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Asymptotic Behavior and Numerical Analysis for a Thermoelastic-Bresse System with
Second Sound

Mounir Afilal, Atika Radid, Karim Rhofir∗ and Abdelaziz Soufyane

abstract: In this study, we investigate the behavior of a linear one-dimensional thermoelastic Bresse
system that incorporates second sound phenomena. We begin by establishing that the system is well-posed
and identifying the conditions necessary for it to demonstrate exponential stability, which depend on certain
parameters of the system. Our proof utilizes semigroup theory and a hybrid methodology that combines energy
techniques with frequency domain analysis. Subsequently, we introduce a finite element approximation for
the system and demonstrate that the associated discrete energy decreases over time. Additionally, we derive
several a priori error estimates to assess the accuracy of our approximation. Finally, we validate our theoretical
findings by demonstrating that the numerical results align with our established theoretical predictions.
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1. Introduction

Over the past few decades, various dynamic equations have been employed as mathematical models
to represent engineering systems. This study focuses on the circular arch problem, commonly referred
to as the Bresse system (see [1] for further details), which is coupled with heat conduction phenomena
characteristic of second sound. Elastic structures shaped like arches have been extensively studied across
multiple fields, including engineering, architecture, marine engineering, and aeronautics. Understanding
the properties that link the energy behavior of solutions to the corresponding dynamic model with the
system parameters is of significant interest. The dynamic equations relevant to this research are presented
as follows: 

ρ1ϕtt − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = 0 in (0, 1)× (0,∞) ,
ρ2ψtt − bψxx + k (ϕx + ψ + l w) + γθx = 0 in (0, 1)× (0,∞) ,
ρ1wtt − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) = 0 in (0, 1)× (0,∞) ,
ρ3θt + qx + γψxt = 0 in (0, 1)× (0,∞) ,
τqt + βq + θx = 0 in (0, 1)× (0,∞) ,

(1.1)
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with the initial and boundary conditions
ϕ (x, 0) = ϕ0 (x) , ϕt (x, 0) = ϕ1 (x) , θ (x, 0) = θ0 (x) for x ∈ (0, 1) ,
ψ (x, 0) = ψ0 (x) , ψt (x, 0) = ψ1 (x) , q (x, 0) = q0 (x) for x ∈ (0, 1) ,

w (x, 0) = w0 (x) , wt (x, 0) = w1 (x) for x ∈ (0, 1) ,
ϕ (0, t) = ψx (0, t) = wx (0, t) = θ (0, t) = 0 ∀t ≥ 0,
ϕx (1, t) = ψ (1, t) = w (1, t) = q (1, t) = 0 ∀t ≥ 0.

(1.2)

where ρ1, ρ2, ρ3, b, k, k0, τ, β, γ and l are positive constants, the initial data ϕ0, ϕ1, ψ0, ψ1, w0, w1,
θ0 and q0 an element of an appropriate Hilbert space, and the unknowns in the equations (1.1) − (1.2)
consist of the following variables:

(ϕ, ψ,w, θ, q) : (0, 1)× (0,∞) → R5. (1.3)

In recent years, numerous researchers have investigated the well-posedness and stability of Bresse systems.
Various types of feedback mechanisms have been analyzed, leading to different stability outcomes that
depend on several factors. These factors include the nature and quantity of feedbacks, the regularity of
initial conditions, and how the relationships between the coefficients in the dynamic system influence the
overall stability of total energy.

For a comprehensive understanding, we direct readers to several key studies: references [1], [3], [9,11],
and [20,28] discuss cases involving (linear or nonlinear, global or local ) frictional damping. Additionally,
references [22], [12], [13], and [14] focus on systems with memory effects.

Recently, Keddi et al. [17] demonstrated that the thermoelastic Bresse system characterized by second
sound, as described in equations (1.1)− (1.2), exhibits exponential stability under certain conditions.

ξ =

[(
1− τkρ3

ρ1

)(ρ1
k

− ρ2
b

)
− τγ2

b

]
= 0 , k = k0 and l small, (1.4)

and the solutions for (1.1)− (1.2) is not exponentially stable if

ξ ̸= 0 or k = k0. (1.5)

Moreover, when
ξ ̸= 0 , k = k0 and l small, (1.6)

they proved the polynomial decay.
In this paper, we first prove exponential stability under the following explicit condition:

ξ =

(
1− τkρ3

ρ1

)(ρ1
k

− ρ2
b

)
− τγ2

b
= 0, k = k0 and l ̸= π

2
+ nπ ∀n ∈ Z, (1.7)

Our method of proof is based on the frequency techniques combined with the energy method without
requiring the smallness condition on l as in [17]. Secondly, we introduce the numerical approximation of
the solution of (1.1) using a finite element method, and then we prove the decay of the discrete energy.
In addition, we establish some error estimates. It is worth mentioning that the novelty of this paper lies
in the proposed approximation scheme based on finite element analysis, as well as the use of an iterative
method to solve the resulting discrete system of implicit equations.

The structure of the paper is as follows: In Section 2, we present the well-posedness of the problem
(1.1)− (1.2) without providing a proof. Section 3 focuses on the exponential decay of stability for (1.1)−
(1.2). In Section 4, we introduce finite element analysis and provide numerical simulations to validate the
accuracy of the approximation, maintaining the same parameter conditions as in the continuous model.

2. Existence, Uniqueness, and Stability of the Solution

In this section, we establish a result on the existence and uniqueness of solutions to problem (1.1)−(1.2)

using semigroup theory. To this end, we define the vector function Ψ = (ϕ, u, ψ, v, w, y, θ, q)
T
, where

u = ϕt, v = ψt, and y = wt. Consequently, the system (1.1)− (1.2) can be reformulated as follows:{
Ψt = AΨ,

Ψ (0) = Ψ0 = (ϕ0, u0, ψ0, v0, w0, y0, θ0, q0)
T (2.1)
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where A is a linear operator defined by

AΨ=



u
k

ρ1
(ϕx + ψ + l w)x +

lk0
ρ1

(wx − lϕ)

v
b

ρ2
ψxx −

k

ρ2
(ϕx + ψ + l w)− γ

ρ3
θx

y
k0
ρ1

(wx − lϕ)x −
lk

ρ1
(ϕx + ψ + l w)

− 1

ρ3
qx −

γ

ρ3
vx

−β
τ
q − 1

τ
θx



(2.2)

We consider the following spaces

H1
∗ (0, 1) =

{
f ∈ H1 (0, 1) | f (0) = 0

}
,

∼
H1

∗ (0, 1) =
{
f ∈ H1 (0, 1) | f (1) = 0

}
,

H2
∗ (0, 1) = H2 (0, 1) ∩H1

∗ (0, 1) ,
∼
H2

∗ (0, 1) = H2 (0, 1) ∩
∼
H1

∗ (0, 1) ,

and the Hilbert space

H = H1
∗ (0, 1)× L2 (0, 1)×

∼
H1

∗ (0, 1)× L2 (0, 1)×
∼
H1

∗ (0, 1)×
(
L2 (0, 1)

)3
, (2.3)

equipped < ., . >H and ∥.∥H the inner product and the energy norm defined by

⟨Ψ1,Ψ2⟩H = k ⟨ϕ1x + ψ1 + l w1, ϕ2x + ψ2 + l w2⟩+ k0 ⟨w1x − lϕ1, w2x − lϕ2⟩
+ρ1 ⟨u1, u2⟩+ b ⟨ψ1x, ψ2x⟩+ ρ2 ⟨v1, v2⟩+ ρ1 ⟨y1, y2⟩
+ρ3 ⟨θ1, θ2⟩+ τ ⟨q1, q2⟩ .

∥Ψ∥2H = k ∥ϕx + ψ + l w∥2 + k0 ∥wx − lϕ∥2 + ρ1 ∥u∥2 + b ∥ψx∥2 + ρ2 ∥v∥2

+ρ1 ∥y∥2 + ρ3 ∥θ∥2 + τ ∥q∥2 .

where < ., . > and ∥.∥ denote the scalar product and the norm of L2(0, 1). Then A, formally given in
(2.2), with domain

D (A) =

 Ψ ∈ H | ϕ ∈ H2
∗ (0, 1) ; ψ,w ∈

∼
H2

∗ (0, 1) ; u, θ ∈ H1
∗ (0, 1) ;

v, y, q ∈
∼
H1

∗ (0, 1) ; ϕx (1) = wx (0) = ψx (0) = 0

 . (2.4)

It is clear from the conditions in (1.2) that

0 = k ∥ϕx + ψ + l w∥2 + k0 ∥wx − lϕ∥2 + ρ1 ∥u∥2 + b ∥ψx∥2

+ρ2 ∥v∥2 + ρ1 ∥y∥2 + ρ3 ∥θ∥2 + τ ∥q∥2 ,

implies that

u = ψ = v = y = θ = q = 0, (2.5)

and

ϕ (x) = c sin (lx) and w (x) = −c cos (lx) , (2.6)
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with c ∈ R. Furthermore, using the conditions in (1.2), we get ϕ = w = 0 if

l ̸= π

2
+ nπ; ∀n ∈ Z. (2.7)

Assume that condition (2.7) holds. Consequently, we conclude that H qualifies as a Hilbert space and
that D(A) is dense within H.

Theorem 2.1 Let Ψ0 be an element of the Hilbert space H. Then, there exists a unique weak solution.
Ψ ∈ C (R+,H) of system (1.1)− (1.2). Moreover, if Ψ0 ∈ D (A), then Ψ ∈ C (R+, D (A))∩C1 (R+,H) .

Proof: It has been demonstrated in ( [17]) that the operator A qualifies as a maximal dissipative operator
within the energy space H, and it is responsible for generating a C0-semigroup of contractions in H. 2

3. Exponential Stability

In this section, we demonstrate the exponential decay based on the following specific condition
((

1− τkρ3
ρ1

)(ρ1
k

− ρ2
b

)
− τγ2

b

)
= 0,

k = k0,

l2 ̸= π

2
+ nπ; ∀n ∈ Z.

(3.1)

Theorem 3.1 We take it as given that the conditions specified in (3.1) are satisfied. Consequently, the
semigroup linked to (2.1) exhibits exponential stability.

Proof. To establish our findings, we will adopt the methodology presented in [16] and [21], thus it
is necessary to demonstrate that

iR ⊂ ρ (A) , (3.2)

and
sup
λ∈R

∥∥∥(iλI −A)
−1
∥∥∥ < +∞. (3.3)

Given that D(A) is compactly embedded in H, it follows that the operator (I −A)
−1

is a compact.
This leads to the conclusion that the spectrum of A is discrete. Furthermore, since the resolvent of the
operator A is compact in H, we can apply results from [5] work to conclude that the system described
by equations (1.1)− (1.2) exhibits strong stability if and only if A lacks pure imaginary eigenvalues.

To verify the condition (3.2), we proceed as follow: let a ∈ R∗ and let Ψ ∈ D(A), with

AΨ = i aΨ, (3.4)

which is equivalent to 

u = iaϕ , v = iaψ , y = iaw,
k (ϕx + ψ + l w)x + lk0 (wx − lϕ) = iaρ1u,
bψxx − k (ϕx + ψ + l w)− γθx = iaρ2v,
k0 (wx − lϕ)x − lk (ϕx + ψ + l w) = iaρ1y,
−qx − γvx = iaρ3θ,
−βq − θx = iaτq.

(3.5)

Computing Re ⟨AΨ,Ψ⟩H and using (3.4), we deduce that

q = 0. (3.6)

Taking into account that θ ∈ H1
∗ (0, 1) and using (3.5)8 and (3.6), we deduce that

θ = 0. (3.7)
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By using (3.5)7, (3.6) and (3.7)
vx = 0, (3.8)

and with (3.5)2, we obtain that
ψx = 0. (3.9)

As ψ ∈
∼
H1

∗ (0, 1), we have
ψ = 0 and v = 0. (3.10)

Using (3.5)5, (3.7) and (3.10), we get
ϕx + l w = 0. (3.11)

Using (3.5)1, (3.5)4, (3.10) and (3.11), we get

wx +

(
a2ρ1
k0l

− l

)
ϕ = 0. (3.12)

Using (3.5)3, (3.5)6, (3.10) and (3.11), we get

wxx +

(
a2ρ1
k0

+ l2
)
w = 0. (3.13)

As, we have
w (1) = wx (0) = 0, (3.14)

so, we have

w (x) = C1 cos

(√(
a2ρ1
k0

+ l2
)
x

)
. (3.15)

Case 1: if C1 = 0 then with (3.15), we have

w = 0, (3.16)

from (3.11) and (3.5)3 we obtain
ϕ = 0 and y = 0. (3.17)

By using (3.5)1we obtain
u = 0, (3.18)

thus, we get
Ψ = 0. (3.19)

Case 2 : if C1 ̸= 0 then with (3.15), using the fact that w (1) = 0, then we have necessary√(
a2ρ1
k0

+ l2
)

=
(π
2
+ nπ

)
and n ∈ Z, (3.20)

which means that:

l2 = −a
2ρ1
k0

+
(π
2
+ nπ

)2
and n ∈ Z, (3.21)

From (3.20), (3.11), by incorporating the boundary conditions, we obtained

ϕ (x) = − C1l(π
2
+ nπ

) sin

(
a2ρ1
kl

− l 2
)
x. (3.22)

Using (3.12), (3.20) and (3.22), we obtain that

a = 0, and l2 =
(π
2
+ nπ

)2
,
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which is a contradiction with (2.7).
So as a conclusion we have C1 = 0 and therefore we find Ψ = 0 then we obtain (3.2).
To demonstrate the validity of (3.3), we will use a proof by contradiction. We begin by assuming

that the statement (3.3) is not true. Under this assumption, it follows that there exists a real sequence
(λn)n∈N and a sequence (Ψn)n∈N ∈ D (A), such that

∥Ψn∥H = 1, (3.23)

|λn| → ∞, (3.24)

lim
n→∞

∥(iλnI −A)Ψn∥H = 0, (3.25)

i.e., we have the following convergence:

iλnϕn − un → 0 in H1
∗ (0, 1) ,

iλnρ1un − k (ϕn,x + ψn + l wn)x − lk0 (wn,x − lϕn) → 0 in L2 (0, 1) ,

iλnψn − vn → 0 in
∼
H1

∗ (0, 1) ,
iλnρ2vn − bψn,xx + k (ϕn,x + ψn + l wn) + γθn,x → 0 in L2 (0, 1) ,

iλnwn − yn → 0 in
∼
H1

∗ (0, 1) ,
iλnρ1yn − k0 (wn,x − lϕn)x + lk (ϕn,x + ψn + l wn) → 0 in L2 (0, 1) ,
iλnρ3θn + qn,x + γvn,x → 0 in L2 (0, 1) ,
iλnτqn + βqn + θn,x → 0 in L2 (0, 1) ,

(3.26)

We will now verify condition (3.3) by deriving a contradiction with (3.23). Our proof is structured into
several steps:

Step 1. Taking the inner product of (iλnI −A)Ψn with Ψn in H, we get

ℜ ⟨(iλnI −A)Ψn,Ψn⟩H = β ∥q∥2L2(0,1) , (3.27)

using (3.25), we deduce that

qn → 0 in L2 (0, 1) , (3.28)

applying triangular inequality, we get∥∥∥∥θn,xλn
∥∥∥∥ ≤ 1

|λn|
∥iλnτqn + βqn + θn,x∥+

∥∥∥∥iτqn +
β

λn
qn

∥∥∥∥ . (3.29)

From (3.24), (3.26)8 and (3.28), we deduce that

θn,x
λn

→ 0 in L2 (0, 1) . (3.30)

Step 2. Multiplying (3.26)1 by
iϕn
λn

, we obtain

∥ϕn∥2 −
1

λn
⟨un, iϕn⟩ → 0. (3.31)

Multiplying (3.26)3 by
iψn
λn

, we get

∥ψn∥2 −
1

λn
⟨vn, iψn⟩ → 0. (3.32)
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Multiplyin g(3.26)5 by
iwn
λn

, we have

∥wn∥2 −
1

λn
⟨yn, iwn⟩ → 0, (3.33)

using (3.23) and (3.24), we deduce that

ϕn → 0 in L2 (0, 1) (3.34)

ψn → 0 in L2 (0, 1) (3.35)

wn → 0 in L2 (0, 1) (3.36)

Step 3. Multiplying (3.26)7 by
θn
λn

and integrating by parts, we have

iρ3 ∥θn∥2 +
[〈
qn,

θn
λn

〉]1
0

−
〈
qn,

θn,x
λn

〉
+ γ

[〈
vn,

θn
λn

〉]1
0

+ γ

〈
vn,

θn,x
λn

〉
→ 0, (3.37)

using boundary conditions, (3.23), (3.28) and (3.30), we find

θn → 0 in L2 (0, 1) . (3.38)

By applying the triangle inequality, we obtain∥∥∥∥ϕn,xxλn

∥∥∥∥ ≤
∥∥∥∥ 1

kλn

(
iλnρ1un − k (ϕn,x + ψn + l wn)x − lk0 (wn,x − lϕn)

)∥∥∥∥
+

∥∥∥∥ iρ1k un − 1

λn
(ψn,x + l wn,x)−

lk0
kλn

(wn,x − lϕn)

∥∥∥∥ ,
by (3.23), (3.24) and (3.26)2, we obtain(∥∥∥∥ϕn,xxλn

∥∥∥∥)
n∈N

is uniformly bounded. (3.39)

multiplying (3.26)7 by
iψn,x
λn

, we have

ρ3 ⟨θn, ψn,x⟩+
1

λn
⟨qn,x, iψn,x⟩ − γ

〈
(iλnψn,x − vn,x) ,

iψn,x
λn

〉
+ γ ∥ψn,x∥2 → 0, (3.40)

using (3.23), (3.26)3 and integration by parts, we obtain

ρ3 ⟨θn, ψn,x⟩+
1

λn
[⟨qn, iψn,x⟩]10 −

〈
qn,

iψn,xx
λn

〉
+ γ ∥ψn,x∥2 → 0, (3.41)

again, using boundary conditions, (3.28), (3.38) and (3.39), we deduce from (3.41) that

ψn,x → 0 in L2 (0, 1) , (3.42)

from (3.26)3, we have
vn,x
λn

→ 0 in L2 (0, 1) . (3.43)

As vn in
∼
H1

∗ (0, 1), then by (3.43)
vn
λn

→ 0 in L2 (0, 1) . (3.44)
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Step 4. Multiplying (3.25)2 by
ivn
λn

and integration by parts, we obtain

ρ2 ∥vn∥2−b
[〈
ψn,x,

ivn
λn

〉]1
0

+b

〈
ψn,x,

ivn,x
λn

〉
+
k

λn
⟨(ϕn,x + ψn + l wn) , ivn⟩+γ

〈
θn,x
λn

, ivn

〉
→ 0. (3.45)

Using the boundary conditions, (3.23), (3.24) and (3.30), then we get

ρ2 ∥vn∥2 +
b

λn
⟨iψn,x, (iλnψn,x − vn,x)⟩ − b ∥ψn,x∥2 → 0, (3.46)

using (3.24), (3.26)3 and (3.42), then we have

vn → 0 in L2 (0, 1) . (3.47)

By (3.26)3 and (3.47), we deduce

λnψn → 0 in L2 (0, 1) . (3.48)

Step 5. We have

⟨θn,x, ϕn,x⟩ = ⟨(iλnτqn + βqn + θn,x) , ϕn,x⟩ − β ⟨qn, ϕn,x⟩ − ⟨iλnτqn, ϕn,x⟩ (3.49)

= ⟨(iλnτqn + βqn + θn,x) , ϕn,x⟩ − β ⟨qn, ϕn,x⟩+ τ ⟨qn, iλnϕn,x⟩
= ⟨(iλnτqn + βqn + θn,x) , ϕn,x⟩ − β ⟨qn, ϕn,x⟩ − τ ⟨qn,x, (iλnϕn − un)⟩ − τ ⟨qn,x, un⟩
= ⟨(iλnτqn + βqn + θn,x) , ϕn,x⟩ − β ⟨qn, ϕn,x⟩ − τ ⟨qn,x, (iλnϕn − un)⟩

−τ ⟨(iλnρ3θn + qn,x + γvn,x) , un⟩+ τρ3 ⟨iλnθn, un⟩+ τγ ⟨vn,x, un⟩
= ⟨(iλnτqn + βqn + θn,x) , ϕn,x⟩ − β ⟨qn, ϕn,x⟩+ τ ⟨qn, (iλnϕn − un)x⟩

−τ ⟨(iλnρ3θn + qn,x + γvn,x) , un⟩+
τkρ3
ρ1

⟨θn,x, ϕn,x⟩

−τρ3
ρ1

〈
θn,
[
iλnρ1un − k (ϕn,x + ψn + l wn)x − lk0 (wn,x − lϕn)

]〉
−τkρ3

ρ1
⟨θn, (ψn + l wn)x⟩ −

τ lk0ρ3
ρ1

⟨θn, (wn,x − lϕn)⟩+ τγ ⟨vn,x, un⟩ ,

using (3.23), (3.26)1, (3.26)2, (3.26)7, (3.26)8, (3.28), (3.38) and (3.49), we deduce that

(
1− τkρ3

ρ1

)
⟨θn,x, ϕn,x⟩ − τγ ⟨vn,x, un⟩ → 0 in L2 (0, 1) . (3.50)

Step 6. Multiplying (3.26)2 by ψn,x, and using (3.23) and (3.42), we obtain

⟨iλnρ1un, ψn,x⟩ − ⟨kϕn,xx, ψn,x⟩ → 0. (3.51)
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On the other hand we have

⟨iλnρ1un, ψn,x⟩ − ⟨kϕn,xx, ψn,x⟩ = −ρ1 ⟨un, (iλnψn,x − vn,x)⟩ − ρ1 ⟨un, vn,x⟩+ k ⟨ϕn,x, ψn,xx⟩
= −ρ1 ⟨un, (iλnψn,x − vn,x)⟩ − ρ1 ⟨un, vn,x⟩

−k
b
⟨ϕn,x, [iλnρ2vn − bψn,xx + k (ϕn,x + ψn + l wn) + γθn,x]⟩

+
k2

b
⟨ϕn,x, (ψn + l wn)⟩+

kρ2
b

⟨ϕn,x, iλnvn⟩

+
γk

b
⟨ϕn,x, θn,x⟩+

k2

b
∥ϕn,x∥2 (3.52)

= −ρ1 ⟨un, (iλnψn,x − vn,x)⟩+
k2

b
⟨ϕn,x, (ψn + l wn)⟩

−k
b
⟨ϕn,x, [iλnρ2vn − bψn,xx + k (ϕn,x + ψn + l wn) + γθn,x]⟩

−kρ2
b

⟨(iλnϕn,x − un,x) , vn⟩+
(
kρ2
b

− ρ1

)
⟨un, vn,x⟩

+
γk

b
⟨ϕn,x, θn,x⟩+

k2

b
∥ϕn,x∥2 .

Using (3.23), (3.26)1, (3.26)3,(3.26)4, (3.35), (3.36), (3.51) and (3.52), we obtain(
kρ2
b

− ρ1

)
⟨un, vn,x⟩+

γk

b
⟨ϕn,x, θn,x⟩+

k2

b
∥ϕn,x∥2 → 0, (3.53)

with (3.50) and (3.53), we deduce

[(
kρ2
b

− ρ1

)(
1− τkρ3

ρ1

)
+
τkγ2

b

]
ℜ ⟨ϕn,x, θn,x⟩+

τγk2

b
∥ϕn,x∥2 → 0, (3.54)

then we have [(
1− τkρ3

ρ1

)(ρ1
k

− ρ2
b

)
− τγ2

b

]
ℜ ⟨ϕn,x, θn,x⟩+

τγk

b
∥ϕn,x∥2 → 0, (3.55)

using (3.1)1 we get

ϕn,x → 0 in L2 (0, 1) . (3.56)

Multiplying (3.26)2 by ϕn and using (3.23), (3.35) and (3.36), we have

−ρ1 ⟨un, iλnϕn − un⟩ − ρ1 ∥un∥2 − k ⟨ϕn,xx, ϕn⟩ → 0, (3.57)

integrating by parts and using (3.56), we obtain

un → 0 in L2 (0, 1) , (3.58)

using again (3.1)1, we get

λnϕn → 0 in L2 (0, 1) . (3.59)

Step 7. Multiplying (3.26)6 by ϕn,x, using (3.23) and (3.56), we obtain

iλnρ1 ⟨yn, ϕn,x⟩ − k0 ⟨wn,xx, ϕn,x⟩ → 0. (3.60)
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On the other hand, we have

iλnρ1 ⟨yn, ϕn,x⟩ − k0 ⟨wn,xx, ϕn,x⟩ = −ρ1 ⟨yn, (iλnϕn,x − un,x)⟩ − ρ1 ⟨yn, un,x⟩+ k0 ⟨wn,x, ϕn,xx⟩
= −ρ1 ⟨yn, (iλnϕn,x − un,x)⟩ − ρ1 ⟨yn, un,x⟩

−k0
k

〈
wn,x, iλnρ1un − k (ϕn,x + ψn + l wn)x − lk0 (wn,x − lϕn)

〉
−k0 ⟨wn,x, ψn,x⟩ −

l2k20
k

⟨wn,x, ϕn⟩+
k0
k

⟨wn,x, iλnρ1un⟩

− lk0 (k + k0)

k
∥wn,x∥2 (3.61)

= −ρ1 ⟨yn, (iλnϕn,x − un,x)⟩ − k0 ⟨wn,x, ψn,x⟩ −
l2k20
k

⟨wn,x, ϕn⟩

−k0
k

〈
wn,x, iλnρ1un − k (ϕn,x + ψn + l wn)x − lk0 (wn,x − lϕn)

〉
−ρ1k0

k
⟨(iλnwn,x − yn,x) , un⟩+ ρ1

(
k0
k

− 1

)
⟨yn, un,x⟩

− lk0 (k + k0)

k
∥wn,x∥2 .

Using (3.23), (3.26)1,(3.26)2,(3.26)5, (3.34), (3.35), (3.42), (3.1)2 , (3.60)and (3.61), we obtain

wn,x → 0 in L2 (0, 1) . (3.62)

Multiplying (3.26)6 by wn, and using (3.23),(3.36), we get

−ρ1 ∥yn∥2 + k0 ∥wn,x∥2 → 0, (3.63)

with (3.62), we have
yn → 0 in L2 (0, 1) . (3.64)

using (3.26)5 and (3.64), we obtain
λnwn → 0 in L2 (0, 1) . (3.65)

Finally, we deduce that
∥Φn∥H −→ 0. (3.66)

Hence, the proof is completed.

Remark 3.1 By applying the same reasoning, we can derive the exponential decay for (1.1) under
Dirichlet boundary conditions.

4. Numerical Approximation

In this section, we present a finite element approximation for the system defined by (1.1), subject to
given initial conditions and Dirichlet boundary conditions.

We introduce and analyze an implicit Euler-type scheme, employing finite differences for temporal
discretization and finite elements for spatial discretization. We demonstrate that the discrete energy
associated with the scheme decays over time.

We consider the following functions ϕ̃ = ϕt , ψ̃ = ψt , w̃ = wt and we rewrite the system (1.1) as
follows : 

ρ1ϕ̃t − k(ϕx + ψ + lw)x − lk0(wx − lϕ) = 0,

ρ2ψ̃t − bψxx + k(ϕx + ψ + lw) + γθx = 0,
ρ1w̃t − k0(wx − lϕ)x + lk(ϕx + ψ + lw) = 0,

ρ3θt + qx + γψ̃x = 0,
τqt + βq + θx = 0.

(4.1)
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To get the weak form associated to system (4.1), we multiply the equations by test functions ζ, χ, ξ, η, α ∈
H1

0 (0, 1) and integrating by parts.

ρ1

(
ϕ̃t, ζ

)
+ k (ϕx + ψ + lw, ζx)− k0l (wx − lϕ, ζ) = 0,

ρ2

(
ψ̃t, χ

)
+ b (ψx, χx) + k (ϕx + ψ + lw, χ) + γ (θx, χ) = 0,

ρ1 (w̃t, ξ) + k0 (wx − lϕ, ξx) + lk (ϕx + ψ + lw, ξ) = 0,

ρ3 (θt, η) + (qx, η) + γ
(
ψ̃x, η

)
= 0,

τ (qt, α) + β (q, α) + (θx, α) = 0.

(4.2)

Let J be positive integer, we define the space step as h = 1
J . Then the uniform mesh points are denoted

by xj = jh, ∀j = 0, ..., J and

Sh0 =
{
u ∈ H1

0 (0, 1)
∣∣ u ∈ C ([0, 1]) , u

∣∣
(xj ,xj+1) is a linear polynomial j = 0, ..., J − 1

}
. (4.3)

Let N a positive integer and T the final time, we define the time step as △t = T/N and tn = n△t, n =
0, . . . , N.

The finite element method for (4.2) with Dirichlet homogeneous boundary conditions using the implicit

Euler scheme is to find ϕ̃nh, ψ̃
n
h , w̃

n
h , θ

n
h and qnh ∈ Sh0 ⊂ H1

0 (0, 1) such that, for n = 1, . . . , N and for all
ζh, χh, ξh, ηh, αh ∈ Sh0

ρ1
△t

(
ϕ̃nh − ϕ̃n−1

h , ζh

)
+ k (ϕnhx + ψnh + lwnh , ζhx)− lk0 (w

n
hx − lϕnh, ζh) = 0,

ρ2
△t

(
ψ̃nh − ψ̃n−1

h , χh

)
+ b (ψnhx, χhx) + k (ϕnhx + ψnh + lwnh , χh) + γ (θnhx, χh) = 0,

ρ1
△t
(
w̃nh − w̃n−1

h , ξh
)
+ k0 (w

n
hx − lϕnh, ξhx) + lk (ϕnhx + ψnh + lwnh , ξh) = 0,

ρ3
△t
(
θnh − θn−1

h , ηh
)
+ (qnhx, ηh) + γ

(
ψ̃nx , ηh

)
= 0,

τ
△t
(
qnh − qn−1

h , αh
)
+ β (qnh , αh) + (θnhx, αh) = 0,

(4.4)

where

ϕ̃nh =
ϕnh − ϕn−1

h

△t
, ψ̃nh =

ψnh − ψn−1
h

△t
, w̃nh =

wnh − wn−1
h

△t
, (4.5)

are approximations to ϕt (tn) , ψt (tn) and wt (tn) , respectively.

Here, ϕ0h, ϕ̃
0
h, ψ0

h, , ψ̃
0
h, w0

h, w̃0
h, θ0h and q0h are given approximations to the initial conditions

ϕ0, ϕ1, ψ0, ψ1, w0, w1, θ0, q0 respectively.

The standard identity below will often be employed:

(a− b, a) =
1

2

(
∥a− b∥2 + ∥a∥2 − ∥b∥2

)
. (4.6)

For the discrete version of the energy decay property satisfied by the solution of system (1.1), is given by
the following

Theorem 4.1 The discrete energy

Enh =
1

2
(ρ1

(∥∥∥ϕ̃nh∥∥∥2 + ∥w̃nh∥
2

)
+ ρ2

∥∥∥ψ̃nh∥∥∥2 + k ∥ϕnhx + ψnh + lwnh∥
2
+ b ∥ψnhx∥

2
+ (4.7)

k0 ∥wnhx − lϕnh∥
2
+ ρ3 ∥θnh∥

2
+ τ ∥qnh∥

2
), (4.8)

decay to 0 as t goes to ∞, that is,

Enh − En−1
h

△t
≤ 0, (4.9)
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Proof: Taking ζh = ϕ̃nh, χh = ψ̃nh , ξh = w̃nh , ηh = θnh and αh = qnh in (4.4).
Recalling (4.5) and (4.6), we deduce that :

ρ1
2△t

(∥∥∥ϕ̃nh − ϕ̃n−1
h

∥∥∥2 + ∥∥∥ϕ̃nh∥∥∥2 − ∥∥∥ϕ̃n−1
h

∥∥∥2)+k
(
ϕnhx+ψ

n
h+lw

n
h,ϕ̃

n
hx

)
−lk0

(
wnhx−lϕ

n
h,ϕ̃

n
h

)
= 0, (4.10)

ρ2
2△t

(∥∥∥ψ̃nh − ψ̃n−1
h

∥∥∥2 + ∥∥∥ψ̃nh∥∥∥2 − ∥∥∥ψ̃n−1
h

∥∥∥2)+ b
2△t

(∥∥ψnhx − ψn−1
hx

∥∥2 + ∥ψnhx∥
2 −

∥∥ψn−1
hx

∥∥2)+
k
(
ϕnhx + ψnh + lwnh , ψ̃

n
h

)
+ γ

(
θnhx, ψ̃

n
h

)
= 0,

(4.11)

ρ1
2△t

(∥∥w̃nh − w̃n−1
h

∥∥2 + ∥w̃nh∥
2 −

∥∥w̃n−1
h

∥∥2)+ k0 (w
n
hx − lϕnh, w̃

n
hx)

+lk (ϕnhx + ψnh + lwnh , w̃
n
h) = 0,

(4.12)

ρ3
2△t

(∥∥θnh − θn−1
h

∥∥2 + ∥θnh∥
2 −

∥∥θn−1
h

∥∥2)− (qnh , θ
n
hx)− γ

(
ψ̃nh , θ

n
hx

)
= 0, (4.13)

τ

2△t

(∥∥qnh − qn−1
h

∥∥2 + ∥qnh∥
2 −

∥∥qn−1
h

∥∥2)+ β ∥qnh∥
2
+ (θnhx, q

n
h) = 0. (4.14)

Using again (4.5) and (4.6), we obtain :(
fn, f̃n

)
=

(
fn, f

n−fn−1

∆t

)
,

= 1
2∆t

(∥∥fn − fn−1
∥∥2 + ∥fn∥2 −

∥∥fn−1
∥∥2) ,

≥ 1
2∆t

(
∥fn∥2 −

∥∥fn−1
∥∥2) , (4.15)

is result that :

k
(
ϕnhx + ψnh + lwnh , ϕ̃

n
hx + ψ̃nh + lw̃nh

)
≥ k

2△t

(
∥ϕnhx + ψnh + lwnh∥

2 −
∥∥ϕn−1

hx + ψn−1
h + lwn−1

h

∥∥2) , (4.16)

and

k0

(
wnhx − lϕnh, w̃

n
h − lϕ̃nh

)
≥ k0

2△t

(
∥wnhx − lϕnh∥

2 −
∥∥wn−1

hx − lϕn−1
h

∥∥2) , (4.17)

summing equations (4.10)-(4.14), we have:

0 ≥ ρ1
2△t

(∥∥∥ϕ̃nh∥∥∥2 − ∥∥∥ϕ̃n−1
h

∥∥∥2)+ ρ2
2△t

(∥∥∥ψ̃nh∥∥∥2 − ∥∥∥ψ̃n−1
h

∥∥∥2)+

ρ1
2△t

(
∥w̃nh∥

2 −
∥∥w̃n−1

h

∥∥2)+ ρ3
2△t

(
∥θnh∥

2 −
∥∥θn−1
h

∥∥2)+ τ
2△t

(
∥qnh∥

2 −
∥∥qn−1
h

∥∥2)+
b

2△t

(
∥ψnhx∥

2 −
∥∥ψn−1

hx

∥∥2)+ ρ1
2△t

∥∥∥ϕ̃nh − ϕ̃n−1
h

∥∥∥2 + ρ2
2△t

∥∥∥ψ̃nh − ψ̃n−1
h

∥∥∥2 +
ρ1
2△t

∥∥w̃nh − w̃n−1
h

∥∥2 + τ
2△t

∥∥qnh − qn−1
h

∥∥2 + b
2△t

∥∥ψnhx − ψn−1
hx

∥∥2 + ρ3
2△t

∥∥θnh − θn−1
h

∥∥2 + β ∥qnh∥
2
+

k
(
ϕnhx + ψnh + lwnh , ϕ̃

n
hx + ψ̃nh + lw̃nh

)
+ lk0

(
wnhx − lϕnh, w̃

n
h − lϕ̃nh

)
≥

ρ1
2△t

(∥∥∥ϕ̃nh∥∥∥2 − ∥∥∥ϕ̃n−1
h

∥∥∥2)+ ρ2
2△t

(∥∥∥ψ̃nh∥∥∥2 − ∥∥∥ψ̃n−1
h

∥∥∥2)+ b
2△t

(
∥ψnhx∥

2 −
∥∥ψn−1

hx

∥∥2)+
ρ1
2△t

(
∥w̃nh∥

2 −
∥∥w̃n−1

h

∥∥2)+ ρ3
2△t

(
∥θnh∥

2 −
∥∥θn−1
h

∥∥2)+ τ
2△t

(
∥qnh∥

2 −
∥∥qn−1
h

∥∥2)+
k

2△t

(
∥ϕnhx + ψnh + lwnh∥

2 −
∥∥ϕn−1

hx + ψn−1
h + lwn−1

h

∥∥2)+ k0
2△t

(
∥wnhx − lϕnh∥

2 −
∥∥wn−1

hx − lϕn−1
h

∥∥2)
(4.18)

=
En
h−En−1

h

△t , which implies that:

Enh − En−1
h

△t
≤ 0.

2
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Remark 4.1 It is important to recognize that solving the equation (4.4) requires addressing a square

system of linear algebraic equations. The preceding proof indicates that if all input data are set

to zero, the resulting solution set
{
ϕ̃nh, ψ̃

n
h , w̃

n
h , θ

n
h , q

n
h

}
will also be zero. Consequently, this implies

that the equation (4.4) has a unique solution.

4.1. Error estimate

We will now provide estimates regarding the discrepancy between the exact solution and the numerical
solution.

At this point, we derive a priori error estimates concerning the numerical errors ϕ̃n − ϕ̃h, ψ̃
n − ψ̃h,

w̃n − w̃nh , ϕ
n − ϕh, ψ

n − ψh, w
n − wnh , θ

n − θh, q
n − qnh . We have the following theorem :

Theorem 4.2 For all
{
ζih, χ

i
h, ξ

i
h, η

i
h, α

i
h

}n
i=0

⊂ Sh0 , there exists a constant C > 0, independent of the
discretization parameters h and △t such that

(
∥∥∥ϕ̃n − ϕ̃nh

∥∥∥2 + ∥∥∥ψ̃n − ψ̃nh

∥∥∥2 + ∥w̃n − w̃nh∥
2
+
∥∥∥ψ̃nx − ψ̃nhx

∥∥∥2 + ∥ϕnx + ψn + lwn − (ϕnhx + ψnh + lwnh)∥
2

+ ∥wnx − lϕn − (wnhx − lϕnh)∥
2
+ ∥θn − θnh∥

2
+ ∥qn − qnh∥

2 ≤ C△t
n∑
i=1

∥∥∥ϕ̃it − ϕ̃i−ϕ̃i−1

△t

∥∥∥2 +∥∥∥ψ̃it − ψ̃i−ψ̃i−1

△t

∥∥∥2 + ∥∥∥w̃it − w̃i−w̃i−1

△t

∥∥∥2 + ∥∥∥θit − θi−θi−1

△t

∥∥∥2 + ∥∥∥qit − qi−qi−1

△t

∥∥∥2 + ∥∥∥ϕ̃i − ζih

∥∥∥2 +∥∥∥ϕ̃ix − ζihx

∥∥∥2 + ∥∥∥ψ̃i − χih

∥∥∥2 + ∥∥∥ψ̃ix − χihx

∥∥∥2 + ∥∥w̃i − ξih
∥∥2 + ∥∥w̃ix − ξihx

∥∥2 + ∥∥θix − ηihx
∥∥2 +∥∥qix − αihx

∥∥2 + ∥∥θi − ηih
∥∥2 + ∥∥qi − αih

∥∥2 + C
△t

n−1∑
i=1

(
∥∥∥ϕ̃i − ζih −

(
ϕ̃i+1 − ζi+1

h

)∥∥∥2 +∥∥∥ψ̃i − χih −
(
ψ̃i+1 − χi+1

h

)∥∥∥2 + ∥∥w̃i − ξih −
(
w̃i+1 − ξi+1

h

)∥∥2 + ∥∥θi − ηih −
(
θi+1 − ηi+1

h

)∥∥2 +∥∥qi − αih −
(
qi+1 − αi+1

h

)∥∥2) + C(
∥∥∥ϕ1 − ϕ̃0h

∥∥∥2 + ∥∥∥ψ1 − ψ̃0
h

∥∥∥2 + ∥∥w1 − w̃0
h

∥∥2 + ∥∥ψ0
x − ψ0

hx

∥∥2 +∥∥ϕ0hx + ψ0
h + lw0

h −
(
ϕ0x + ψ0 + lw0

)∥∥2 + ∥∥w0
x − lϕ0 −

(
w0
hx − lϕ0h

)∥∥2 + ∥∥θ0 − θ0h
∥∥2 + ∥∥q0 − q0h

∥∥2).
(4.19)

Proof: Step 1: For a continuous function g(t), let gn = g(tn). Subtracting the discrete equation (4.4)1
and the equation (4.2)1 at time tn for ζ = ζh ∈ Sh0 , we obtain

ρ1

(
ϕ̃nt − ϕ̃n

h−ϕ̃
n−1
h

△t , ζh

)
+ k ((ϕnx + ψn + lwn)− (ϕnhx + ψnh + lwnh) , ζhx)

−lk0 (wnx − lϕn − (wnhx − lϕnh) , ζh) = 0.
(4.20)

Thus, for all ζh ∈ Sh0 , we obtain :

ρ1

(
ϕ̃nt − ϕ̃n

h−ϕ̃
n−1
h

△t , ϕ̃n − ϕ̃nh

)
+ k

(
ϕnx + ψn + lwn − (ϕnhx + ψnh + lwnh) , ϕ̃

n
x − ϕ̃nhx

)
−lk0

(
wnx − lϕn − (wnhx − lϕnh) , ϕ̃

n − ϕ̃nh

)
= ρ1

(
ϕ̃nt − ϕ̃n

h−ϕ̃
n−1
h

△t , ϕ̃n − ζh

)
+

+k
(
ϕnx + ψn + lwn − (ϕnhx + ψnh + lwnh) , ϕ̃

n
x − ζhx

)
− lk0

(
wnx − lϕn − (wnhx − lϕnh) , ϕ̃

n − ζh

)
.

(4.21)

Similarly, from equations (4.2)2−(4.2)5 and (4.4)2-(4.4)5 we deduce, for all χh, ξh, ηh, αh ∈ Sh0 ,

ρ2

(
ψ̃nt −

ψ̃n
h−ψ̃n−1

h

△t ,ψ̃n−ψ̃nh
)
+b
(
ψnx − ψnhx, ψ̃

n
x − ψ̃nhx

)
+k
(
ϕnx+ψ

n+lwn− (ϕnhx + ψnh + lwnh) ,ψ̃
n−ψ̃nh

)
−γ
(
θn − θnh , ψ̃

n
x − ψ̃nhx

)
= ρ2

(
ψ̃nt −

ψ̃n
h−ψ̃n−1

h

△t ,ψ̃n−χh
)
+b
(
ψnx − ψnhx, ψ̃

n
x − χhx

)
+

k
(
ϕnx+ψ

n+lwn− (ϕnhx + ψnh + lwnh) ,ψ̃
n−χh

)
−γ
(
θn − θnh , ψ̃

n
x − χhx

)
,

(4.22)

ρ1

(
w̃nt − w̃n

h−w̃n−1
h

△t , w̃n − w̃nh

)
+ k0 (w

n
x − lϕn − (wnhx − lϕnh) , w̃

n
x − w̃nhx)

+lk (ϕnx + ψn + lwn − (ϕnhx + ψnh + lwnh) , w̃
n − w̃nh) = ρ1

(
w̃nt − w̃n

h−w̃n−1
h

△t , w̃n − ξh

)
+

+k0 (w
n
x − lϕn − (wnhx − lϕnh) , w̃

n
x − ξhx) + lk (ϕnx + ψn + lwn − (ϕnhx + ψnh + lwnh) , w̃

n − ξh) ,

(4.23)
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ρ3

(
θnt − θnh−θn−1

h

△t , θn − θnh

)
+ (qnx − qnhx, θ

n − θnh) + γ
(
ψ̃nx − ψ̃hx, θ

n − θnh

)
=

ρ3

(
θnt − θnh−θn−1

h

△t , θn − ηh

)
+ (qnx − qnhx, θ

n − ηh) + γ
(
ψ̃nx − ψ̃hx, θ

n − ηh

)
,

(4.24)

τ(qnt − qnh−qn−1
h

△t , qn − qnh) + β (qn − qnh , q
n − qnh) + (θnx − θnhx, q

n − qnh) =

τ
(
qnt − qnh−qn−1

h

△t , qn − αh

)
+ β (qn − qnh , q

n − αh) + (θnx − θnhx, q
n − αh)

(4.25)

Step2 : Using that (4.6), the first term in equation (4.21) become :

(
ϕ̃nt −

ϕ̃n
h−ϕ̃

n−1
h

△t ,ϕ̃n−ϕ̃nh
)

=
(
ϕ̃nt −

ϕ̃n−ϕ̃n−1

△t ,ϕ̃n−ϕ̃nh
)
+ 1

△t

(
ϕ̃n−ϕ̃n−1−

(
ϕ̃nh − ϕ̃n−1

h

)
, ϕ̃n−ϕ̃nh

)
=

(
ϕ̃nt −

ϕ̃n−ϕ̃n−1

△t ,ϕ̃n−ϕ̃nh
)
+ 1

2△t

∥∥∥ϕ̃n − ϕ̃nh −
(
ϕ̃n−1 − ϕ̃n−1

h

)∥∥∥2
+ 1

2△t

(∥∥∥ϕ̃n − ϕ̃nh

∥∥∥2 − ∥∥∥ϕ̃n−1 − ϕ̃n−1
h

∥∥∥2) .
(4.26)

Then

(
ϕ̃nt −

ϕ̃nh − ϕ̃n−1
h

△t
,ϕ̃n−ϕ̃nh

)
≥

(
ϕ̃nt −

ϕ̃n − ϕ̃n−1

△t
,ϕ̃n−ϕ̃nh

)
+

1

2△t

(∥∥∥ϕ̃n − ϕ̃nh

∥∥∥2 − ∥∥∥ϕ̃n−1 − ϕ̃n−1
h

∥∥∥2) ,
(4.27)

In the same way, for (4.22)-(4.25) we find

(
ψ̃nt −

ψ̃nh − ψ̃n−1
h

△t
,ψ̃n−ψ̃nh

)
≥

(
ψ̃nt −

ψ̃n − ψ̃n−1

△t
,ψ̃n−ψ̃nh

)
+

1

2△t

(∥∥∥ψ̃n − ψ̃nh

∥∥∥2 − ∥∥∥ψ̃n−1 − ψ̃n−1
h

∥∥∥2) ,
(4.28)

(
w̃nt −

w̃nh − w̃n−1
h

△t
,w̃n−w̃nh

)
≥
(
w̃nt −

w̃n − w̃n−1

△t
,w̃n−w̃nh

)
+

1

2△t

(
∥w̃n − w̃nh∥

2 −
∥∥w̃n−1 − w̃n−1

h

∥∥2) ,
(4.29)

(
θnt − θnh−θn−1

h

△t , θn − θnh

)
≥

(
θnt − θn−θn−1

△t ,θn−θnh
)
+ 1

2△t

(
∥θn − θnh∥

2 −
∥∥θn−1 − θn−1

h

∥∥2) , (4.30)

(
qnt − qnh−qn−1

h

△t , qn − qnh

)
≥

(
qnt −

qn−qn−1

△t ,qn−qnh
)
+ 1

2△t

(
∥qn − qnh∥

2 −
∥∥qn−1 − qn−1

h

∥∥2) , (4.31)

using again (4.15) for un = ψnx − ψnhx, ϕ
n
x+ψ

n+lwn− (ϕnhx + ψnh + lwnh) and w
n
x − lϕn − (wnhx − lϕnh)

and adding (4.21)-(4.25) we obtain
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ρ1
2△t

(∥∥∥ϕ̃n − ϕ̃nh

∥∥∥2 − ∥∥∥ϕ̃n−1 − ϕ̃n−1
h

∥∥∥2 + ∥w̃n − w̃nh∥
2 −

∥∥w̃n−1 − w̃n−1
h

∥∥2)+

ρ2
2△t

(∥∥∥ψ̃n − ψ̃nh

∥∥∥2 − ∥∥∥ψ̃n−1 − ψ̃n−1
h

∥∥∥2)+ b
2△t

(
∥ψnx − ψnhx∥

2 −
∥∥ψn−1

x − ψn−1
hx

∥∥2)+
k

2△t

(
∥ϕnx+ψ

n+lwn− (ϕnhx + ψnh + lwnh)∥
2 −

∥∥ϕn−1
x +ψn−1+lwn−1−

(
ϕn−1
hx + ψn−1

h + lwn−1
h

)∥∥2)+
k0
2△t

(
∥wnx − lϕn − (wnhx − lϕnh)∥

2 −
∥∥wn−1

x − lϕn−1 −
(
wn−1
hx − lϕn−1

h

)∥∥2)+
ρ3
2△t

(
∥θn − θnh∥

2 −
∥∥θn−1 − θn−1

h

∥∥2)+ τ
2△t

(
∥qn − qnh∥

2 −
∥∥qn−1 − qn−1

h

∥∥2) ≤ C(
∥∥∥ϕ̃nt − ϕ̃n−ϕ̃n−1

△t

∥∥∥2 +
1
△t

(
ϕ̃n − ϕ̃n−1 −

(
ϕ̃nh − ϕ̃n−1

h

)
, ϕ̃n − ζh

)
+
∥∥∥ϕ̃n − ϕ̃nh

∥∥∥2 + ∥∥∥ϕ̃n − ζh

∥∥∥2 + ∥∥∥ϕ̃nx − ζhx

∥∥∥2 +
∥wnx + lϕn − (wnhx + lϕnh)∥

2
+
∥∥∥ψ̃nt − ψ̃n−ψ̃n−1

△t

∥∥∥2 + ∥∥∥ψ̃n − χh

∥∥∥2 + ∥∥∥ψ̃n − ψ̃nh

∥∥∥2 +
1
△t

(
ψ̃n − ψ̃n−1 −

(
ψ̃nh − ψ̃n−1

h

)
, ψ̃n − χh

)
+ ∥ψnx − χhx∥2 + ∥ψnx − ψnhx∥

2
+
∥∥∥w̃t − w̃n−w̃n−1

△t

∥∥∥2 +
1
△t
(
w̃n − w̃n−1 −

(
w̃nh − w̃n−1

h

)
, w̃n − ξh

)
+ ∥w̃n − w̃nh∥

2
+ ∥w̃n − ξh∥2 + ∥w̃nx − ξhx∥2 +∥∥∥θt − θn−θn−1

△t

∥∥∥2 + 1
△t
(
θn − θn−1 −

(
θnh − θn−1

h

)
, θn − ηh

)
+ ∥θn − θnh∥

2
+ ∥θnx − ηnx∥

2
+

∥θn − ηnh∥
2
+ ∥θnx − ηnhx∥

2
+
∥∥∥qt − qn−qn−1

△t

∥∥∥2 + 1
△t
(
qn − qn−1 −

(
qnh − qn−1

h

)
, qn − αh

)
+

∥qn − qnh∥
2
+ ∥qn − αnh∥

2
+ ∥qnx − qnhx∥

2
+ ∥qnx − αnhx∥

2
).

(4.32)

Step 3. Multiplying the latter inequality by △t and summing over n we obtain, for all
{ζh, χh, ξh, ηh, αh}ni=0 ∈ Sh0 ,

∥∥∥ϕ̃n − ϕ̃nh

∥∥∥2 + ∥∥∥ψ̃n − ψ̃nh

∥∥∥2 + ∥w̃n − w̃nh∥
2
+
∥∥∥ψ̃nx − ψ̃nhx

∥∥∥2 + ∥ϕnx + ψn + lwn − (ϕnhx + ψnh + lwnh)∥
2
+

∥wnx − lϕn − (wnhx − lϕnh)∥
2
+ ∥θn − θnh∥

2
+ ∥qn − qnh∥

2 ≤ C△t
n∑
i=1

(
∥∥∥ϕ̃i − ϕ̃ih

∥∥∥2 +∥∥∥ψ̃i − ψ̃ih

∥∥∥2 + ∥∥w̃i − w̃ih
∥∥2 + ∥∥∥ψ̃ix − ψ̃ihx

∥∥∥2 + ∥∥ϕihx + ψih + lwih −
(
ϕix + ψi + lwi

)∥∥2 +∥∥wix − lϕi −
(
wihx − lϕih

)∥∥2 + ∥∥θi − θih
∥∥2 + ∥∥qi − qih

∥∥2 + ∥∥∥ϕ̃it − ϕ̃i−ϕ̃i−1

△t

∥∥∥2 +
1
△t

(
ϕ̃i − ϕ̃i−1 −

(
ϕ̃ih − ϕ̃i−1

h

)
, ϕ̃i − ζih

)
+
∥∥∥ψ̃it − ψ̃i−ψ̃i−1

△t

∥∥∥2 +
1
△t

(
ψ̃i − ψ̃i−1 −

(
ψ̃ih − ψ̃i−1

h

)
, ψ̃i − χih

)
+
∥∥∥w̃it − w̃i−w̃i−1

△t

∥∥∥2 +

1
△t
(
w̃i − w̃i−1 −

(
w̃ih − w̃i−1

h

)
, w̃i − ξih

)
+
∥∥∥θit − θi−θi−1

△t

∥∥∥2 +
+ 1

△t
(
θi − θi−1 −

(
θih − θi−1

h

)
, θi − ηih

)
+
∥∥∥qit − qi−qi−1

△t

∥∥∥2 + 1
△t (q

i − qi−1 −
(
qih − qi−1

h

)
, qi − αih)+∥∥∥ϕ̃i − ζih

∥∥∥2 + ∥∥∥ϕ̃ix − ζihx

∥∥∥2 + ∥∥∥ψ̃i − χih

∥∥∥2 + ∥∥∥ψ̃ix − χihx

∥∥∥2 + ∥∥w̃i − ξih
∥∥2 + ∥∥w̃ix − ξihx

∥∥2 +∥∥θix − ηihx
∥∥2 + ∥∥qix − αihx

∥∥2 + ∥∥θi − ηih
∥∥2 + ∥∥qi − αih

∥∥2) + C(
∥∥∥ϕ1 − ϕ̃0h

∥∥∥2 + ∥∥∥ψ1 − ψ̃0
h

∥∥∥2 +∥∥w1 − w̃0
h

∥∥2 + ∥∥ψ0
x − ψ0

hx

∥∥2 + ∥∥ϕ0hx + ψ0
h + lw0

h −
(
ϕ0x + ψ0 + lw0

)∥∥2 + ∥∥w0
x − lϕ0 −

(
w0
hx − lϕ0h

)∥∥2 +∥∥θ0 − θ0n
∥∥2 + ∥∥q0 − q0n

∥∥2).
(4.33)

Taking into account that (as in [2] with an equivalent result for similar terms)
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n∑
i=1

(
ϕ̃i − ϕ̃i−1 −

(
ϕ̃ih − ϕ̃i−1

h

)
, ϕ̃i − ζih

)
=
(
ϕ̃n − ϕ̃nh, ϕ̃

n − ζnh

)
+
(
ϕ̃0h − ϕ̃0, ϕ̃1 − ζ1h

)
+

n−1∑
i=1

∥∥∥ϕ̃ih − ϕ̃ih, ϕ̃
i − ζih −

(
ϕ̃i+1 − ζi+1

h

)∥∥∥ ≤ C

(∥∥∥ϕ̃n − ϕ̃nh

∥∥∥2 + ∥∥∥ϕ̃n − ζnh

∥∥∥2 + ∥∥∥ϕ̃0h − ζ0h

∥∥∥2 + ∥∥∥ϕ̃1 − ζ1h

∥∥∥2)
+C△t

n−1∑
i=1

∥∥∥ϕ̃i − ϕ̃ih

∥∥∥2 + C
△t

n−1∑
i=1

∥∥∥ϕ̃i − ζih −
(
ϕ̃i+1 − ζi+1

h

)∥∥∥2 ,
(4.34)

and applying Gronwall’s inequality [6] in its discrete version, the result follows. 2

Corollary 4.1 Suppose that the solution to the continuous problem is sufficiently regular, that is:

ϕ, ψ, ω ∈ H3
(
0, T ;L2 (0, L)

)
∩W 1,∞ (0, T ;H1 (0, L)

)
∩H2

(
0, T ;H1 (0, L)

)
, (4.35)

and,

θ, q ∈ H2
(
0, T ;L2 (0, L)

)
∩ L∞ (0, T ;H2 (0, L)

)
∩H1

(
0, T ;H1 (0, L)

)
. (4.36)

There exists then, a constant C > 0 independent of h and △t, such that :∥∥∥ϕ̃n − ϕ̃nh

∥∥∥2 + ∥∥∥ψ̃n − ψ̃nh

∥∥∥2 + ∥w̃n − w̃nh∥
2
+
∥∥∥ψ̃nx − ψ̃nhx

∥∥∥2 + ∥ϕnx + ψn + lwn − (ϕnhx + ψnh + lwnh)∥
2
+

∥wnx − lϕn − (wnhx − lϕnh)∥
2
+ ∥θn − θnh∥

2
+ ∥qn − qnh∥

2 ≤ C
(
h2 +△t2

)
.

(4.37)

Proof: The result is a consequence of following estimates as in [7] and [15] :

1
△t

N−1∑
n=1

∥∥∥ϕ̃n − ζnh −
(
ϕ̃n+1 − ζn+1

h

)∥∥∥ ≤ Ch2
∥∥∥ϕ̃t∥∥∥2

L2(0,T ;H1(0,L))
. 2

4.2. Numerical simulation

To demonstrate the accuracy of the approximation and confirm the asymptotic behavior of the so-
lutions, we present in this section results from some numerical examples. To solve the system (1.1), we
employed an iterative method for a set of implicit equations. Refer to [23], [29] and [24] for further
details.

Assuming that ϕ̃n−1
h , ψ̃n−1

h , w̃n−1
h , θn−1

h , qn−1
h are known and let. ϕn,0h = ϕn−1

h , ϕ̃n,0h = ϕ̃n−1
h , ψn,0h =

ψn−1
h , ψ̃n,0h = ψ̃n−1

h , w̃n,0h = w̃n−1
h , wn,0h = wn−1

h ,

θn,0h = θn−1
h , qn,0h = qn−1

h , we will solve the following system:

ρ3
△t (θ

n,j
h − θn−1

h , ηh) + (qn,j−1
hx , ηh) + γ(ψ̃n,jx , ηh) = 0,

τ
△t (q

n,j
h − qn−1

h , αh) + β(qn,jh , αh) + (θn,jhx , αh) = 0,
ρ2
△t (ψ̃

n,j
h − ψ̃n−1

h , χh) + b(ψn,jhx , χhx) + k(ϕn,jhx + ψn,jh + lwn,j−1
h , χh)− γ(θn,j−1

h , χhx) = 0,
ρ1
△t (ϕ̃

n,j
h − ϕ̃n−1

h , ζh) + k(ϕn,jhx + ψn,j−1
h + lwn,j−1

h , ζhx)− lk0(w
n
hx − lϕnh, ζh) = 0,

ρ1
△t (w̃

n,j
h − w̃n−1

h , ξh) + lk0(w
n,j
hx − lϕn,jh , ξhx) + lk(ϕn,jhx + ψn,jh + lwn,jh , ξh) = 0,

(4.38)

where, for j = 1, 2, ..., J

ϕn,jh = ϕn−1
h +△tϕ̃n,jh , ψn,jh = ψn−1

h +△tψ̃n,jh , wn,jh = wn−1
h +△tw̃n,jh . (4.39)

Problem (4.38) consists of five decoupled linear systems of algebraic equations, with tridiagonal matrices.
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Example 1. Homogeneous problem: energy decay
We consider first the following parameters of the model:

ρ1 = ρ2 = 0.9, ρ3 = 1, b = 2, k = 2, k0 = 1, τ = 1, γ =

√
b

τ
(1− τkρ3

ρ1
)(
ρ1
k

− ρ2
b
) = 0.7416, β = l = 1;

(4.40)

The discretization parameters are:

N = 1500, T = 40, △t = T

N
, J = 100, h =

1

J
, . (4.41)

Along with the following initial conditions:


ϕ0(x) = 20x(x− 1)2 = ϕt (x, 0) = ϕ1 (x) , ∀x ∈ (0, 1) ,
ψ0(x) = x cos(πx2 ) = ψt (x, 0) , ∀x ∈ (0, 1) ,
w0(x) = w(x, 0) = x cos(πx2 ) = wt(x, 0), ∀x ∈ (0, 1) ,
q0(x) = q(x, 0) = sin(πx), ∀x ∈ (0, 1) ,
θ0(x) = θ (x, 0) = sin(πx), ∀x ∈ (0, 1) ,

(4.42)

We present the graphs of the solutions to the system described in (1.1) (refer to Figure 2), along with the
graph depicting the total discrete energy E(t). This analysis reveals an exponential decay in the total
discrete energy, as illustrated in Figure 1.
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40
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Figure 1: Behavior of the discrete energy for example 1.
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Figure 2: Numerical solution for x = 0.5 for example 1.

Example 2: Numerical convergence

The purpose of this example is to assess the numerical convergence of the numerical scheme. To
achieve this, we will consider the following problem.

Subsequently, we conducted a simulation to numerically evaluate the error estimate. We addressed
the modified problem (P)

Find w : [0, 1] × [0, T ] → R, ϕ : [0, 1] × [0, T ] → R and ψ : [0, 1] × [0, T ] → R respectively the
longitudinal, vertical, and shear angle displacements and the temperature deviations θ : [0, 1]× [0, T ] → R
and q : [0, 1]× [0, T ] → R such that

(P )


ρ1ϕtt − k(ϕx + ψ + lw)x − lk0(wx − lϕ) = f1 in (0, 1)× (0, T )
ρ2ψtt − bψxx + k(ϕx + ψ + lw) + γθx = f2 in (0, 1)× (0, T )
ρ1wtt − k0(wx − lϕ)x + lk(ϕx + ψ + lw) = f3 in (0, 1)× (0, T )
ρ3θt + qx + γψxt = f4 in (0, 1)× (0, T )
τqt + βq + θx = f5 in (0, 1)× (0, T )

where f1, f2, f3, f4, f5, and the initial data are calculated from the exact solution
ϕ (x, t) = x5(1− x)5et,
ψ (x, t) = x5(1− x)5et,
ω (x, t) = x5(1− x)5et,
θ (x, t) = x5(1− x)5et,
q (x, t) = x5(1− x)5et,

Table 1: Computed errors when T = 1
Nel ∆t Error

20 5 10−3 5,6931 10−6

40 2,5 10−3 1,6009 10−6

80 1,25 10−3 5,8625 10−7

160 6,25 10−4 3,3313 10−7

320 3,125 10−4 2,6987 10−7

In Table 1, we show the computed errors at T = 1 for different discretization parameters J and ∆t ,
where the Error is defined as:

Error = (
∥∥∥ϕ̃n − ϕ̃nh

∥∥∥2+∥∥∥ψ̃n − ψ̃nh

∥∥∥2+∥w̃n − w̃nh∥
2
+
∥∥∥ψ̃nx − ψ̃nhx

∥∥∥2+∥ϕnx + ψn + lwn − (ϕnhx + ψnh + lwnh)∥
2
+

∥wnx − lϕn − (wnhx − lϕnh)∥
2
+ ∥θn − θnh∥

2
+ ∥qn − qnh∥

2
)

1
2 .
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Figure 3: Asymptotic behavior of the numerical scheme.
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Figure 4: The evolution of log(Error).

We observe the numerical convergence in Corollary is achieved according to Figures 3-4.

The numerical scheme was implemented using MATLAB on a Intel Core i7-9750H @2.60 GHz.

5. Conclusion

In this work, we have analyzed a linear one-dimensional thermoelastic Bresse system with second
sound, establishing its well-posedness and identifying conditions for exponential stability through a com-
bination of semigroup theory, energy methods, and frequency domain analysis. To complement the
theoretical study, we developed a finite element approximation in space, coupled with an implicit Eu-
ler scheme for time integration. We demonstrated that the resulting discrete energy decays over time,
mirroring the continuous case, and provided a priori error estimates for both semi-discrete and fully dis-
crete schemes. These theoretical results were supported by numerical simulations, which confirmed the
expected convergence behavior and energy decay properties. Altogether, our findings provide a rigorous
and comprehensive understanding of the dynamics of the system, both analytically and numerically, and
offer a reliable framework for further investigation or practical implementation.
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