
Bol. Soc. Paran. Mat. (3s.) v. 2025 (43) 2 : 1–13.
©SPM – E-ISSN-2175-1188 ISSN-0037-8712
SPM: www.spm.uem.br/bspm doi:10.5269/bspm.79623

Energy Estimates and Existence of Non-trivial Solutions for Robin Problems Involving
p-Laplacian Operator

Soheila Valizadeh, Shapour Heidarkhani∗ and Mohammad Abolghasemi

abstract: This paper studies the existence of non-trivial solutions and energy estimates for a nonlinear
elliptic problem driven by the p-Laplacian under Robin boundary conditions, which model various physical
phenomena such as heat transfer and fluid flow with boundary interactions. Using a recent local minimum
theorem, we establish existence results under suitable growth and Ambrosetti-Rabinowitz (AR) conditions.
We identify intervals of the parameter λ where solutions exist and extend the result to all λ > 0 under
(p− 1)-sublinear growth at zero and infinity. An illustrative example is also provided.
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1. Introduction

In this work, we investigate the existence of non-trivial weak solutions and energy estimates for the
following nonlinear elliptic problem with homogeneous Robin boundary conditions:{

−∆pu+ |u|p−2u = λf(x, u), in Ω,
∂u
∂v + α(x)|u|p−2u = 0, on ∂Ω,

(1.1)

where Ω, is a non-empty bounded open set in RN (for N ≥ 3), that has a smooth boundary ∂Ω and λ
is a positive real parameter. The differential operator p-Laplacian is defined by ∆pu = div(|∇u|p−2∇u),
for 1 < p < N . Moreover, f : Ω× R → R is a Carathéodory function and α ∈ L∞(∂Ω), α(x) ≥ 0 a.e. on
∂Ω. The generalized normal derivative ∂u

∂v is defined by ∂u
∂v = |∇u|p−2∇u · v(x), where v(x) be the unit

normal vector pointing outward from the boundary of Ω at x ∈ ∂Ω.
Partial differential equations involving the p-Laplacian have been widely studied due to their ap-

plications in nonlinear elasticity, fluid dynamics, and other fields involving non-Newtonian flows and
processes with non-standard diffusion. As shown in [8,12], and the references therein, a rich literature
exists addressing various boundary value problems involving the p-Laplacian. Among these, problems
with Robin-type boundary conditions are of particular interest, as they encompass both Dirichlet and
Neumann cases and model energy transfer across boundaries.

Numerous analytical techniques have been employed to study such problems, including fixed point
theory, the method of sub- and supersolutions, and variational methods. For more details, see [1,10,11,
19,21,22,23,24].

In [1], a parametric Robin problem involving the p-Laplacian with an indefinite potential and a
superlinear term not satisfying the Ambrosetti-Rabinowitz (AR) condition is considered. In [10], the
existence of two nontrivial solutions is established using variational methods under the AR condition for
the problem (1.1). The study in [24] investigates a (p, q)-equation under Robin conditions and proves a
bifurcation-type result using variational and comparison techniques. Additional works such as [4,6,13]
address related questions involving Neumann, singular, or periodic boundary conditions.
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In this paper, we establish the existence of nontrivial solutions and energy estimates for Robin prob-
lems driven by the p-Laplacian without requiring asymptotic conditions on the nonlinear term at zero or
infinity (see Theorem 3.1); an explicit example is given in Corollary 3.1. Moreover, Theorem 3.2 provides
an existence result under a sublinear growth condition at the origin. When the nonlinearity also exhibits
sublinear growth at infinity, the associated energy functional is coercive, and the existence of (possibly
trivial) solutions follows from direct minimization methods (see Remark 3.4).

The main novelty of our work lies in the application of a recent local minimum theorem to nonlinear
Robin problems involving the p-Laplacian. To demonstrate the effectiveness of our approach, we conclude
with a concrete example.

For a thorough treatment of the subject, we refer the reader to [7,17,18]
The structure of the paper is as follows: In Section 2, we present the main definitions and mathematical

tools required for the proofs of our main results. Section 3 is devoted to the statement and proof of the
main results, along with an illustrative example.

2. Starting Points and Foundational Notation

Let A : X → X∗ be a functional, where X is a real Banach space and X∗ is its dual. We say that A
has the s+-property, iff for every sequence {un}n∈N ⊂ X such that

1. un ⇀ u (weakly in X), and

2. lim supn→+∞⟨Aun, un − u⟩ ≤ 0,

implies that un → u (strongly in X).
Here, ⟨., .⟩ denotes the duality pairing between X and X∗.
In this paper, X denotes the Sobolev space W 1,p(Ω) with the following norm

∥u∥ =

(∫
Ω

|u(x)|pdx+

∫
Ω

|∇u(x)|pdx

) 1
p

,

for all u ∈ X. For 1 < p < N, p∗ = Np
N−p and u ∈ W 1,p(Ω), one has there exists a positive constant T

such that

∥u∥Lp∗ (Ω) ≤ T∥u∥,

where T has been defined by Talenti (see [27]) and

T ≤ π− 1
2N− 1

p

( p− 1

N − P

)1− 1
p

(
Γ(1 + N

2 )Γ(N)

Γ(Np )Γ(1 +N − N
p )

) 1
N

,

where Γ is the Euler function.
Moreover, by Hölder’s inequality for every u ∈ W 1,p(Ω) and s ∈ [1, p∗], one has

∥u∥Ls(Ω) ≤ κs∥u∥, (2.1)

where

κs = T |Ω|
p∗−s
p∗s , (2.2)

and |Ω| denotes the Lebesgue measure of Ω in R. On ∂Ω we consider the (N − 1)-dimensional Hausdorff
(surface) measure, denoted by σ(.). We will also use the boundary Lebesgue spaces Lp(∂Ω), for 1 ≤ p ≤ ∞
in the standard case. The theory of Sobolev spaces guarantees the existence of a unique continuous linear
operator γ0 : W 1,p(Ω) → Lp(∂Ω), called the trace map, such that

γ0(u) = u|∂Ω, ∀u ∈ W 1,p(Ω) ∩ C(Ω).
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Therefore, the trace map extends the notion of boundary values to all Sobolev functions. The operator

γ0 : W 1,p(Ω) → Lη(∂Ω) is compact for η ∈
[
1, (N−1)p

N−p

)
, if N > p and for all η ≥ 1 if N < p, with

imγ0 = W
1
p′ ,p(∂Ω),

(
p′ =

p

p− 1

)
, kerγ0 = W 1,p

0 (Ω).

As usual, we drop the notation of the trace map γ writing simply u in place of γ(u).
In our study of the problem (1.1), we work with the negative p-Laplacian −∆p : W 1,p(Ω) →

(W 1,p
0 (Ω))∗. Evidently, −∆p is continuous, bounded, pseudomonotone and satisfies the s+-property

(see [5], [20]). Moreover, we suppose that f : Ω×R → R is a Carathéodory function, in other word f(., t)
is measurable for every t ∈ R and f(x, .) is continuous for almost every x ∈ Ω. Moreover, f satisfies in
the following conditions:

(l1) the subcritical growth condition: There exist two non-negative constants a1, a2 and a constant
s ∈]p, p∗[, such that

|f(x, t)| ≤ a1 + a2|t|s−1, ∀(x, t) ∈ Ω× R.

(l2) Ambrosetti-Rabinowitz (AR)-condition: there exist two constants µ > p and M > 0, such that

0 < µF (x, t) < tf(x, t),∀x ∈ Ω, |t| ≥ M,

where F (x, t) =
∫ t

0
f(x, ζ)dζ,∀(x, t) ∈ Ω× R.

We define the functional Iλ : W 1,p(Ω) → R by

Iλ(u) := Φ(u)− λΨ(u),

where

Φ(u) =
1

p
∥u∥p + 1

p

∫
∂Ω

α(x)|u(x)|pdσ (2.3)

and

Ψ(u) =

∫
Ω

F (x, u(x))dx,

for every u ∈ W 1,p(Ω).

Lemma 2.1 The functionals Φ,Ψ and Iλ are Gâteaux differentiable functionals. More precisely, we have

Φ′(u)(v) =

∫
Ω

|∇u(x)|p−2∇u(x) · ∇v(x)dx

+

∫
Ω

|u(x)|p−2u(x)v(x)dx+

∫
∂Ω

α(x)|u(x)|p−2uvdσ

and

Ψ′(u)(v) =

∫
Ω

f(x, u(x))v(x)dx,

for every u, v ∈ W 1,p(Ω).
We say that u ∈ W 1,p(Ω) is a weak solution of the problem (1.1), if

I
′

λ(u)(v) = 0, ∀v ∈ W 1,p(Ω),

which is equivalent to ∫
Ω

|∇u(x)|p−2∇u(x) · ∇v(x)dx+

∫
Ω

|u(x)|p−2u(x)v(x)dx

+

∫
∂Ω

α(x)|u(x)|p−2uvdσ = λ

∫
Ω

f(x, u(x))v(x)dx.
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Definition 2.1 Let S be a real reflexive Banach space. The functional I satisfies in the Palais-Smale
condition (in short (PS)-condition ), if any sequence {uk} ⊂ S such that

(i1) {I(uk)} is bounded,

(i2) limk→∞ ∥I ′(uk)∥S∗ = 0,

has a convergent subsequence.

Fix two real numbers r1 < r2 and put I = Φ − λΨ where Φ,Ψ : S → R are two continuously Gâteaux
differentiable functionals. We say I satisfies in the Palais-Smale condition cut off lower at r1 and upper
at r2(

[r1](PS)[r2]-condition), if any sequence {uk} such that (i1), (i2) and

(i3) r1 < Φ(uk) < r2,

possesses a convergent subsequence. Obviously, if r1 = −∞ and r2 = ∞ it coincides with the classical
(PS)-condition. Moreover, we denote the condition by (PS)[r2] if r1 = −∞ and r2 ∈ R and by [r1](PS)
if r1 ∈ R and r2 = ∞.

Now, we recall the basic tools that will be utilized in the following section. For all r1, r2, r ∈ R with
r1 < r2, set

ϑ(r1, r2) = inf
u∈Φ−1(r1,r2)

supv∈Φ−1(r1,r2) Ψ(v)−Ψ(u)

r2 − Φ(u)
,

β(r1, r2) = sup
u∈Φ−1(r1,r2)

Ψ(u)− supv∈Φ−1(−∞,r1] Ψ(v)

Φ(u)− r1
,

and

β(r) = sup
u∈Φ−1(r,+∞)

Ψ(u)− supv∈Φ−1(−∞,r] Ψ(v)

Φ(u)− r
.

In order to prove the existence of at least one non-zero solution for the problem (1.1), we use the following
version of Theorem 5.1 and Theorem 5.3 in [2], that was derived from Ricceri variational principle as
presented in [26, Theorem 2.5].

Theorem 2.1 Let, X be a real Banach space and Φ,Ψ : X → R be two continuously Gâteaux differen-
tiable functions. Assume that, there are r1, r2 ∈ R such that r1 < r2 and ϑ(r1, r2) < β(r1, r2) and for
each

λ ∈

(
1

β(r1, r2)
,

1

ϑ(r1, r2)

)
,

the function Iλ = Φ− λΨ satisfies [r1](PS)[r2]-condition. Then for all

λ ∈

(
1

β(r1, r2)
,

1

ϑ(r1, r2)

)
,

there exists u0λ ∈ Φ−1(r1, r2) such that Iλ(u0λ) ≤ Iλ(u), for all u ∈ Φ−1(r1, r2) and I
′

λ(u0λ) = 0.

Theorem 2.2 Let X be a real finite dimensional Banach space, Φ : X → R be a continuously Gâteaux
differetiable function whose Gâteaux derivative admits a continuous inverse on X∗ and Ψ : X → R be a
continuously Gâteaux differetiable function. Fix infX Φ < r < supX Φ and assume that β(r) > 0 and for
each λ > 1

β(r) , the functional Iλ = Φ− λΨ is coercive. Then for each

λ ∈

(
1

β(r)
,+∞

)
,

there is u0λ ∈ Φ−1(r,+∞) such that Iλ(u0λ) ≤ Iλ(u), for all u ∈ Φ−1(r,+∞) and I
′

λ(u0λ) = 0.

We refer interested readers to [9], [13], [14], and [16], where Theorems 2.1 and 2.2 have been applied to
establish the existence of solutions for various boundary value problems
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3. Main Results

Put

k =
|Ω|+ α∞|∂Ω|

|Ω|
p
p∗

T p,

that |∂Ω| =
∫
∂Ω

dσ = σ(∂Ω) and α∞ = ess supΩ α(x).
For two non-negative constants c and d with

c ̸= k
1
p d,

put

ac(d) =
a1

|Ω|
1
p∗ c
T κ1 +

a2

s
|Ω|

s
p∗ cs

T s κs
s −

∫
Ω
F (x, d)dx

|Ω|
p
p∗

pTp (cp − kdp)

,

where κs is defined in (2.2).
We now state and prove the main result of this paper, which establishes a qualitative property of

solutions to problem (1.1).

Theorem 3.1 Assume that f be a Carathéodory function that satisfies both the subcritical growth con-
dition and AR-condition and there exist three positive constants c1, c2 and d with

c1

|Ω| 1
N T

< d <
c2

k
1
p

, (3.1)

such that

ac2(d) < ac1(d). (3.2)

Then, for each λ ∈
(

1
ac1 (d)

, 1
ac2 (d)

)
, the problem (1.1) admits at least two non-trivial solutions u1 and u2

in X, such that

|Ω|
1
p∗ c1

T
(
1 + a∞|∂Ω|T p|Ω|p−

p
p∗
) 1

p

< ∥ui∥ <
|Ω|

1
p∗ c2
T

, i = 1, 2.

Proof: Let us apply Theorem 2.1 to the functionals Φ and Ψ. By (2.3), we have Φ is coercive, i.e.
lim∥u∥→∞ Φ(u) = +∞. We claim that, Φ has a continuous inverse on X∗. By direct calculation, one has

⟨Φ′(u)− Φ′(v), u− v⟩ =
∫
Ω

|∇(u− v)(x)|p−2∇(u− v)(x) · ∇(u− v)(x)dx

+

∫
Ω

|(u− v)(x)|p−2(u− v)(x)(u− v)(x)dx

+

∫
∂Ω

α(x)|(u− v)(x)|p−2(u− v)(u− v)dσ

≥ ∥u− v∥p,

from this we deduce that Φ is uniformly monotone in X. Put v = 0, by p > 1 we have

lim
∥u∥→∞

Φ′(u)[u]

∥u∥
= +∞,
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so, Φ′ is coercive. By [28, Theorem 26. A], we can see that Φ admits a continuous inverse on X∗. By
condition (l1), we have

F (x, t) ≤ a1|t|+
a2
s
|t|s, ∀(x, t) ∈ Ω× R. (3.3)

Then, from (3.3) it is easy to see that

Ψ(u) =

∫
Ω

F (x, u(x))dx ≤ a1∥u∥L1 +
a2
s
∥u∥sLs .

For all u ∈ W 1,p(Ω) with Φ(u) ≤ r, inequality (2.3) implies ∥u∥ ≤ (pr)
1
p . Thus,

Φ−1(]−∞, r]) ⊆ {u ∈ W 1,p(Ω) : ∥u∥ ≤ (pr)
1
p }.

Then, by (2.1) and (2.3) for every u ∈ X such that Φ(u) ≤ r, we have

sup
u∈Φ−1(−∞,r]

Ψ(u) ≤ sup
u∈Φ−1(−∞,r]

a1κ1∥u∥+
a2
s
κs
s∥u∥s ≤ a1κ1(rp)

1
p +

a2
s
κs
s(rp)

s
p .

Define ω(x) = d as a constant function in ω ∈ X. Then,

dp|Ω|
p

≤ Φ(ω) =
dp

p

(∫
Ω

dx+

∫
∂Ω

α(x)dσ
)
≤ dp

p
(|Ω|+ α∞|∂Ω|) = dp|Ω|

p
p∗

pT p
k,

and

Ψ(ω) =

∫
Ω

F (x, d)dx.

Now, we set

r1 =
|Ω|

p
p∗

pT p
cp1, r2 =

|Ω|
p
p∗

pT p
cp2.

By (3.1), a direct computation yields r1 < Φ(ω) < r2. Therefore, we have

ϑ(r1, r2) = inf
u∈Φ−1(r1,r2)

supv∈Φ−1(r1,r2) Ψ(v)−Ψ(u)

r2 − Φ(u)

≤
supv∈Φ−1(−∞,r2) Ψ(v)−Ψ(ω)

r2 − Φ(ω)

≤
a1(r2p)

1
pκ1 +

a2

s (r2p)
s
pκs

s −
∫
Ω
F (x, d)dx

|Ω|
p
p∗

pTp cp2 −
|Ω|

p
p∗

pTp kdp

= ac2(d),

on the other hand, arguing as before, we have

β(r1, r2) = sup
u∈Φ−1(r1,r2)

Ψ(u)− supv∈Φ−1(−∞,r1] Ψ(v)

Φ(u)− r1

≥
Ψ(ω)− supv∈Φ−1(−∞,r1] Ψ(v)

Φ(ω)− r1

≥
∫
Ω
F (x, d)dx− a1(r1p)

1
pκ1 − a2

s (r1p)
s
pκs

s

|Ω|
p
p∗

pTp kdp − |Ω|
p
p∗

pTp cp1

= ac1(d),
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from (3.2), one has ϑ(r1, r2) < β(r1, r2). By conditions (l1), (l2) and [10, Lemma 1], the functional Iλ

satisfies (PS)-condition. Hence, from Theorem 2.1 for each λ ∈
(

1
ac1

(d) ,
1

ac2
(d)

)
, the functional Iλ admits

at least one non-trivial critical point u1 such that r1 < Φ(u1) < r2. This condition by the following
inequality

1

p
∥u1∥p ≤ Φ(u1) ≤

1

p
∥u1∥p +

1

p
a∞|∂Ω|κp

1∥u1∥p

≤ 1

p
∥u1∥p

(
1 + a∞|∂Ω|T p|Ω|

p(p∗−1)
p∗

)
,

is equivalent to

|Ω|
1
p∗ c1

T
(
1 + a∞|∂Ω|T p|Ω|p−

p
p∗
) 1

p

< ∥u1∥ <
|Ω|

1
p∗ c2
T

.

Then, u1 ∈ X is a non-trivial local minimum for Iλ in X. Without loss of generality, we can assume that
u1 is a strict local minimum of Iλ in the X. So, there is τ > 0 such that inf∥u−u1∥=τ Iλ(u) > Iλ(u1). Fur-
thermore, (l2) implies through standard arguments that Iλ is unbounded from below. Consequently, there
exists u2 ∈ X satisfying Iλ(u2) < Iλ(u1), for which Iλ verifies the mountain pass geometry. Moreover, by
using (AR) again, we deduce that Iλ satisfies the Palais-Smale condition. Applying the classical Theorem
of Ambrosetti and Rabinowitz, we obtain a second critical point ũ ∈ X of Iλ with Iλ(ũ) > Iλ(u1). Thus,
u1 and ũ are two distinct weak solutions to the problem (1.1). 2

Remark 3.1 Owing to the (AR)-condition in Theorem 3.1, we infer that the energy functional Iλ is
unbounded from below and fulfills the classical (PS)-condition, so the classical Mountain Pass Theorem
can be used. Hence, (AR)-condition could be replaced by a Cerami-type condition (Ce) in Theorem 3.1
to attain the second solution. The reader is referred to the papers [3,15,25], for more information on the
subject.

The functional I ∈ C1(S,R) verifies the (Ce)-condition, if every sequence {uk} such that

I(uk) → c, ∥I ′(uk)∥(1 + ∥uk∥) → 0,

has a convergent subsequence.

Remark 3.2 Theorem 3.1 ensures that the problem (1.1) admits at least two non-trivial solutions. One
of these solutions has been achieved based on the classical Ambrosetti-Rabinowitz condition on the data
by f(x, 0) ̸= 0 for every x ∈ Ω. If the condition f(x, 0) ̸= 0 for every x ∈ Ω does not hold, the second
solution u2 to the problem (1.1) may indeed be zero.

Below we give a particular case of Theorem 3.1.

Corollary 3.1 Assume that, f be a Carathéodory function that satisfies both the subcritical growth con-
dition and AR-condition and there exist two positive constants c and d with

kdp < cp,

such that ∫
Ω
F (x, d)dx

kdp
>

a1
|Ω|

1
p∗ c
T κ1 +

a2

s
|Ω|

s
p∗ cs

T s κs
s

cp
. (3.4)

Then, for each

λ ∈

(
|Ω|

p
p∗ kdp

pT p
∫
Ω
F (x, d)dx

,
|Ω|

p
p∗ cp

pT p
(
a1

|Ω|
1
p∗ c
T κ1 +

a2

s
|Ω|

s
p∗ cs

T s κs
s

)
)
,
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the problem (1.1) admits at least two non-zero weak solution u1, u2 in X, such that

∥ui∥ <
|Ω|

1
p∗ c2
T

, i = 1, 2.

Proof: In Theorem 3.1, we set c1 = 0 and c2 = c. Indeed, by (3.4) we have

ac(d) =
a1

|Ω|
1
p∗ c
T κ1 +

a2

s
|Ω|

s
p∗ cs

T s κs
s −

∫
Ω
F (x, d)dx

|Ω|
p
p∗

pTp (cp − kdp)

<
a1

|Ω|
1
p∗ c
T κ1 +

a2

s
|Ω|

s
p∗ cs

T s κs
s

|Ω|
p
p∗

pTp cp

<

∫
Ω
F (x, d)dx

|Ω|
p
p∗

pTp kdp
= a0(d).

So, Theorem 3.1 ensures the result. 2

By applying Corollary 3.1, we obtain the following result.

Theorem 3.2 Assume that f is a Carathéodory function that satisfies both the subcritical growth condi-
tion and AR-condition and

lim
ξ→0+

∫
Ω
F (x, ξ)dx

ξp
= +∞. (3.5)

Moreover, let c > 0 and put

λ∗
c =

|Ω|
p
p∗ cp

pT p
(
a1

|Ω|
1
p∗ c
T κ1 +

a2

s
|Ω|

s
p∗ cs

T s κs
s

) .
Then, for every λ ∈ (0, λ∗

c), the problem (1.1) admits at least one non-zero weak solution u0,λ ∈ X such

that ∥u0,λ∥ ≤ |Ω|
1
p∗ c
T and limλ→0+ ∥u0,λ∥ = 0.

Proof: Fix λ ∈ (0, λ∗
c). By (3.5), there is a positive constant d with kdp < cp, such that

|Ω|
p
p∗ kdp

pT p
∫
Ω
F (x, d)dx

< λ <
|Ω|

p
p∗ cp

pT p
(
a1

|Ω|
1
p∗ c
T κ1 +

a2

s
|Ω|

s
p∗ cs

T s κs
s

) .
Applying Corollary 3.1, the problem (1.1) admits at least one non-zero solution u0,λ such that ∥u0,λ∥ ≤
|Ω|

1
p∗ c
T . Then, for every λ ∈ (0, λ∗

c), there exists at least one non-zero weak solution u0,λ ∈ Φ−1(0, r2) for
the problem (1.1) and we get

1

p
∥u0,λ∥p ≤ Φ(u0,λ) ≤ r2 =

|Ω|
p
p∗

pT p
cp2,

so,

∥u0,λ∥ ≤ |Ω|
1
p∗ c2
T

. (3.6)
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Hence, from (3.6), (l1) and (2.2) one has

∣∣∣ ∫
Ω

f(x, u0,λ(x))u0,λ(x)dx
∣∣∣ ≤ a1

|Ω|
1
p∗ c2
T

κ1 +
a2
s

|Ω|
s
p∗ cs2
T s

κs
s, (3.7)

for every λ ∈ (0, λ∗
c). Since, I ′λ(u0,λ)(v) = 0 for all λ ∈ (0, λ∗

c) and every v ∈ X, in particular
I ′λ(u0,λ)(u0,λ) = 0, we have

Φ
′
(u0,λ)(u0,λ) = λ

∫
Ω

f(x, u0,λ(x))u0,λ(x)dx,

for every λ ∈ (0, λ∗
c). Then, from

0 ≤ ∥u0,λ∥p ≤ Φ
′
(u0,λ)(u0,λ),

and bearing (3.7) in mind, it follows

lim
λ→0+

∥u0,λ∥p ≤ lim
λ→0+

λΨ
′
(u0,λ)(u0,λ) = 0,

consequently, limλ→0+ ∥u0,λ∥p = 0. 2

Example 3.1 Assume that N = 3, p = 2, a1 = 1, a2 = 3, s = 3, c = 1,Ω = {x = (x1, x2, x3) ∈
R3, |x2

1 + x2
2 + x2

3 ≤ 1}, α(x) = 1 and so p∗ = 6. Set f(x, t) = 1 + 2t2, for t ∈ R. We have

|f(x, t)| ≤ 1 + 3t2,

then, (l1) holds. On the other hand

F (x, t) =

∫ t

0

f(x, ζ)dζ = t+
2

3
t3,

and

lim
|t|→∞

tf(x, t)

F (x, t)
< ∞,

so, (l2) holds. A simple computation shows that

lim sup
t→0+

F (t)

tp
= +∞.

Also by definition of T, one has

T ≤ (3π)
−1
2

( Γ(3)
Γ( 32 )

) 1
3

,

and

λ∗ =
|Ω|−2

3

4T 2
≥

( 4π3 )
−2
3 × 3π

4
(

Γ(3)

Γ( 3
2 )

) 2
3

.

Applying Theorem 3.2 for every λ ∈
(
0,

( 4π
3 )

−2
3 ×3π

4

(
Γ(3)

Γ( 3
2
)

) 2
3

)
, the problem (1.1) has at least one non-zero weak

solution.
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Remark 3.3 Bearing in mind the above assumptions, we claim that the mapping λ → Iλ(u0,λ) is negative
and strictly decreasing on the interval (0, λ∗

c). Let u0,λ be the global minimum of the functional Iλ

restricted to Φ−1(0, r2), where r2 is given by r2 = |Ω|
p
p∗

pTp cp2, that is a critical point (local minimum) of Iλ
in X. Furthermore, since ω ∈ Φ−1(0, r2) and

Φ(ω)

Ψ(ω)
=

dp|Ω|
p
p∗

pTp k∫
Ω
F (x, d)dx

< λ,

it follows that

Iλ(u0,λ) ≤ Iλ(ω) = Φ(ω)− λΨ(ω) < 0.

We see that

Iλ(u) = λ

(
Φ(u)

λ
−Ψ(u)

)
,

for any u ∈ X and fix 0 < λ1 < λ2 < λ∗
c . Define

nλ1 =

(
Φ(u0,λ1

)

λ1
−Ψ(u0,λ1)

)
= inf

u∈Φ−1(0,r2)

(
Φ(u)

λ1
−Ψ(u)

)

and

nλ2
=

(
Φ(u0,λ2)

λ2
−Ψ(u0,λ2

)

)
= inf

u∈Φ−1(0,r2)

(
Φ(u)

λ2
−Ψ(u)

)
.

Arguing as before, we have nλi
< 0, for i = 1, 2 and nλ2

≤ nλ1
, by λ1 < λ2. Owing to

Iλ2
(u0,λ2

) = λ2nλ2
≤ λ2nλ1

< λ1nλ1
= Iλ1

(u0,λ1
),

we observe that the mapping λ → Iλ(u0,λ) is strictly decreasing in (0, λ∗
c). So, the proof is complete.

Remark 3.4 We note that, if f is (p− 1)-sublinear at infinity, Theorem 3.2 guarantees the existence of
at least one non-zero weak solution for the problem (1.1), for every positive parameter λ. This ensured
solution is non-trivial, whereas the classical direct method only ensures the existence of a solution that
may be zero.

Remark 3.5 If f be a non-negative function, we deduce that the attained weak solution is also non-
negative. Indeed, let u0 be a weak solution of the problem (1.1). Arguing by contradiction, assume the
set A = {x ∈ Ω|u0(x) < 0} has positive measure. Set v0(x) = min{0, u0(x)} for every x ∈ Ω. Evidently,
v0 ∈ X and ∫

Ω

|∇u0(x)|p−2∇u0(x) · ∇v0(x)dx+

∫
Ω

|u0(x)|p−2u0(x)v0(x)dx

+

∫
∂Ω

α(x)|u0(x)|p−2u0v0dσ − λ

∫
Ω

f(x, u0(x))v0(x)dx = 0.

So, we observe that

0 ≤ ∥u0∥p ≤ Φ
′
(u0)(u0,λ) = λ

∫
Ω

f(x, u0(x))u0(x)dx ≤ 0.

Thus, u0 = 0, which contradicts the definition of A. Consequently, u0 must be non-negative.
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Remark 3.6 By a careful analysis of the proof of Theorem 3.2, we can see that the result remains true,
when condition (3.5) is replaced by the more general assumption

lim sup
ξ→0+

∫
Ω
F (x, ξ)dx

ξp
= +∞.

Furthermore, in the autonomous case, the previous asymptotic condition at zero, can be expressed as:

lim sup
ξ→0+

F (ξ)

ξp
= +∞.

We now present an application of Theorem 2.2, which will be used to establish the existence of multiple
solutions to problem (1.1).

Theorem 3.3 Suppose that f be a Carathéodory function and there exist two positive constants c and d
that

c

|Ω| 1
N T

< d,

∫
Ω

F (x, d)dx > a1
|Ω|

1
p∗ c

T
κ1 +

a2
s

|Ω|
s
p∗ cs

T s
κs
s,

and

lim sup
ξ→0+

∫
Ω
F (x, ξ)dx

|ξ|p
≤ 0. (3.8)

Then, for any λ > λ̄, where

λ̄ =

|Ω|
p
p∗ kd

p

pTp − |Ω|
p
p∗ cp

pTp∫
Ω
F (x, d)dx− a1

|Ω|
1
p∗ c
T κ1 − a2

s
|Ω|

s
p∗ cs

T s κs
s

,

the problem (1.1) admits at least one non-trivial solution u0,λ ∈ X, such that

r =
|Ω|

p
p∗ cp

pT p
< Φ(u0,λ) <

1

p
∥u0,λ∥p

(
1 + a∞|∂Ω|T p|Ω|p−

p
p∗
)
,

so,

|Ω|
1
p∗ c

T
(
1 + a∞|∂Ω|T p|Ω|p−

p
p∗
) 1

p

≤ ∥u0,λ∥.

Proof: Our aim is to apply Theorem 2.2. Take into account the real Banach space X and the functionals
Φ and Ψ, as in the proof of Theorem 3.1. The functionals Φ and Ψ satisfy all the assumptions requested
in Theorem 2.2. We show that functional Iλ for each λ > 0, is coercive. Fix 0 < δ < 1

λpκp
p
. By (3.8),

there exist a function ρδ : Ω → R such that
∫
Ω
ρδ(x) < ∞ and F (x, t) ≤ δ|t|p + ρδ(x) for all x ∈ Ω and

t ∈ R. Then for any u ∈ X, we have

Φ(u)− λΨ(u) ≥ ∥u∥p

p
− λ

∫
Ω

F (x, u(x))dx

≥ ∥u∥p

p
− λδ∥u∥p

LP − λ

∫
Ω

ρδ(x)

≥ ∥u∥p

p
− λδκp

p∥u∥p − λ

∫
Ω

ρδ(x)

=
(1
p
− λδκp

p

)
∥u∥p − λ

∫
Ω

ρδ(x),
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so,

lim
∥u∥→∞

(Φ(u)− λΨ(u)) = ∞,

this implies that the functional Iλ is coercive. Let r = |Ω|
p
p∗ cp

pTp , arguing as in the proof of Theorem 3.1,
we can see that

β2(r) ≥
∫
Ω
F (x, d)dx− a1

|Ω|
1
p∗ c
T κ1 +

a2

s
|Ω|

s
p∗ cs

T s κs
s

|Ω|
p
p∗ kd

p

pTp − |Ω|
p
p∗ cp

pTp

.

From our assumptions, it can be concluded that β2(r) > 0. Therefore, Theorem 2.2 guarantees that the
functional Φ− λΨ has at least one local minimum u0,λ such that

Φ(u0,λ) >
|Ω|

p
p∗ cp

pT p
.

2
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