

n∥2L2(Q) + ∥yγn∥2L2(Q).

Applying the Poincaré inequality, we obtain

2 cos
(απ

2

)∥∥∥C0 D α
2
t yγn

∥∥∥2
L2(Q)

+ (2− c) ∥∇yγn∥
2
L2(Q) ≤ ∥fγ

n∥2L2(Q).

Finally, we have∥∥∥C0 D α
2
t yγn

∥∥∥2
L2(Q)

+ ∥∇yγn∥
2
L2(Q) ≤ K ∥fγ

n∥
2
L2(Q) , K =

1

min
{
2 cos

(
απ
2

)
, (2− c)

} .
Therefore, we can deduce that ∥∥∥C0 D α

2
t yγn

∥∥∥
L2(Q)

≤ Cγ ,

∥∇yγn∥L2(Q) ≤ Cγ .

We also deduce that ∥∥CDαyγn −∆yγn
∥∥
L2(Q)

≤ Cγ .

Then there exists a subsequence, still denoted by (fγ
n ),

(
C
0 D

α
2
t yγn

)
, and (yγn), such that, when n → +∞,

fγ
n ⇀ wγ weakly in L2(Q),

yγn ⇀ yγ weakly in L2
(
0, T ;H1

0 (Ω)
)
,

C
0 D

α
2
t yγn ⇀ f weakly in L2(Q),

CDαyγn −∆yγn ⇀ g weakly in L2(Q).

Because of the continuity of the fractional and spatial derivatives, we obtain

C
0 D

α
2
t yγn ⇀ C

0 D
α
2
t yγ weakly in L2(Q),

CDαyγn −∆yγn ⇀ CDαyγ −∆yγ weakly in L2(Q).

According to the uniqueness of the limit, we obtain

CDαyγ −∆yγ = wγ in Q.

From yγn ⇀ yγ weakly in L2(Q), we have

yγ(x, 0) = 0,
∂

∂t
yγ(x, 0) = 0.

It remains to prove the boundary condition. Multiplying the first equality in (4.7) by a test function
ϕ ∈ D(Q) such that

I2−αϕ(T ) = 0,
∂

∂t
I2−αϕ(T ) = 0 in Ω,

ϕ = 0 on Σ,
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and integrating over Q, we get∫
Q

(
CDαyγn −∆yγn

)
ϕdx dt =

∫
Q

fγ
n ϕdx dt.

Integrating by parts and using Green’s formula, we obtain∫
Q

(
Dα

RLϕ−∆ϕ
)
yγn dx dt =

∫
Q

fγ
n ϕdx dt.

Passing to the limit as n → ∞, and using the weak convergences established above, we get∫
Q

(
Dα

RLϕ−∆ϕ
)
yγ dx dt =

∫
Q

wγ ϕdx dt.

Integrating once more, we have∫
Q

(
CDαyγ −∆yγ

)
ϕdx dt−

∫
Σ

yγ
∂ϕ

∂ν
=

∫
Q

wγ ϕdx dt,

so

−
∫
Σ

yγ
∂ϕ

∂ν
= 0,

hence
yγ = 0 on Σ.

On the other hand, we know that ξn = ξ(fn) is the solution of

Dα
RLξn −∆ξn = yn, (x, t) ∈ Ω× (0, T ),

ξn = 0, (x, t) ∈ Γ× (0, T ),

I2−αξn(T ) = 0, x ∈ Ω,

∂

∂t
I2−αξn(T ) = 0, x ∈ Ω.

(4.8)

Using the same approach as in the previous state equation for yn, we obtain the following energy inequal-
ity: ∥∥∥RL

0 D
α
2
t ξn

∥∥∥2
L2(Q)

+ ∥∇ξn∥2L2(Q) ≤ C ∥yn∥2L2(Q) , C =
1

min
{
2 cos

(
απ
2

)
, (2− c′)

} .
and ∥∥RL

0 Dα
t ξn −∆ξn

∥∥
L2(Q)

≤ Cγ .

We conclude that

ξn ⇀ ξγ weakly in L2(Q),

ξn = 0 on Σ,

which implies that
ξn ⇀ ξγ weakly in D′(Q).

From [23], we deduce that the fractional integral I2−α is continuous from L2 to L2. Hence, we obtain

I2−αξn ⇀ I2−αξγ weakly in L2(Q).

Therefore, we have

I2−αξγ(T ) = 0, x ∈ Ω,
∂

∂t
I2−αξγ(T ) = 0, x ∈ Ω.
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It follows that ξγ satisfies 

Dα
RLξ

γ −∆ξγ = yγ , (x, t) ∈ Ω× (0, T ),

ξγ = 0, (x, t) ∈ Γ× (0, T ),

I2−αξγ(T ) = 0, x ∈ Ω,

∂

∂t
I2−αξγ(T ) = 0, x ∈ Ω.

(4.9)

The functional Jγ is lower semi-continuous; therefore, we have

Jγ(wγ) ≤ lim
n→∞

inf
f∈U

Jγ(fn) = inf
f∈U

Jγ(f) = dγ .

Since Jγ is also strictly convex, we deduce that wγ is the unique minimizer.

4.1.2. Determining the characterization of the low-regret control. For all wγ , we have

J ′
γ(wγ)(f − wγ) = (yγ − yd, y(f − wγ))L2 + λ(wγ , f − wγ)L2

+
1

γ

[(
I2−αξγ(0), I2−αξ(f − wγ)(0)

)
L2 +

(
∂
∂tI

2−αξγ(0), ∂
∂tI

2−αξ(f − wγ)(0)
)
L2

]
= 0.

We introduce the state ργ , which is the solution of

CDαργ −∆ργ = 0, (x, t) ∈ Ω× (0, T ),

ργ = 0, (x, t) ∈ Γ× (0, T ),

ργ(0) = − 1

γ

∂

∂t
I2−αξγ(0), x ∈ Ω,

∂

∂t
ργ(0) =

1

γ
I2−αξγ(T ), x ∈ Ω.

(4.10)

By integrating by parts, we obtain∫
Q

(
CDαργ −∆ργ

)
ξ(f − wγ) dx dt =

∫
Q

ργ y(f − wγ) dx dt−
∫
Q

∂ργ(0)

∂t
I2−αξ(0)(f − wγ) dx dt

+

∫
Q

ργ(0)
∂

∂t
I2−αξ(0)(f − wγ) dx dt

= 0.

We now define another adjoint state pγ as

Dα
RLp

γ −∆pγ = yγ − h+ ργ , (x, t) ∈ Ω× (0, T ),

pγ = 0, (x, t) ∈ Γ× (0, T ),

I2−αpγ(T ) = 0, x ∈ Ω,

∂

∂t
I2−αpγ(T ) = 0, x ∈ Ω.

(4.11)

Thus, we have

J ′
γ(wγ)(f − wγ) = (pγ + λwγ , f − wγ)L2 = 0,

and consequently,

pγ + λwγ = 0 a.e. in Q.



10 F. Achab, I. M. Batiha, T. E. Oussaeif, I. Rezzoug

5. Finding the Optimality System of the No-Regret Control

This section is devoted to the full characterization of the no-regret control. We establish the conver-
gence of the low-regret control sequence to the unique no-regret control. Based on this hypothesis, we
then derive the corresponding optimality system of the no-regret control.

Proposition 2. The optimality system characterizing the no-regret control w = limγ→0 wγ is defined by
the solution of the following coupled problems involving the state variables {y, ρ} and the adjoint variables
{ξ, p}:


CDαy(x, t)−∆y(x, t) = w, (x, t) ∈ Ω× (0, T ),

y(x, t) = 0, (x, t) ∈ Γ× (0, T ),

y(x, 0) = 0, yt(x, 0) = 0, x ∈ Ω.
Dα

RLξ(x, t)−∆ξ(x, t) = y(f, 0), (x, t) ∈ Ω× (0, T ),

ξ = 0, (x, t) ∈ Γ× (0, T ),

I2−αξ(T ) = 0,
∂

∂t
I2−αξ(T ) = 0, x ∈ Ω.

CDαρ(x, t)−∆ρ(x, t) = 0, (x, t) ∈ Ω× (0, T ),

ρ = 0, (x, t) ∈ Γ× (0, T ),

ρ(0) = − 1

γ

∂

∂t
I2−αξ(0) = 0, x ∈ Ω,

∂

∂t
ρ(0) =

1

γ
I2−αξ(T ), x ∈ Ω.


Dα

RLp(x, t)−∆p(x, t) = y − h+ ρ, (x, t) ∈ Ω× (0, T ),

p = 0, (x, t) ∈ Γ× (0, T ),

I2−αp(T ) = 0,
∂

∂t
I2−αp(T ) = 0, x ∈ Ω.

The associated optimality condition is given by

p+ λw = 0 a.e. in Q.

Proof. We begin by establishing the convergence of the sequence of low-regret controls towards the unique
no-regret control. Since wγ minimizes Jγ , we have

Jγ(wγ) ≤ Jγ(0) = K,

where K is a positive constant independent of γ. This yields the following bounds:

∥wγ∥L2(Q) ≤ K,

∥y(T,wγ , 0, 0)∥L2(Q) ≤ K,

∥I2−αξγ(0)∥L2(Q) ≤
√
γ K, (5.1)∥∥∥∥ ∂

∂t
I2−αξγ(0)

∥∥∥∥
L2(Q)

≤ √
γ K. (5.2)

Here, y(T,wγ , 0, 0) denotes the solution of
CDαyγ(x, t)−∆yγ(x, t) = wγ , (x, t) ∈ Ω× (0, T ),

yγ(x, t) = 0, (x, t) ∈ Γ× (0, T ),

yγ(x, 0) = 0,
∂

∂t
yγ(x, 0) = 0, x ∈ Ω.
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We note that by following the same steps as in Section 4.1.1, we easily obtain

wγ ⇀ w weakly in L2(Q),

yγ ⇀ y weakly in L2(Q),
CDαyγ −∆yγ ⇀ CDαy −∆y weakly in L2(Q),

yγ(x, t) → y(x, t) = 0, (x, t) ∈ Γ× (0, T ),

yγ(x, 0) → y(x, 0) = 0,
∂

∂t
yγ(x, 0) →

∂

∂t
y(x, 0) = 0, x ∈ Ω.

Furthermore, we obtain that ξ = ξ(x, t, w) is the solution of
Dα

RLξ(x, t)−∆ξ(x, t) = y(f, 0), (x, t) ∈ Ω× (0, T ),

ξ(x, t) = 0, (x, t) ∈ Γ× (0, T ),

I2−αξ(T ) = 0,
∂

∂t
I2−αξ(T ) = 0, x ∈ Ω.

From (5.1) and (5.2), when γ → 0 we obtain

I2−αξγ(T ) → 0 strongly in L2(Q),

∂

∂t
I2−αξγ(T ) → 0 strongly in L2(Q).

This implies that (
I2−αξ(0), g1

)
L2(Ω)

=

(
∂

∂t
I2−αξ(0), g0

)
L2(Ω)

= 0,

which proves that w is indeed the no-regret control.
Next, we continue the characterization of the no-regret control. We have

CDαργ −∆ργ = 0, (x, t) ∈ Ω× (0, T ),

ργ = 0, (x, t) ∈ Γ× (0, T ),

ργ(0) = − 1

γ

∂

∂t
I2−αξγ(0), x ∈ Ω,

∂

∂t
ργ(0) =

1

γ
I2−αξγ(0), x ∈ Ω.

Since

ργ(0) ̸= 0,
∂

∂t
ργ(0) ̸= 0,

we introduce a new function
σγ = ργ − U,

where

U(0) = − 1

γ

∂

∂t
I2−αξγ(0),

∂

∂t
U(0) =

1

γ
I2−αξγ(0).

Hence, we obtain 

CDασγ −∆σγ = f̃ , (x, t) ∈ Ω× (0, T ),

σγ = 0, (x, t) ∈ Γ× (0, T ),

σγ(0) = 0, x ∈ Ω,

∂

∂t
σγ(0) = 0, x ∈ Ω,

where
f̃ = ∆U − CDαU.
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It follows that CDα = Dα, so it is straightforward to obtain∥∥∥C0 D α
2
t σγ

∥∥∥2
L2(Q)

+ ∥∇σγ∥2L2(Q) ≤ K ′
∥∥∥f̃∥∥∥2

L2(Q)
, K ′ =

1

min
{
2 cos

(
απ
2

)
, (2− c′)

} .
Hence, we deduce the following convergence:

σγ ⇀ σ weakly in L2
(
0, T ;H1

0 (Ω)
)
.

Thanks to the continuous embedding between L2
(
0, T ;H1

0 (Ω)
)
and L2

(
0, T ;L2(Ω)

)
, we obtain

σγ ⇀ σ weakly in L2(Q).

On the other hand, we know that

ργ = σγ + U ⇀ σ + U = ρ weakly in L2(Q).

Moreover, from (5.1) and (5.2), we have

− 1

γ

∂

∂t
I2−αξγ(0) ⇀ λ weakly in L2(Ω),

1

γ
I2−αξγ(0) ⇀ δ weakly in L2(Ω).

By passing to the limit in the state equation governing ργ , we obtain

CDαρ−∆ρ = 0, (x, t) ∈ Ω× (0, T ),

ρ = 0, (x, t) ∈ Γ× (0, T ),

ρ(0) = λ, x ∈ Ω,

∂

∂t
ρ(0) = δ, x ∈ Ω.

On the other hand, we have

Dα
RLp

γ −∆pγ = yγ − h+ ργ , (x, t) ∈ Ω× (0, T ),

pγ = 0, (x, t) ∈ Γ× (0, T ),

I2−αpγ(T ) = 0, x ∈ Ω,

∂

∂t
I2−αpγ(T ) = 0, x ∈ Ω.

Since

yγ − h+ ργ ∈ L2(Q) and pγ ⇀ p weakly in L2(Q),

by the same argument, we obtain

Dα
RLp−∆p = y − h+ ρ, (x, t) ∈ Ω× (0, T ),

p = 0, (x, t) ∈ Γ× (0, T ),

I2−αp(T ) = 0, x ∈ Ω,

∂

∂t
I2−αp(T ) = 0, x ∈ Ω.

2
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Conclusion

In this paper, we investigated an ill-posed inverse fractional parabolic problem in the sense of
Hadamard, where the aim was to identify the unknown source term. To address the lack of initial
data, we introduced a regularization strategy based on Tikhonov’s method combined with a no-regret
control approach. The low-regret control problem was first analyzed to establish existence, uniqueness,
and characterization through an optimality system derived from the first-order optimality condition.
Then, by passing to the limit as the regularization parameter γ → 0, we proved the convergence of
the low-regret controls to the unique no-regret control. The resulting optimality system, consisting of
the state and adjoint fractional equations, provides a complete characterization of the no-regret control
and ensures the stability of the reconstructed source. The theoretical results confirm that the proposed
framework is mathematically well-posed and suitable for further numerical implementation in fractional
inverse problems.
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Journal de Mathématiques Pures et Appliquées, 81(11) (2002), 1161–1189.

22. O. Nakoulima, A. Omrane, and J. Velin, On the Pareto control and no-regret control for distributed systems with
incomplete data, SIAM Journal on Control and Optimization, 42(4) (2003), 1167–1184.

23. J. D. Djida, P. F. Soh, and G. Mophou, Optimal control of diffusion equation with missing data governed by Dirichlet
fractional Laplacian, arXiv preprint arXiv:1809.00917 (2018).

24. Z. Fan and G. Mophou, Remarks on the controllability of fractional differential equations, Optimization, 63(8) (2014),
1205–1217.

25. I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Vol. 198, Academic Press, San
Diego, 1999, 41–119.

Fatma Achab,

Dynamic Systems and Control Laboratory,

Department of Mathematics and informatics,

Larbi Ben Mhidi University,

Oum El Bouaghi, Algeria.

E-mail address: achab.fatma@univ-oeb.dz

and

Iqbal M. Batiha,
1Department of Mathematics,

Al Zaytoonah University of Jordan,

Amman, Jordan.
2Nonlinear Dynamics Research Center (NDRC),

Ajman University,

Ajman, United Arab Emirates.

E-mail address: i.batiha@zuj.edu.jo

and

Taki Eddine Oussaeif,

Dynamic Systems and Control Laboratory,

Department of Mathematics and informatics,

Larbi Ben Mhidi University,

Oum El Bouaghi, Algeria.

E-mail address: taki maths@live.fr

and

Imad Rezzoug,

Dynamic Systems and Control Laboratory,

Department of Mathematics and informatics,



Identification of the Source Term of an Ill-Posed Inverse Fractional Parabolic Problem 15

Larbi Ben Mhidi University,

Oum El Bouaghi, Algeria.

E-mail address: imad.rezzoug@univ-oeb.dz


	Introduction
	Preliminaries
	Description of the Problem
	No-Regret and Low-Regret Controls Method
	Low-regret control (definition, existence, uniqueness, and characterization)
	Existence and uniqueness of a low-regret control
	Determining the characterization of the low-regret control


	Finding the Optimality System of the No-Regret Control

