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Explicit properties of ¢-Cosine and ¢-Sine Fubini-type polynomials and numbers
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ABSTRACT: In recent years, g-special polynomials, such as g-Bernoulli, g-Genocchi, g-Euler and ¢-Frobenius-
Genocchi have been studied and investigated by many mathematicians, as well physicists. It is important that
any polynomials have explicit formulas, symmetric identities, summation formulas, and relations with other
polynomials. In this work, the ¢g-Cosine and ¢-Sine Fubini type polynomials are introduced and multifarious
above mentioned properties for these polynomials are derived by utilizing some series manipulation methods.
Moreover, several correlations related to both the g-Bernoulli, g-Euler, and ¢-Genocchi polynomials and the
¢-Stirling numbers of the second kind.
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1. Introduction

Recently, many authors [1,2,3,5,6,35] have introduced and constructed generating functions for new
families of special polynomials including two parametric kinds of polynomials as Bernoulli, Euler, Genoc-
chi, etc. They have given fundamental properties of these polynomials. Also, they have established more
identities, and relations among trigonometric functions, two parametric kinds of special polynomials by
using generating functions. Special polynomials have important role in several subjects of mathemat-
ics, approximation theory, engineering and theoretical physics. Applying the partial derivative operator
to these generating functions, some derivative formulae, and finite combinatorial sums involving the
aforementioned polynomials and numbers are obtained. In addition, these special polynomials allow the
derivation of different useful identities in a fairly straightforward way and help in introducing new fam-
ilies of special polynomials. The Fubini-kind polynomials seem in combinatorial mathematics and play
an crucial role in the principle and applications of arithmetic, hence many wide variety idea and com-
binatorics experts have extensively studied their residences and received a series of exciting results (see
[7,8,13,14,15,16,17]). By inspiring and motivating the above polynomials, in this study, we are purpose
to define a parametric kinds of ¢-Fubini type polynomials by introducing the two specific g-exponential
generating functions. Also, we show many formulation and family members for those polynomials, such as
a few implicit summation formulas, differentiation policies, and correlations with the sooner polynomials
with the aid of utilizing some collection manipulation approach.

The concern of g-calculus started performing in the 19th century due to its packages in various fields
of mathematics, physics and engineering. The definitions and notations of g-calculus reviewed right here
are taken from (see [4,18,19,20,21,22]):
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The g-analogue of the shifted factorial («),, is given by

w—1

(@ q)o =1, (5 q)w = H(l —q'a) weN.
v=0
The g-analogue of a complex number a and of the factorial function is given by
{07

1—gq
[O‘}q_ 1_q

geC—{l}aeC,
T _ (39w .
[w]q!_g[V]q_ [g[2]g - [w]g = W q# LweN,

0!=1,¢eC0<g<]l.

The Gauss ¢g-binomial coefficient ( : ) is given by
q

(w> P C ) N=01,- w.

Y Vglw =" (650)4(¢5 w—r

w

The g-analogue of the function (z + )¢ is given by

w
(x+y)s = Z ( : > @OV 259777y € N, (1.1)
~=0

q

The g-analogue of exponential functions are given by [23,24,25,26,27]

v 1 ]
eq(x):u;)[w]q!:((lfq)x;q)oo 0<[gl<Lilz|<[l—q|, (1.2)
and )
Ey(w) =3 e = (-0~ a)ma 0<lgl<liaeC (1.3)
w=0 a:

These two functions are related by the equation (see [9,10])
eq(z)Ey(—x) = 1.
The g-derivative operator is defined by

flgz) = f(2)

D = 0 1
S = LI o 1<
and D, f(0) = f'(0) provided that f is differentiable at = = 0.

The g-derivative fulfills the following product and quotient rules

Dq2(f(2)9(2)) = [(2)Dg,29(2) + 9(42) D= f(2), (1.4)

and

f(2)\  9(qz)Dy-f(2) — flqz) Dy -9(2)
D( )‘ 9(=)9(a2) '
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Definition 1.1 The ¢-trigonometric functions are (see [11]):

E,(iz) — Ey(—ix)

sing(z) = €q(iT) = eq( i) SIN,(z) =

21 ’ 21 ’
d
o eq(ix) + eq(—ix) E,(iz) + Ey(—ix)
cosq(z) = 5 , COS,(z) = 5 )

where SINy(x) = sing-1(x), COSy(x) = cosy-1(x).
The Apostol-type g-Bernoulli polynomials IBEJOQ](JU; A) of order «, the Apostol-type ¢g-Euler polynomials

E{) (23 ) of order « and the Apostol-type g-Genocchi polynomials GS)(2; A) of order o are defined by
(see [28,29,30,33]):

— = (@) (o 4 log A 9 L
()\eq(t)—l) eq(t) ;Bw,q(x’)‘)[w]q! (|t+logA|) < 2m, (1.6)
2 e}
Aeg(t) +1 S ! 1.
()\6 (t) + ) ZE sc)\ ] (|t+logA]) <m, (1.7)
I a
and
2t o
~— (@) v
(x\eq(t)ﬂ) ZG (23 A7 ]q (I t+logA|< ), (1.8)
respectively.

Clearly, we have

BE (M) = BH(0:0), ELY(N) =ES(0:0), GV = GEH(0: ).

w,q

Kang and Ryoo [12] introduced and defined the ¢-Bernoulli and ¢-Euler polynomials of complex
variable as follows:

B, ((x@iy)y) + B, ((xSiy),) ¢ = tJ
————e,(2t)COS, (yt) sal ot ; 1.9
eaf 1 =2, 2 T, Z )
o B (2 @ iy)g) —Bjo((zOiy)y) ¥ B() tj
—————eq(at) SIN,(yt) 1.4 ) L = z, 1.10
and
~E (z@iy)y) +Ejq((z0iy)y) ¥ — () t7
—————eq(at)COS,(yt) = sl 14 L—— =) E(z,y)—— (1.11)
eq(t) + 1° €l ]ZZ:O 2 714! JZ::O i !
2 CEi((@@iy)y) —Ej((@0@)g ! o ps) t/
- = E: 1.12
eq(t) n 1€q($t)SINq(yt) ]go % []]q' jgo 7,q ( ?y) [j]q" ( )
respectively.

Also they proved that (see [34]):

eq(xt)COS,(yt) = ZC’“‘? z,y) (1.13)

[rlq! ]
and

eq(xt)SIN,(yt) = Zsrq T,Y) —— t (1.14)
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where
(5] o o o
Crafo) =3 =17 ( 3 ) (1 tar 2y, (115
=0 q
and .
[(75]
"" . . . r— T .
Srq(@,y) Z ( 2 +1 ) (—1)7qZ+0Igr=2i=1y 2541, (1.16)
=0 q

For A € C, the generalized ¢-Stirling numbers of the second kind S},  (\) are given by (see [26]):

)\ UJ
(e"i nggq 5 omeNo= {012, (1.17)

Taking A = 1, equation (1.17) reduces to the ¢-Stirling numbers of the second kind as follows

(7 Z Sy.q(w, m) (1.18)
w=m ]q
The ¢-type Geometric polynomials of two variables are defined by (see [28]):
1 @)= f:]F (w5y) (1.19)
= yeg(@) — 1)@ = 2 Fna (559) |

When z =0, F,, 4(y) =F, 4 (0;y) are called the ¢-type Geometric polynomials and F, 4 (0;1) = F,, 4
are called the g-type Geometric numbers.

The Fubini type polynomials of order « are defined by the following generating function [36]

(2 ety et Z an 7, a € No;  [t] <log(2). (1.20)
n=0

When z =0, al?) = a%a)(O) are called the Fubini type numbers of order a.

2. Bivariate kinds of ¢g-Cosine and ¢-Sine Fubini type polynomials

In this section, we consider the g-Cosine and ¢-Sine Fubini type polynomials of complex variable and
deduce some identities of these polynomials. First, we present the following definition as.

n

2&
— E,(ity) = ]-"n ((z+1iy)q) . (2.1)
(2- eq(t))Qa Z [n]q!
On the other hand, we suppose that
eq(2t)Ey(ity) = eq(xt)(COS,(yt) + iSINg(yt)). (2.2)

Thus, by (2.1) and (2.2), we have

(o)

N ) o 2 N 2¢ .
;]—"fw) ((z+1iy)q) AR eq(t))2°‘ eq(at)Eq(ity) = W eq(2t)(COS,(yt) + iSIN,(yt)),
(2.3)
and
S (a) T —1 il = 2 e,(x —q :LG x —1
ngo}—n,q (( Y)q) ]y (2= e ()2 q(zt) Eq(—ity) (2 — eg(t)20 q(@t)(COS,(yt) — iSTNy(yt))..

(2.4)
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From (2.3) and (2.4), we get

20 T (@ iy)g) + F) (woiy)y) | "
—_ t)COS,(yt) = g 14 2 2.5
PEPRO R E ( 2 w0
and (@) (@)
20 o [ Frt (z @ iy)g) — Faly (xS iy)y) | "
————— e, (xt)SIN,(yt) = 4 ! 4 g . (2.6)
(2 = eq(t))2 ! nz::o 2 [n]q!
Definition 2.1 Let n > 0. We define two parametric kinds of ¢-Cosine Fubini type polynomials

T(ijq"")(x, y) and ¢-Sine Fubini type polynomials fffq’a)(x, y), for non negative integer n are defined

by

20( n
xt)COS, (yt) FLo) (@ , 2.7
@,y 1 TICO%W Z on 27
and
27 (50 (5
respectively.
Note that
Fia?0,0) = F5), F0,00=0. (n>0).
From (2.5)-(2.8), we have
o Fl x @iy + Fl Sy
PG 0 = T @000 4 T (© ) 29
and
Fid (& @ iy)q) = Fug (x O i)y)
FiS)N(@,y) = T a, (2.10)
' i
Remark 2.1 For z = 0 in (2.7) and (2.8), we get new type of ¢-Cosine Fubini type polynomials
Y(L%O‘)(y) and ¢-Sine Fubini type polynomials .E(Li’o‘)(y) as
20 cal(y t
q
and
2 S a)
respectively.
It is clear that
FLGoN0) = F . FSM(0)=0, n>0.
Now, we start some basic properties of these polynomials.
Theorem 2.1 Let n integer. Then
2] n+ov
]:'r(LS;a)(y> _ ( 5 ) ( )v (2v—1)v 21)]_- Y o (213)
v=0 q
and
— n—+v
FE = Y (5o ) O, (214)
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Proof: By (2.11) and (2.12), we can derive the following equations

2¢ " v
(Ca — (o) —1)? (2v—1)v, 2v
ZF COSyyt) = > Py pry 20" a T gy

o [I[3]
n—+v v (2v—1)v, 2v (a "
:Z (211 ) (=1)"q® 2]:( —2v,q ! (2.15)
q

n=0 \v=0 [n]q,a
and
if S o2 gIN, ()
T (2 - e(t))%e
& =, oo 2041 £(0) i
_nz::() z::o (QU+1> (1) Falavta | prp (216)
Therefore, by (2.15) and (2.16), we get (2.13) and (2.14). -

Theorem 2.2 Let n integer. Then

n n n o
T (@ iy), —Z( ) Y Fu kg = (k) (iy)* F* >kq( ), (2.17)
=0 k=0 q
and . .
N n , n . “
Fl@omin =3 (7) womimn =3 () oM@, @
k=0 q k=0 a
Proof: By using (2.3) and (2.4), we obtain (2.17) and (2.18). So we omit the proof. O
Theorem 2.3 Let n integer. Then
o - n «
FC (z,y) = Z( ; ) FLC g, y), (2.19)
k=0 q
and .
«@ n (6%
FS) (z,y) :Z( . ) Fi S kqlz,y). (2.20)
k=0 a

Proof: Consider

ia ﬁ ib i *i S a b ﬁ
2l W) & ra el TR

k=0 =
Now
ZE(LC;Q)( ,y)[t;, = - ja(t))m eq(2t)COS,(yt)
n=0 a- q
_ [~ - tn

-3 (3 (3), A waten)

n=0 \k=0

which proves (2.19). The proof of (2.20) is similar. O
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Theorem 2.4 Let n > 0. Then

FC@+ry) = ( ) FL (@, yyrn (2.21)
k=0 q
and .
FE) (x4 r,y) = Z ( ) ]—',gi’a)(%y)r"_k. (2.22)
k=0 q

Proof: By changing « with « + r in (2.7), we have

Zf(ca (o PG~ eI e

Z;(Ca) PRAN Y b S
[n]y! =0 [k]q!
oo n n - - m

which complete the proof (2.21). The result (2.22) can be similarly proved.

O
Theorem 2.5 Let n integer. Then
0 o C,a
2o () = Il P07 (), (2.23)
0 o S,a
gy (@) = =BT ) (2.24)
and 9
« S,
S P @yy) = [l P (. w), (2.25)
S @ 0) = ), FOE () (226)
ay n,q 7y n—1 ,q 7qy . .
Proof: Equation (2.7) yields
Z ]-'(C ) () 2 0 eq(xt)COS,(yt) Zﬂc ) (2 e
= [L‘ y
Ox ! (2= eq(1))? O [n]q!
o (C o c. m
n=1 n:l Q'
proving (2.23). Other (2.24), (2.25) and (2.26) can be similarly derived. O
Theorem 2.6 Let N € N*| the following formula holds true. Then
a - n «a n—
FGen =3 (1) FG e (2.27)
k=0 q
and .
n _
f,(lil’a) (2z,y) = Z (k) .F,(L‘Z’“) (x,y)z" k. (2.28)
k=0 q
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Proof: By using Definition 2.1, we can easily proof of equations (2.27) and (2.28). We omit the proof.

O
Theorem 2.7 For n > 0, we have
el & n C,a
FG e =3 (1) A (229)
r=0 q
and
s _ - n (S,e)
F oD =3 (1) FEw. (2.30)
r=0 q
Proof: Using the generating function (2.7), we have
o o t" o
Z]-"(C (1@ )4y Z FiCo) ]q!: ( - WQ) (eq(t) — 1)eg(x)COS, (yt)
tn > tr
]:(C a)
Z [ Jq! ,;0 [r]q!
cha) ;Z t |_Z}—7(16;7a)(x’y) !
[ ]q r=0 [T]Q' n=0 [ q*
NN (Ca) "~ p(Ca) "
- Z ( r > ]:n r,q( y) [n]q' Z]:n,q (l’,y) [n]q'
n=0r=0 n=0

Finally, equating the coefficients of the like powers of ¢ on both sides, we get (2.29). The proof of (2.30)

is similar. O
Theorem 2.8 Let n be integer. Then
k
a a C,
FG e =Y (1) FOA o) (2.31)
k=0 a
and
a (s,8
F e =3 (1) FOFED (22
k=0 q

Proof: By (2.7), we get

(Coct8) (5 ) L 2oth
ZF BT = e e a@C0S )
q* q
th o gn > * o/n 4
- FOFCH (g L T <) FOFCH (1
7;);;) o (k]q! [n]g! 712:01;) k q ha” n=ka [n],!

which proves the result (2.31). The assertion (2.32) can be proved similarly. O
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3. Relationship between ¢-Bernoulli, g-Euler and ¢-Genocchi polynomials and ¢-Stirling
numbers of the second kind

In this section, we prove some relationships for two bivariate kind of ¢-Cosine Fubini type polyno-
mials and ¢-Sine Fubini type polynomials related to g-Bernoulli polynomials, g-Euler polynomials and
g-Genocchi polynomials and ¢-Stirling numbers of the second kind. We start a following theorem.

Theorem 3.1 Fach of the following relationships holds true:

n+1 [ s ] (C,a)
(Co) (5, y) = ntl s o) — B (z)] Trti=sd®)
w0 =3 (1) 12 (5) Beonat Bl TS 6
and
n+1 [ s T (S,c)
(5.0 (4, = ntl s T M
FS ) ;( ). Z( ) Bkale) =B T (32)
Proof: By using (1.6) and (2.7), we have
B ” B
<(2—eq(t))2a> (#H)COS (v1) ((2—eq(t))2a> o) — 1 a(21)COS,(yt)
I (s o)) N Fa )t
(5 (5), esaton) s S
Y A SR
t= [s]q! ne0 [n]q!
_} 00 n n s s i (o) i
Tt nzzo |J_O ( S )qk_o( k qufk,q( )‘| ]:nfs,q(y) [n]q'
1 oo n n (Cra) n
7 BSvQ(x) ‘Fn—s q( ) .
tZ[Z() ] Tl

By using Cauchy product and comparing the coefficients of #n,, we arrive at the required result (3.1).
o

The proof of (3.2) is similar. O
Theorem 3.2 Fach of the following relationships holds true:
n [ s T f(C’ (x)(y)
a n S n—s
Fen =3 (1) X (1) forar+ o] st (33)
s=0 7 Lk=0 q - 1
and
(5.0 SEARE 1 FEOw)
FiSo (@, y) = > L) Esmka(@) + Esg(2) . (3.4)
o\ ° a0 q i (2],
Proof: By using definitions (1.7) and (2.7), we have
2 2 2g  eq(t)+1
—_— t t) = t t
(e ctancos,m ((2—eq<t>>20> 0T caleCOS()
— L i i ( n ) gn k,q t" + Z )q = ]:(C a) '
24 n=0 \k=0 K q n]q.
1 & "<n> <s) ~(n (Ca) "
=T Es—nylz) + Es,q(@) | Frnls W)=
2l n;) L:o 5/ kZ:O K q ! ;0 5 /4 ! 4 ]!
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Comparing the coefficients of [n] i, we arrive at the desired result (3.3). The proof of (3.4) is similar. O

Theorem 3.3 Let n be integer. Then

o - n+1 < S ] ffbcvlazs,q(y)
FLC (g, y) = Z;( . )q ;( L )qgsk’q(x)Jrgs,q(a:)_ m (3.5)

and

a - n+1 = S ] ‘F’r(LS(Zl) s,q(y)
Fiq (@, y) = ZO( ; )q 2_:0( . )qgsk,q(x)ws,q(m)_ AT (3.6)

Proof: By (1.8) and (2.7), we have

(ﬁ) eq(2t)COS, (yt) = ((270‘&) eq(2£)COS,(yt) eq%ﬁ : 6‘1%2; L e (@)COS,(yt)

1S (v TR BAIE w VR £ e e (N
[2]4t LZ) k_0< )qgn a(z)p >[n]q!+zgn,q( )[n]q!]th (y)[

n=0 n} q!

k
:[21]qi i(?)q;(i)qgs_kq +Z( )qu } eyt

[n+ 1],

Comparing the coefficients of [T’i—]n!, then we have the asserted result (3.5). The proof of (3.6) is similar

Theorem 3.4 Let n be integer. Then
FCO (@ +ry) = <”) Z FLEN ()2 Sa q(k +r,m + 1), (3.7)
k=0 94 m=0
and .
}-(Sa) + 7, y Z Z ( ) f;(lsgq )meQ,q(k‘—F’I‘,m-l-T) (3'8)
k=0 m=0
Proof: Using (1.18) and (2.7), we have
(C o) " 2% T
Z ]: x + T, y) [’I’L} | = (2 —e (t))ga e‘]((r)t)(eq(t) -1 + 1) COSq(yt)
a q
()OS, () i e (t) — 1)
(2 — eq(t))> I A [mly!
o ok tk
e eq((M)COS,(yt) Y > a*5, q(k‘,m)W
k=0 m=0 a:
9] (o) m o~ k tk
:Z]:’mq, (y)[n] |sz qu(k7m)[k] ]
n=0 4" k=0m=0 a
o n n k m
= ZZ (k) Z]—"n ( )z S q(k+r,m+1) il
n=0 k=0 9 m=0

Comparing the coefficients of ﬁn,, then we have the asserted result (3.7). The proof of (3.8) is similar.
o
O
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Remark 3.1 Let n be integer. Then

n k
« n fled m
Fl ()= <k> ST FCN ()2 S, (k,m), (3.9)

k=0 9 m=0

and

n k
[e% n Lo m
F ) =30 3 (1) FE S 0m) (3.10)
q

k=0 m=0
4. Conclusions

Utilizing g-numbers and g-concepts, Mahmudov [31,32] considered ¢g-Genocchi polynomials and num-
bers, g-Bernoulli polynomials and numbers and g-Euler polynomials and numbers and provided many
properties and formulas for these polynomials. Inspired and motivated by this consideration, many au-
thors have introduced g-special numbers and polynomials and have described their several identities and
properties. In this paper, using the ¢-Cosine polynomials and ¢-Sine polynomials, we have introduced
novel kinds of g-extensions of Fubini polynomials and have acquired multifarious properties and identities
by making use of some series manipulation methods. Furthermore, we have computed the g-derivative
operator rules for these polynomials. Moreover, we have determined the approximate root movements of
the new mentioned polynomials in a complex plane, utilizing the Newton method and illustrating them
in figures. The structure of the approximate roots will come out in various ways, depending on the con-
dition of the variables, and new methods and theorems related to this topic need to be created and proven.

Not only can the ideas presented in this paper be utilized for similar polynomials, but these polyno-
mials may also have possible applications in other scientific areas besides the applications described at
the end of the paper. We would like to continue to study this line of research in the future.
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