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Asymptotic Behavior and Numerical Analysis for a Thermoelastic-Bresse System with
Second Sound

Mounir Afilal, Atika Radid, Karim Rhofir* and Abdelaziz Soufyane

ABSTRACT: In this study, we investigate the behavior of a linear one-dimensional thermoelastic Bresse
system that incorporates second sound phenomena. We begin by establishing that the system is well-posed
and identifying the conditions necessary for it to demonstrate exponential stability, which depend on certain
parameters of the system. Our proof utilizes semigroup theory and a hybrid methodology that combines energy
techniques with frequency domain analysis. Subsequently, we introduce a finite element approximation for
the system and demonstrate that the associated discrete energy decreases over time. Additionally, we derive
several a priori error estimates to assess the accuracy of our approximation. Finally, we validate our theoretical
findings by demonstrating that the numerical results align with our established theoretical predictions.
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1. Introduction

Over the past few decades, various dynamic equations have been employed as mathematical models
to represent engineering systems. This study focuses on the circular arch problem, commonly referred
to as the Bresse system (see [1] for further details), which is coupled with heat conduction phenomena
characteristic of second sound. Elastic structures shaped like arches have been extensively studied across
multiple fields, including engineering, architecture, marine engineering, and aeronautics. Understanding
the properties that link the energy behavior of solutions to the corresponding dynamic model with the
system parameters is of significant interest. The dynamic equations relevant to this research are presented
as follows:

P11t — k(¢ + ¥ +1lw), —lko (wy — 1) =0 in (0,1) x (0,00),
prwee — ko (wy — o), + 1k (¢z + ¢ +1w) =0 in (0,1) x (0,00), (1.1)
p30: + Gz + Pz = 0 in (07 1) X (07 OO) )
Tq: +Bq+60, =0 in (0,1) x (0,00),
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with the initial and boundary conditions

QS(an) :¢0 (SC), d)t (I7O) :¢1 (13),9(56,0) :90 (I) for z € (Oa l)a
¥ (2,0) =vo (), ¢ (2,0) =91 (), ¢(x,0) = qo (x) for z € (0,1),
0,1

w(x,0) = wo (), we (x,0) = wy (x) for x € (0,1), (1.2)
6 (0,t) = ¥y (0,8) = wy (0,£) = 0(0,£) =0 vt >0,
o (Lt)= o (1,t) = w(l,t) = ¢(1,t) =0 Vit > 0.

where p1, p2, p3, b, k, ko, 7, B, v and [ are positive constants, the initial data ¢g, ¢1, Yo, V1, wo, wi,
0o and go an element of an appropriate Hilbert space, and the unknowns in the equations (1.1) — (1.2)
consist of the following variables:

(6,10, w,0,q) : (0,1) x (0,00) — R, (1.3)

In recent years, numerous researchers have investigated the well-posedness and stability of Bresse systems.
Various types of feedback mechanisms have been analyzed, leading to different stability outcomes that
depend on several factors. These factors include the nature and quantity of feedbacks, the regularity of
initial conditions, and how the relationships between the coefficients in the dynamic system influence the
overall stability of total energy.

For a comprehensive understanding, we direct readers to several key studies: references [1], [3], [9,11],
and [20,28] discuss cases involving (linear or nonlinear, global or local ) frictional damping. Additionally,
references [22], [12], [13], and [14] focus on systems with memory effects.

Recently, Keddi et al. [17] demonstrated that the thermoelastic Bresse system characterized by second
sound, as described in equations (1.1) — (1.2), exhibits exponential stability under certain conditions.

2
€= [(1 _ Tkp?’) (&1 _ @) - W} =0, k= ko and { small, (1.4)

1 k b b
and the solutions for (1.1) — (1.2) is not exponentially stable if

£#0 or k=ko. (1.5)

Moreover, when
E#0 , k=kgand [ small, (1.6)

they proved the polynomial decay.
In this paper, we first prove exponential stability under the following explicit condition:

2
&= (I_T];ng) (%—%) —%zO,k‘:ko andl;ég—l—ernEZ, (1.7)
Our method of proof is based on the frequency techniques combined with the energy method without
requiring the smallness condition on [ as in [17]. Secondly, we introduce the numerical approximation of
the solution of (1.1) using a finite element method, and then we prove the decay of the discrete energy.
In addition, we establish some error estimates. It is worth mentioning that the novelty of this paper lies
in the proposed approximation scheme based on finite element analysis, as well as the use of an iterative
method to solve the resulting discrete system of implicit equations.

The structure of the paper is as follows: In Section 2, we present the well-posedness of the problem
(1.1) = (1.2) without providing a proof. Section 3 focuses on the exponential decay of stability for (1.1) —
(1.2). In Section 4, we introduce finite element analysis and provide numerical simulations to validate the
accuracy of the approximation, maintaining the same parameter conditions as in the continuous model.

2. Existence, Uniqueness, and Stability of the Solution
In this section, we establish a result on the existence and uniqueness of solutions to problem (1.1)—(1.2)
using semigroup theory. To this end, we define the vector function ¥ = (gb,u,w,v,w,y,ﬂ,q)T, where
u = ¢, v =1y, and y = w;. Consequently, the system (1.1) — (1.2) can be reformulated as follows:

\I/t - A\I/,

2.1
{ v (0) =Yy = (¢0,u071/)0,v(),w0,y(),907q0)T ( )
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where A is a linear operator defined by

U
k lk
(o + Y lw), + — (wy — 1)
P P1
v
b
;wzm_ (¢w+¢+lw)_79
2
AU= y (2.2)
k l
= (we = 19), = — (s + ¥+ Lw)
P1
1 Y
_FQ$ - figvx
3
_éq - 791
L T T J
We consider the following spaces
H,(0,1) = {feH'(0,1)]f(0)=0},
20,1) = {feH" (0,1)] f(1) =0},
H(0,1) = H?(0,1)NH,(0,1),
20,1) = H*(0,1)N HL(0,1),
and the Hilbert space
H =H!(0,1) x L*(0,1) x H} (0,1) x L*(0,1) x H} (0,1) x (L (0, 1))3, (2.3)

equipped < .,. >4 and ||.||,, the inner product and the energy norm defined by

(U1, U2)y, = k(P1z + 1 + 1wy, dop + Yo+ Lwa) + ko (wie — 1d1, way — ld2)
+p1 (U1, u2) + b (Y12, V2z) + p2 (V1,v2) + p1 (Y1, Y2)

+p3 (01, 62) + 7 {q1,q2) -

kllde + ¢+ Lwl® + ko we — 16]° + pu [ull* + b s ]|* + p2 |lo]*
+ou llyll* + ps l101* + 7 llql -

2
({13

where < .,. > and ||.|| denote the scalar product and the norm of L?(0,1). Then A, formally given in
(2.2), with domain

\IIE’H|¢>€H2( 1); 1/1,w€]HI2(O 1); u,0 € Hi (0,1);

D(A) = (2.4)
UquHl( 1) ¢s (1) = w; (0) =9, (0) =0
It is clear from the conditions in (1.2) that
2 2 2 2
0 = kli¢e+o+1wl]”+ kollwe = 1]" + p1 |ull” + bl¢a]
+p2 |[vl* + pr llyl* + ps 101" + 7 [lal®,
implies that

and
¢ (x) = csin (lz) and w (z) = —ccos (Iz), (2.6)
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with ¢ € R. Furthermore, using the conditions in (1.2), we get ¢ = w = 0 if
™
l# 5 +nm; Vn € Z. (2.7)

Assume that condition (2.7) holds. Consequently, we conclude that H qualifies as a Hilbert space and
that D(A) is dense within H.
Theorem 2.1 Let W, be an element of the Hilbert space H. Then, there ezists a unique weak solution.

U e C(RT,H) of system (1.1) — (1.2). Moreover, if Vg € D (A), then ¥ € C(RT, D (A)NC (RT,H).

Proof: It has been demonstrated in ([17]) that the operator A qualifies as a maximal dissipative operator
within the energy space H, and it is responsible for generating a Cy-semigroup of contractions in H. O
3. Exponential Stability
In this section, we demonstrate the exponential decay based on the following specific condition

Thps\ (p1 P2 ™\ _
1-— ——-=)-—1]=0,
p1 k b b

k= ko,
127Ag+m; Vn € Z.

Theorem 3.1 We take it as given that the conditions specified in (3.1) are satisfied. Consequently, the
semigroup linked to (2.1) exhibits exponential stability.

Proof. To establish our findings, we will adopt the methodology presented in [16] and [21], thus it
is necessary to demonstrate that
iRCp(A), (3.2)

and
sup H(i)\f — .A)ilH < +o0. (3.3)
A ER
Given that D(A) is compactly embedded in H, it follows that the operator (I —.A)™" is a compact.
This leads to the conclusion that the spectrum of A is discrete. Furthermore, since the resolvent of the
operator A is compact in H, we can apply results from [5] work to conclude that the system described
by equations (1.1) — (1.2) exhibits strong stability if and only if A lacks pure imaginary eigenvalues.
To verify the condition (3.2), we proceed as follow: let a € R* and let ¥ € D(A), with

AV =iV, (3.4)

which is equivalent to
u=1iap, v=1ay), Yy =iaw,
k(¢e + 0 +1w), + ko (wy — lp) = iapyu,
bhpe — k(2 + 0 +1lw) — 0, = iapav,

: 3.5
ko (ws — 16), — Uk (90 + 1 + Lw) = iapry, (8:5)
Qg — YUgx = iaPSG»
—Bq — 0, =iarq.
Computing Re (A¥, ¥),, and using (3.4), we deduce that
q=0. (3.6)

Taking into account that § € H! (0,1) and using (3.5)g and (3.6), we deduce that

6 =0. (3.7)
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By using (3.5),, (3.6) and (3.7)

and with (3.5),, we obtain that

As ¢ € H}(0,1), we have
¥ =0and v =0.

Using (3.5)5, (3.7) and (3.10), we get
¢r +1lw = 0.

Using (3.5);, (3.5),, (3.10) and (3.11), we get

a2p1
. —1)¢=0.
w+(k0l >¢ 0

Using (3.5)5, (3.5)g, (3.10) and (3.11), we get

2
Wae + (apl—&—ZQ)w:O.
ko

As, we have

so, we have

w(x)Clcos,( <i’gl+l2> m)

Case 1: if ) =0 then with (3.15), we have

w = 0,
from (3.11) and (3.5), we obtain
¢=0and y=0.
By using (3.5), we obtain
u =0,
thus, we get
v =0.

Case 2 : if Oy # 0 then with (3.15), using the fact that w (1) = 0, then we have necessary

2
apl—i—lQ :<z+n7r) and n € Z,
ko 2

which means that: )

2
lzz—akpl +(g+n7r) and n € Z,
0

From (3.20), (3.11), by incorporating the boundary conditions, we obtained

il a’py 2

ot~ ()

Using (3.12), (3.20) and (3.22), we obtain that

a=0, and I = (g+nﬂ>2,

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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which is a contradiction with (2.7).

So as a conclusion we have Cy = 0 and therefore we find ¥ = 0 then we obtain (3.2).

To demonstrate the validity of (3.3), we will use a proof by contradiction. We begin by assuming
that the statement (3.3) is not true. Under this assumption, it follows that there exists a real sequence
(An),en and a sequence (¥y,), .y € D (A), such that

||\I’n||7-[ =1, (3.23)
[An| — 00, (3.24)
nh_)rr;o |(iA T — A) W[5, =0, (3.25)

i.e., we have the following convergence:

iMbn —up, — 0 in HL(0,1),
IAnprUn — k (Gno + n + Lwy), — ko (Wnz — lgn) — 0 in L*(0,1),

~

idthp — v, — 0 in HL(0,1),

Z-)\anUn - b'(/)n,zrw + k (¢n7w + wn + l wn) + 7971@ -0 in L2 (05 1) )
idwWy —yn — 0 in HL(0,1),

i)\nplyn - kO (wn,w - lqbn)x + Ik (¢n,x + wn + lwn) —0 in L2 (07 1) )
Z/\np?)en + dn,x + Yn,x —0 in 2 <O7 1) )
iMTqn + Bgn +0pe —0 in L2(0,1),

(3.26)

We will now verify condition (3.3) by deriving a contradiction with (3.23). Our proof is structured into
several steps:
Step 1. Taking the inner product of (A, I — A) ¥,, with ¥,, in H, we get

R (AT — A) W W)y = 8 a2 - (3.27)

using (3.25), we deduce that
¢, — 0in L*(0,1), (3.28)

applying triangular inequality, we get

en x 1 . .
‘ >\7; < m ||Z>\n7'Qn + Ban + on,z” + ||27qn + %%1 (329)
From (3.24), (3.26)g and (3.28), we deduce that
en x . 2
)\’ —0in L*(0,1). (3.30)
Step 2. Multiplying (3.26), by N ve obtain
2 1 .
llonll” — . (Up,idn) — 0. (3.31)

n

Multiplying (3.26), by Zf—", we get

n

[l = 5 s i) = 0. (3.32)

n
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Multiplyin g(3.26), by Z;\U—n, we have

n

1 .
Hwn‘lz DY (Yn, 1wp) — 0,
n

using (3.23) and (3.24), we deduce that
¢n — 0in L?(0,1)

Y, — 0in L?(0,1)

w, — 0in L2 (0,1)

0,
Step 3. Multiplying (3.26), by * and integrating by parts, we have

n

. 2 en ! an,x an ! on,x
ip3 [|0n|| +[<qn, )\n>]0— O w RNl 0+7 Un, 3 ) =0,

using boundary conditions, (3.23), (3.28) and (3.30), we find

0, — 0in L*(0,1).

By applying the triangle inequality, we obtain

bpr, 1 ko _

by (3.23), (3.24) and (3.26),, we obtain

(H On.za ) is uniformly bounded.
/\"1 neN
. . iwn xX
multiplying (3.26), by 3 — , we have
1 . . iwn,ac 2
P3 <0n7 d)n,x> + )\7 <Qn,xa Z¢n,x> - (ZAnwn,x - 'Un,ac) y T +v ||¢n,x|| — 0,

using (3.23), (3.26), and integration by parts, we obtain

iwn,mm
An

P3 <9n77/)n,z> + )\i [<qna“/}n,r>](1) - <Qna

)+ 2l 0,
again, using boundary conditions, (3.28), (3.38) and (3.39), we deduce from (3.41) that
Yo — 0in L?(0,1),

from (3.26),, we have

”;’“ —~0in L2(0,1).
As vy, in HL (0,1), then by (3.43)
K—”aom L%(0,1).

n

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)



Step 4. Multiplying (3.25), by Z:—n

. 1
P2 annz_b |:<1/}n,93a 'L/\’U:>:| <¢n T wnm> % <(¢n T Un +lwn) 'L'Un>+'y<6;\ln
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n

0 n

and integration by parts, we obtain

Using the boundary conditions, (3.23), (3.24) and (3.30), then we get

b . .
P2 H'Un”2 + )\7 <an,x7 (Z)mwn,x

using (3.24), (3.26), and (3.42), then we have

v, — 0in L2 (0,1).

By (3.26), and (3.47), we deduce

Step 5. We have

(On,z, o)

— 'Un,ac)> —

Anthy, — 0in L2 (0,1

(D‘nTQn + Ban + 0, x) s On, r>
(IAnTqn + B + Ona) s On,a) —
(IATqn + Ban + Onz) s Gnw) —
(IAnTqn + B + Ona) s Gnx) —
T ((iIAnp3bn + Gne + Vna)  u

(
(
(
(

n,xr

(((AaTqn + Ban +Onz) s bne) — B{Gn, dne) + T (@ns ((Andn — un),)

(D0 + e ) )+ T (00

—% (B, [IAnprttn — K (G0 + —I—lwn)x — Uko (Wne — 16n)])
Tkps Tlkops

P s (ot L)) = TR (G, (e = 160) 7Y (v )

B
B
B
B
Un)

Qnﬂ¢n I>

qn; ¢n,w>

(@, On,e

) —

bl¢m,ql” =0,

(IATGn, Orz)

(

<Qna ¢n,z> + 7 <Qn7 l)\n¢n,m>
< T <qn,a:7 (Z)\n(bn -
T <Q7’L,x, (Z)‘ngbn -

Up)) — T

+7p3 <Z/\n ny un> + T <Un T Un>

using (3.23), (3.26),, (3.26),, (3.26),, (3.26)4, (3.28), (3.38) and (3.49), we deduce that

(1 — Tkp3> (Onz, Orw) — TV (Un g, Up) — 0in L?(0,1).

P1

Step 6. Multiplying (3.26), by 1, ., and using (3.23) and (3.42), we obtain

<i)\np1una 1/)n,:c> -

<k¢n,mz, l/}n,m> —0

“"wn> — 0. (3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(G Un)

(3.50)

(3.51)
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On the other hand we have
<i>\np1un7 wn,x> - <k¢n,xxa wn,x> = —p1 <una (Z/\nq;[}n,x - Un,x» —P1 <un7 'Un,ac> +k <¢n,aﬁa wn,xx>
= —p1 <Un, (Z)‘nwmw - vmw)) —pP1 <un7 'Un,x>
k .
_g <¢n,x» [Z)‘an'Un - bwn,mm + k (¢n,z + flpn + l wn) + '}/en,zb
k2 k .
+? <¢n,m7 (’l/]n + l wn)> + % <¢n,za Z)\nvn>
vk k2
+T <¢n,ma 9n,$> + ? ||¢n,z ‘2 (3'52)
]{72
= —pP1 <un7 (Z)\nwn,m - Un,:r)> + ? <¢n,zv (wn + l wn)>
k .
_E <¢n,z» [7/)\np2vn - b¢n,x:}c + k (¢n,z + wn + l wn) + Ven,zb
k . k
7% <(Z>\n¢n,z - un,z) ,vn> + <pr - pl) <unavn,z>
vk k? 2
7 n,TH 071 x o n,r .
2 e 0) ]
Using (3.23), (3.26)1, (3.26)3,(3,26)4, (3,35), (3.36)7 (3.51) and (3.52), we obtain
k vk k2
(52 - P1> <unavn,z> + ? <¢n,ma 0n,m> + ? ||¢n,m”2 — Oa (353)
with (3.50) and (3.53), we deduce
k k k~? k2
2 o) (1) + B R (b Bn) + o [ bmall® = 0, (3.54)
b p1 b b
then we have
Thkps\ (p1 P2 T2 vk 2
using (3.1); we get
G — 0in L2 (0,1). (3.56)
Multiplying (3.26), by ¢, and using (3.23), (3.35) and (3.36), we have
=1 (U, iAn®n — tn) = p1 [[tn]|* = & (6,22 dn) = 0, (3.57)
integrating by parts and using (3.56), we obtain
u, — 0in L*(0,1), (3.58)
using again (3.1),, we get
Anén — 0in L?(0,1). (3.59)
Step 7. Multiplying (3.26)g by ¢y 2, using (3.23) and (3.56), we obtain
Z)\npl <yna ¢n,m> - kO <wn,zm, ¢n,x> — 0 (360)
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On the other hand, we have

Z)\npl <yna ¢n,:v> - k'O <wn,zm7 ¢n,x> = —pP1 <yn7 (ZAnan,:v - un,z)> —pP1 <yn7 Un,x> + kO <wn,ra ¢n,zz>
= —pP1 <yna (ZAndjn,l - un,x» —pP1 <yn7 un,x>

k
_?0 <wn,1,i)\np1un —k (bnz + 0 + lwn)w — ko (wn,s — l¢n)>
1’k k .
_kO <wn,m7wn,x> - TO <wn,:ra ¢n> + ?0 <wn,:1:77f)\np1un>
,W ||7~Un,a:||2 (3.61)
‘ 1%k
- _pl <yn7 (Z)\ngﬁn,m - un,m» - kO <wn,:ca wn,z> - T <wn,za ¢n>
k
_?0 (Wn,ws IAnp1Un — k (dn g + Uy + Lwy), — ko (Wno — b))
ko . k
_plk 2 <(Z)‘nwn,a: - yn,x) vun> + p1 <kO - 1) <yn; Un,x>
_lko(kT"'ko) wnal? -

Using (3.23), (3.26),,(3.26),,(3.26), (3.34), (3.35), (3.42), (3.1), , (3.60)and (3.61), we obtain
Wy — 0in L?(0,1). (3.62)

Multiplying (3.26)4 by Wy, and using (3.23),(3.36), we get

—p1 [Ynll® + ko [[wn ol — 0, (3.63)
with (3.62), we have
yn — 0in L?(0,1). (3.64)
using (3.26), and (3.64), we obtain
Awy, — 0in L2 (0,1). (3.65)
Finally, we deduce that
[®nlly — 0. (3.66)

Hence, the proof is completed.

Remark 3.1 By applying the same reasoning, we can derive the exponential decay for (1.1) under
Dirichlet boundary conditions.

4. Numerical Approximation

In this section, we present a finite element approximation for the system defined by (1.1), subject to
given initial conditions and Dirichlet boundary conditions.

We introduce and analyze an implicit Euler-type scheme, employing finite differences for temporal
discretization and finite elements for spatial discretization. We demonstrate that the discrete energy
associated with the scheme decays over time. _

We consider the following functions ¢ = ¢ , ¥ = ¢y , w = w; and we rewrite the system (1.1) as
follows :

P11 — k(e + ¥ + lw)y — Lo (wy — 16) = 0,
P2ty — bze + k(d)w +p+ lw) + ’)/033 =0,
1Bt — ko(wy — 10)a + Uk(¢e + ¥ + lw) =0, (4.1)

p30t + g, + Vwm = 07
TGt + Bq + 0, = 0.
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To get the weak form associated to system (4.1), we multiply the equations by test functions ¢, x, &, 7, a €
H} (0,1) and integrating by parts.

p1 (96,C) + k(60 + 9+ lw, &) — ol (w, — 16,) = 0,

pa (Ve ) +b (s Xa) + k(6 +10 + 10, X) +7 (020 =0,

P (W1, €) + ko (wy — 16, &) + 1k (5 + ¥ + 1w, €) =0, (42)
p3 (01,m) + (gzsm) + v (ww777> =0,

T(Qha)_'_/@(q’a)_'—(axva)zo'

Let J be positive integer, we define the space step as h = % . Then the uniform mesh points are denoted
by x; = jh,Vj =0,...,J and

Sh = {ue H;J (0,1) | ue C([0,1]), u |(Ij7mj+1) is a linear polynomial j =0,...,J —1}. (4.3)

Let N a positive integer and 7" the final time, we define the time step as At = T'//N and t,, = nAt, n =
0,...,N.

The finite element method for (4.2) with Dirichlet homogeneous boundary conditions using the implicit
Euler scheme is to find qb wh, wpl, 07 and ¢ € Sp C HE(0,1) such that, for n =1,..., N and for all
Cha Xhy gha Nh, Chp S SO

)
=

O = B Gu) + b (B, + U + lwft, Gae) — ko (i, — 167, Ch) = 0,

ANt
22 (gp - ~2‘17><h) + b (YR, Xna) + K (0, + Y0+ lwit, xn) + v (07, xn) =0,
% ( 717 §h) + ko (Wi, — LY, Enz) + Uk (Of, + ) + lw}, &) =0, (4.4)
& (O — 0h~ 1’77h)+(qhz777h)+7(wx777h) =0,
27 (ap — a4y an) + B (g, an) + (65, an) =0,
where ) 1 1
e R = (4.)

are approx1mat10ns to gf)t (tn), ¥ (t,) and wy (¢,) , respectively.
Here, (bh,q/)h, z/Jh”wh, wh, w}OL, 92 and q2 are given approximations to the initial conditions

¢0a ¢17 ’(/)Oa wla Wo, W1, 905 q0 respectlvely.
The standard identity below will often be employed:

(a—b,a) = 5 (Jla— >+ lal ~ b]*) (46)

For the discrete version of the energy decay property satisfied by the solution of system (1.1), is given by
the following

Theorem 4.1 The discrete energy

& = 5(m (HqshH + I ) + s | o+ |+ b g P+ (47)
n n| 2 ni 2 n2
ko llwhy — 19511 + ps 1051 + 7 llan [17), (4.8)
decay to 0 as t goes to oo, that is,
=&t
S (4.9)

At -
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Proof: Taking ¢, = d) Xn = wh, &, =wy, np, =07 and o, = ¢ in (4.4).
Recalling (4.5) a d( 6), we deduce that :

~ ~ 2 ~ ~
o (( S I | )+k (h,+eh+iwh 7, ) ~tho (wi,—17.0%) = 0. (4.10)
~ 2
e (|17 - ) ot (ot = s P ol = i )+,
B (f, +vp + g, 07 )+ (01, 91) =0,
£ (lag =@ |+ 1apl” = @) + ko (i, — 197, @) 12)
+lk( 1 +w;’}+lw}j, @Z):O,
ohY (uq:: - qz*HQ + llag | - qu-lif) + B a1 + (6 ai) = 0. (4.14)
Using again (4.5) and (4.6), we obtain :
rz — =gt
(fTL’fn) - (fna At ) I ) , ,
= ok (I =2 = ). (4.15)
> ok (117 = 117
is result that :
k
k (he + 0+ bugts Oy + 07+ 0357 ) > 5o (If + 0k + ol = [Jégs! + v~ + 7)), (416)
and )
ko (i, — 108 @ —157) 2 5% (it — 1651 — [lwpt =107 71) (4.17)
summing equations (4.10)-(4.14), we have:
~ 112 ~ 2 ~ 12 ~ 2
o2 ([ [ 1) + (5 1)+
S (nwmf &) + 4 (nenn - He" BES~ (quf —lla %) +
~ ~ 2
sty (il = vi 1) + H + £
n_12
2 lan — @ tm!\gh—qh IH +2At g, — v 1H +2m 165 = 657" + B gzl +
(R, + 07 + Ll O, + Of + 167 ) + tho (wf, — 167, @ — 1]) >
~ 112 ~ 2
2 ([l - o) +2m( )+ e (ol - o) +
£ (gl — o) + £ (ne"n Hez*ug)+ﬁ(nqmlz—uqs*uz)
—1112 1112
ok (g, +wp + gl — (|6 + ot + b~ |*) + s (I, — 1000 — [y — i)
(4.18
_ &gt ‘oh i lies ) )
~4—, which implies that:
& -&!
A =Y
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Remark 4.1 It is important to recognize that solving the equation (4.4) requires addressing a square

system of linear algebraic equations. The preceding proof indicates that if all input data are set
to zero, the resulting solution set {qbz, v, wy, 0 q}f} will also be zero. Consequently, this implies

that the equation (4.4) has a unique solution.

4.1. Error estimate

We will now provide estimates regarding the discrepancy between the exact solution and the numerical
solution. - -~ o~ ~
At this point, we derive a priori error estimates concerning the numerical errors ¢"™ — ¢p, V™ — ¥y,

~n

w" —wp, ¢" — ¢p, Y — Yu, W —wp, 0" — O, ¢" — qf. We have the following theorem :

Theorem 4.2 For all {¢}, i, &, 0, O‘Z}?:o C Sk, there exists a constant C > 0, independent of the
discretization parameters h and At such that

~ ~ 112 ~ ~ 112

(|| = |+ o = dn| +nam — @i + i - dn. +||¢"+w"+lw ~ @he + v+ )l
+|\w;z—l¢"—(sz—l¢")||2+||e”—ezn el - || <0Atz ¢t S

~. Ti_i— ~j—1 . i i—1 - 2
L I e I R —e e -

¢ ~Che "’HW_Xh ~ Xha +Hw _th +Hw _§th +H01 nhx” +
=i+ 10—+ - L& (o -di- (@)
e | L R e [ e e e [

o~ — (ot o))+ ot =B+ ot = R+ ot I o o]
6+ 08+ 1= (62 0+ 1) | ol = 16° = (ke = 1) + 100 = 68+ le” — a1

Proof: Step 1: For a continuous function g(t), let g™ = g(t,). Subtracting the discrete equation (4.4);
and the equation (4.2); at time t,, for ( = ¢, € S , we obtain

pr (90— B G) + R (63 + 07 + 1) = (8, + Uf + 1) )
—lko( l(b” — (wp, —1o}),Cn) = 0.

Thus, for all ¢, € S , we obtain :

(4.20)

pr (9 — B2 Gr — ) + b (9 + 0+t — (8, + 07+ 1wf) 6% — 3, )

ko (wp —16" — (w, —167), 8" — 81) = pu (9 — EE— 6 — ) + (4:21)

e (0 + 0" 4 L™ = (6, + 5+ 0f) 8 — Gur) - zko( 16" — (wf, = 167) . 6" = ) -
Similarly, from equations (4.2)s—(4.2)5 and (4.4)2-(4.4)5 we deduce, for all x4, &, nn, an € SE,

pa (97— B8 =)+ (v — 0p,, 92 — R, ) +b (930" Hw" = (8, + uf + luf) 5" —4F)

(07— 030 = ) = o (B0 =07 ) 0 (07 — W B2 )

k(" = (0, + v+ tw) 0" =) =7 (07 = 602 = X )

(4.22)
oy w7 " wr n n ny on ~n

pr (@1 — T T — @) + ko (wp — 16" — (wf, — l6}) @3 — TF,)

+k (¢ + Y™ + lw™ — (¢, + P + lw)y) , @™ — W) = p1 (117;; — T — 5h) I (4.23)

Fho (wg — 19" — (why — 19R) , Wy — Ena) + 1k (¢ + Y7 +1w™ — (9h, + ¢f + lwp) , 0" = &),
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3 0"70"—1 3 3 n n n n ~TL o n n

pa (0 = Bt 07— O7) + (a2 — 4R 0" — O0) + (V2 = Dna, 07 — 07 =
n 0%70”*1 n n n n ~n i 3

P3 (Gt - 50 —nh) + (97 — qhar 0 _77h)+')’<wz — Va0 —nh),

- hr’q ql?):

—1
(g — BB g — )+ B(q" — P g — qf) + (07
)+( - hx’q _ah)

1
T(qf—%,q —ah) + 8" —qy,q"

Step2 : Using that (4.6), the first term in equation (4.21) become :

(4.24)

(4.25)

(G-t on—dp) = (%?—5“55"”@"—%2%& (6m—on1= (o~ &) . 9"~d)

= (or-TF—ar—dn)+ ﬂ)

1
+2At< — o5 *’

o)

Then

-

(4.26)

n CZZ — ~271 m__n n ¢ ¢n ' o 1 n n 2 ‘anl n IH
_Fh " ¥h ogn > _y -y _ _
<¢t At 7¢ ¢h - d)t A a¢ ¢h 2At ¢h d)
27)
In the same way, for (4.22)-(4.25) we find
o w n n {[;n — {Enil mn_n 1 n n n— 2
(m vV w) > <wtm,¢ 0 ) o (-3 - o -a )
(4.28)
~n ~n—1 ~n n—1
Wy —wy —y W' —w e~ 1 n—1  ~n—1112
(g i) = (=g ik ) g (1 = ),
(4.29)
n 6’"’76”_1 n n n__ n_gn-1! n n n n n— n— 2
(0 iy om —op) = (Op—280m=0p) ks (lom — op) = ot —0p '), (4:30)
n__ n—1 n__ n—1 n n n n n— _ 2
(q? - g —qZ) > (qf—q A4 —qh> +5k7 (IIq —apl* =l = a7 ) ;o (431)
using again (4.15) for u™ = ¢2 — ¢y . PR+ " +lw" — (¢}, + Y + lw)) and w] — 1™ — (w}, — l}})

and adding (4.21)-(4.25) we obtain
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)
[y

— e 5"—1H2 + @ — ap|? - ||at - w;;—1||2> +

2At
ﬁtlw o et BEE (. waW—ww*—wgw3+
5 ||¢“+¢ = (8, + V7 + L) = [ ¢n e T = (G T ) |F) +
i (o = 16" = (g, — 160 = lwp=t =167~ = (wps? = 1637Y)|*) +
2 (||9n oI — [lont 0"—1||2)+ﬁ(llq”fqﬁll2*||qnflf ”‘1\!2) c(|or- 25— “
o AL ¢”—1) =) | =a + o -l + e -l
Juaz +10" o e IR AP RN T ¢hH
& (=g 1—(wh— ) =) 68— el e — o+ @ - 2
A (@ = @t = (@ — @) @ = &)+ B — T+ T = €l 5 — nal®+
o — = L (0r—om (0 — ) 0m )+ 0" — B 6 —
07— o 12 + 182 = il + oo — T 4 (0 0 = () 0 - ) +
lg™ = apll” + la™ = agl® + llaz — a1 + llaz — afi.|1%).
(4.32)

Step 3. Multiplying the latter inequality by At and summing over n we obtain, for all
{Chs Xy Eny My n}izg € G,

|8 =& + |7 — G| + v — i+ |z~ d, +||¢"+¢"+lw ("x+¢2+lwﬁll2+
ot 16" G, — DI+ 1~ G+ e — g1 <cats (o -ai

[ = 3|+ e = i + | - B + ok +¢;+zw;_(¢i+w+zwi)yf+

L A e e e P T R I

% (9 - -9 (W “),dﬂ G.) + |9 - ===+

(0 (3 5) )+ - =

& (- (@, - ) - g+ |- 2

+a7 (00 -0 (91_91_1) 0" — ;) + Hqt %H +a7(d = (Q%;—q};‘l) q' — aj,)+
16 =i+ 8 — i+ 3 — | + (2 — i)+ 1 — €5 + s — gl +

A R A e %H+wq—am + (ot - ¢w —@W+

Jeo* = | + |03 - %H 160+ 0+ 1 = (6 4+ 00+ 1) [* 4 g —l¢° (wh, —160) |+

10 = 051" + [la° — a2").
(4.33)

Taking into account that (as in [2] with an equivalent result for similar terms)
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Z( — gt - (25;; Git) .o - c;;)=(5”—%5”—4;;)+(&52—$0,£51—<ﬁ)+

G- (@) e (o -] + o -l + i -al o -al)

n—1 . . X . 2
+omz G| + & T o - (@ -an)

(4.34)
and applying Gronwall’s inequality [6] in its discrete version, the result follows. O

Corollary 4.1 Suppose that the solution to the continuous problem is sufficiently regular, that is:
¢,p,w € H? (0,T;L*(0,L)) nW> (0,T; H' (0,L)) N H? (0, T; H' (0, L)), (4.35)

and,

0,q € H*(0,T;L*(0,L)) N L> (0,T;H*(0,L)) N H' (0,T; H" (0, L)) . (4.36)

There exists then, a constant C > 0 independent of h and At, such that :

|6 = &)+ [ o — x| + e — api? %H g2 + w4+l = (8, + vf + )| +
lwy — 1™ = (wity — ORI + (16" — 07 +Hq —qp* <O (R + A7),
(4.37)
Proof: The result is a consequence of following estimates as in [7] and [15] :
_n [ Tn+1 7l+1 < 2 H ‘ O
i (¢ )H Ch= |0 L2(0,T;H(0,L))

4.2. Numerical simulation

To demonstrate the accuracy of the approximation and confirm the asymptotic behavior of the so-
lutions, we present in this section results from some numerical examples. To solve the system (1.1), we
employed an iterative method for a set of implicit equations. Refer to [23], [29] and [24] for further
details.

. Tn-1 Tn-1 ~n— 0 0 _ ,0
Assumlng that @7 =", »rt @yt 077 g7t are known and let. ¢ = , qﬁz Z Lyt =
n, 0 n 1 ~n,0 ~n—1 n,0 n—1
Loy A Wy =Wy T, W =Wy
0 .
GZ =0, 1, qh = q; 1 we will solve the following system:

2O =05 )+ (ar ™) + (W ) =0,

Zilay” —ap " an) + Blay” s an) + (03], an) =0,

22 (p? =t xn) + b(whm Xha) FE@ORT 0T+ T ) = (00T xhe) =0, (4.38)
2L (BT — Gp ) + k(B + T 1+zw;ﬂ‘-1,chx) = thoui, ~ 197, o) =0,

LL(wp? —wy fh)—klko(whr — 17 Eng) F UR(S)T + P 4 T, &) =0,

where, for j =1,2,...,J

T = G At T = T AT W = T+ At (4.39)

Problem (4.38) consists of five decoupled linear systems of algebraic equations, with tridiagonal matrices.
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Example 1. Homogeneous problem: energy decay
We consider first the following parameters of the model:

b k
pL=p2=09, ps=1, b=2 k=2 ky=1,7=1, 7:\/(1—”)3)(”1—”):0.7416, B=1=1;
T P1 k b
(4.40)
The discretization parameters are:
N = 1500, T = 40, At = =, J =100, h= (4.41)
- ) - b) - N’ - ) - J7 - N
Along with the following initial conditions:
do(x) = 20x(x — 1)? = ¢4 (2,0) = ¢1 (z), Vz € (0,1),
Yo(z) = wcos(%F) = ¢ (¢,0), vz € (0,1),
wo(z) = w(z,0) = zcos(5F) = wy(z,0), Vze(0,1), (4.42)
qo(z) = q(z,0) = sin(7x), va € (0,1),
Oo(x) = 0 (x,0) = sin(nz), Vo € (0,1),

We present the graphs of the solutions to the system described in (1.1) (refer to Figure 2), along with the
graph depicting the total discrete energy E(t). This analysis reveals an exponential decay in the total
discrete energy, as illustrated in Figure 1.

Behavior of the discrete energy

60

50

oy £
Energy &
@ IN
3 S

n
=3

0 5 10 15 20 25 30 35 40
time ¢,

Figure 1: Behavior of the discrete energy for example 1.
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¥ for x=0.5

olw,t)
(z,t)

3
2
1
0
1
2

“o 10 20
t

0 for x=0.5

30 4

10 20
t

q for x=0.5

30

I
V

S

0(z,t)

-1

-2

0 10 20

t

30 40

Figure 2: Numerical solution

Example 2: Numerical convergence

20 30 40

for x = 0.5 for example 1.

The purpose of this example is to assess the numerical convergence of the numerical scheme. To

achieve this, we will consider the following problem.

Subsequently, we conducted a simulation to numerically evaluate the error estimate. We addressed

the modified problem (P)
Find w :

[0,1] x [0,T] = R, ¢ : [0,1] x [0,7] — R and ¢ : [0,1] x [0,7] — R respectively the

longitudinal, vertical, and shear angle displacements and the temperature deviations 6 : [0,1] x [0,T] — R

and ¢ : [0,1] x [0, 7] — R such that

p1¢)tt - k(¢1 + ¢ + lw)l - lkO(wl - l¢) = fl in (07 1) X (OvT)
pﬂ/’tt - bd’xw + k(d)x + 1/1 + lw) + 7930 = f2 in (07 1) X (07T)
(P) P1Wit — kO(wx - l¢)z + lk(gf)m + w + lw) = f3 in (0’ 1) X (O’T)
P30t + @z + Yzt = fa in (0,1) x (0,7)
Tq + Bq+ 0, =[5 in (0,1) x (0,7)
where f1, fo, f3, fs4, f5, and the initial data are calculated from the exact solution
6 (0,1) = a°(1 - 2)°et,
W (z,t) = 25(1 — x)5€,
w(z,t) = 2°(1 — z)°€t,
0 (x,t) = 25(1 — )€,
q(z,t) = xS(l - x)seta
Table 1: Computed errors when T =1
’ Nel H At H Error ‘
20 51073 5,6931 10~
40 2,5 1073 1,6009 106
80 1,25 1073 5,8625 10~7
160 | 6,25 107 3,3313 1077
320 || 3,125 1074 || 2,6987 10~

In Table 1, we show the computed errors at T' =1
where the Error is defined as:

~ ~ 112 ~ ~
Error = (|| 6" — ||+ - o
B —lgm — (wf, — LR I* + 10" —

x

2 ~ ~n 112
Hllw™ — g+

[w

for different discretization parameters J and At |

~ ~ 2
ar —n || o+ + ot — (67, + ¥ + )|+

2 2\1
O l" + g™ —apll”)=.
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%108 Asymptotic  behaviour
T T T T

0 0.5 1 15 2 25 3
NG <107

Figure 3: Asymptotic behavior of the numerical scheme.

Asymptotic behaviour

log(Error)
o

-12 -1 -10 -9 -8 -7 -6 -5
log(h?+At?)

Figure 4: The evolution of log(Error).

We observe the numerical convergence in Corollary is achieved according to Figures 3-4.

The numerical scheme was implemented using MATLAB on a Intel Core i7-9750H @2.60 GHz.

5. Conclusion

In this work, we have analyzed a linear one-dimensional thermoelastic Bresse system with second
sound, establishing its well-posedness and identifying conditions for exponential stability through a com-
bination of semigroup theory, energy methods, and frequency domain analysis. To complement the
theoretical study, we developed a finite element approximation in space, coupled with an implicit Eu-
ler scheme for time integration. We demonstrated that the resulting discrete energy decays over time,
mirroring the continuous case, and provided a priori error estimates for both semi-discrete and fully dis-
crete schemes. These theoretical results were supported by numerical simulations, which confirmed the
expected convergence behavior and energy decay properties. Altogether, our findings provide a rigorous
and comprehensive understanding of the dynamics of the system, both analytically and numerically, and
offer a reliable framework for further investigation or practical implementation.
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