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Energy Estimates and Existence of Non-trivial Solutions for Robin Problems Involving
p-Laplacian Operator

Soheila Valizadeh, Shapour Heidarkhani* and Mohammad Abolghasemi

ABSTRACT: This paper studies the existence of non-trivial solutions and energy estimates for a nonlinear
elliptic problem driven by the p-Laplacian under Robin boundary conditions, which model various physical
phenomena such as heat transfer and fluid flow with boundary interactions. Using a recent local minimum
theorem, we establish existence results under suitable growth and Ambrosetti-Rabinowitz (AR) conditions.
We identify intervals of the parameter A where solutions exist and extend the result to all A > 0 under
(p — 1)-sublinear growth at zero and infinity. An illustrative example is also provided.

Key Words: Robin problem, p-Laplacian, non-trivial solutions, energy estimates.

Contents
1 Introduction 1
2 Starting Points and Foundational Notation 2
3 Main Results 5

1. Introduction

In this work, we investigate the existence of non-trivial weak solutions and energy estimates for the
following nonlinear elliptic problem with homogeneous Robin boundary conditions:

—Apu+ |ulP~2u = Af(x,u), in Q, (1.1)

%Z + a(z)|ulP~2u = 0, on 09, ’
where (2, is a non-empty bounded open set in RV (for N > 3), that has a smooth boundary 9 and A
is a positive real parameter. The differential operator p-Laplacian is defined by Ayu = div(|Vu|[P=?Vu),
for 1 < p < N. Moreover, f:Q xR — R is a Carathéodory function and o € L*>®(99), a(x) > 0 a.e. on
09Q2. The generalized normal derivative g—z is defined by % = |Vu[P=2Vu - v(z), where v(z) be the unit
normal vector pointing outward from the boundary of Q at x € 99.

Partial differential equations involving the p-Laplacian have been widely studied due to their ap-
plications in nonlinear elasticity, fluid dynamics, and other fields involving non-Newtonian flows and
processes with non-standard diffusion. As shown in [8,12], and the references therein, a rich literature
exists addressing various boundary value problems involving the p-Laplacian. Among these, problems
with Robin-type boundary conditions are of particular interest, as they encompass both Dirichlet and
Neumann cases and model energy transfer across boundaries.

Numerous analytical techniques have been employed to study such problems, including fixed point
theory, the method of sub- and supersolutions, and variational methods. For more details, see [1,10,11,
19,21,22,23,24].

In [1], a parametric Robin problem involving the p-Laplacian with an indefinite potential and a
superlinear term not satisfying the Ambrosetti-Rabinowitz (AR) condition is considered. In [10], the
existence of two nontrivial solutions is established using variational methods under the AR condition for
the problem (1.1). The study in [24] investigates a (p, ¢)-equation under Robin conditions and proves a
bifurcation-type result using variational and comparison techniques. Additional works such as [4,6,13]
address related questions involving Neumann, singular, or periodic boundary conditions.
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In this paper, we establish the existence of nontrivial solutions and energy estimates for Robin prob-
lems driven by the p-Laplacian without requiring asymptotic conditions on the nonlinear term at zero or
infinity (see Theorem 3.1); an explicit example is given in Corollary 3.1. Moreover, Theorem 3.2 provides
an existence result under a sublinear growth condition at the origin. When the nonlinearity also exhibits
sublinear growth at infinity, the associated energy functional is coercive, and the existence of (possibly
trivial) solutions follows from direct minimization methods (see Remark 3.4).

The main novelty of our work lies in the application of a recent local minimum theorem to nonlinear
Robin problems involving the p-Laplacian. To demonstrate the effectiveness of our approach, we conclude
with a concrete example.

For a thorough treatment of the subject, we refer the reader to [7,17,18]

The structure of the paper is as follows: In Section 2, we present the main definitions and mathematical
tools required for the proofs of our main results. Section 3 is devoted to the statement and proof of the
main results, along with an illustrative example.

2. Starting Points and Foundational Notation

Let A: X — X* be a functional, where X is a real Banach space and X* is its dual. We say that A
has the s -property, iff for every sequence {u,}nen C X such that

1. up — u (weakly in X), and
2. limsup,,_, , oo (Aup, up —u) <0,

implies that u,, — u (strongly in X).
Here, (.,.) denotes the duality pairing between X and X*.
In this paper, X denotes the Sobolev space W1?(Q2) with the following norm

Jull = ( /Q ()P + /Q |Vu<x>|pdx> ,

forallu € X. For 1 < p < N,p* = J\J,V—_p and u € W1P(Q), one has there exists a positive constant T

P
such that

lullLos () < Tull,
where T has been defined by Talenti (see [27]) and

N B I+ 5N ~
TsmiN p(N—P) (r(ﬁ)r@iN-ﬁ)) ’

where I' is the Euler function.
Moreover, by Holder’s inequality for every u € WP(Q) and s € [1,p*], one has

ullzs o) < msllull, (2.1)
where
ke = T|Q 7 | (2.2)

and || denotes the Lebesgue measure of 2 in R. On 9 we consider the (N — 1)-dimensional Hausdorff
(surface) measure, denoted by o(.). We will also use the boundary Lebesgue spaces LP(052), for 1 < p < oo
in the standard case. The theory of Sobolev spaces guarantees the existence of a unique continuous linear
operator 7o : W1P(Q) — LP(9R), called the trace map, such that

0(u) = uloe, Yue WH(Q)NC(Q).
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Therefore, the trace map extends the notion of boundary values to all Sobolev functions. The operator
Yo : WHP(Q) — L7(99) is compact for n € [1, (Nfl)p), if N > pand for all n > 1 if N < p, with

N-p

o = W (09), (¢ = L), kerno = Wo (@),

As usual, we drop the notation of the trace map v writing simply u in place of v (u).

In our study of the problem (1.1), we work with the negative p-Laplacian —A, : W1P(Q) —
(Wy?(€))*. Evidently, —A, is continuous, bounded, pseudomonotone and satisfies the s, -property
(see [5], [20]). Moreover, we suppose that f : 2 x R — R is a Carathéodory function, in other word f(.,t)
is measurable for every ¢ € R and f(x,.) is continuous for almost every x € Q. Moreover, f satisfies in
the following conditions:

(l1) the subcritical growth condition: There exist two non-negative constants aq,as and a constant
s €]p, p*[, such that

|f(z,t)] < ay + ao|t]* ™, V(z,t) € Q2 xR.
(I3) Ambrosetti-Rabinowitz (AR)-condition: there exist two constants p > p and M > 0, such that
0 < pF(x,t) <tf(x,t),VeeQ,|t| > M,
where F(x,t) = f(f f(x,Q)d¢,V(z,t) € Q x R.
We define the functional Iy : WHP(Q) — R by
Iy (W) = B(u) — AD(u),

where

1 1
P(u) = —lull” + */ a(z)|u(z)[Pdo (2.3)
p P Joq
and
U(u) = / F(z,u(z))dx,
Q
for every u € W1P(Q).
Lemma 2.1 The functionals ®,V and I are Gateaux differentiable functionals. More precisely, we have

&' (u)(v) = /Q V(@) P~2Vu() - Vo(z)dz

+ A lu(z) P~ u(x)v(z)dx + /852 a(x)|u(x)|P~*uvdo

and

wmmmzéfmwmmmm,

for every u,v € WHP(Q).
We say that u € WHP(Q) is a weak solution of the problem (1.1), if

I (u)(v) = 0,Yv € WhP(9),

which is equivalent to

/ |Vu(z) P2 Vu(z) - Vv(x)dx+/ lu(x) [P~ 2u(x)v(z)de
Q Q

P=2uvdo = z, u(x))v(x)dz.
5&g@mmn a ALﬂ,(»(M
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Definition 2.1 Let S be a real reflexive Banach space. The functional I satisfies in the Palais-Smale
condition (in short (PS)-condition ), if any sequence {ur} C S such that

(i1)  {I(ug)} is bounded,

(iQ) limk_mo ||I’(uk)| S* = O,

has a convergent subsequence.
Fix two real numbers r; < ro and put I = ® — AV where &, ¥ : § — R are two continuously Gateaux
differentiable functionals. We say I satisfies in the Palais-Smale condition cut off lower at r; and upper
at 7o ("1 (PS)["2l-condition), if any sequence {uy} such that (i), (ip) and
(i) ry < <I>(uk) < o,

possesses a convergent subsequence. Obviously, if ;1 = —oo and ry = oo it coincides with the classical
(PS)-condition. Moreover, we denote the condition by (PS)I"2 if 7, = —co and ro € R and by ["](PS)
if 1 € R and ro = oo.

Now, we recall the basic tools that will be utilized in the following section. For all 1,75, € R with

r1 < T2, set

SUPyed—1(ry,ry) \I/(’U) - \Ij(u)

¥ = inf
(Tlar2) uE@JP(Tl,TQ) Py — @(U) 5
\I/(’LL) — SUPyedp—1(—o0,r] \I’(U)
B(ri,r2) =  sup — ,
( ' 2) u€d=1(ry,rs) (D(u) —T
and
\I/(’LL) — SUPyedp-1(—co,r \II(U)
B(r)= sup SO (ool -
w€d—1(r,400) P(u) —r

In order to prove the existence of at least one non-zero solution for the problem (1.1), we use the following
version of Theorem 5.1 and Theorem 5.3 in [2], that was derived from Ricceri variational principle as
presented in [26, Theorem 2.5].

Theorem 2.1 Let, X be a real Banach space and ®,V : X — R be two continuously Gateauz differen-
tiable functions. Assume that, there are ri,79 € R such that r1 < ro and 9(r1,7m2) < B(r1,r2) and for

each
1 1
A€ , ,
(ﬂ(ﬁﬂb) 19(7“1#‘2))

the function Iy = ® — AU satisfies " (PS)"2)-condition. Then for all

)\ e 1 1
B(r1,r2) I(r1,m2) )

there exists ugy € ®~1(r1,72) such that Ix(ugy) < Ix(u), for all u € ® ' (ry,7) and Iy (ugx) = 0.

Theorem 2.2 Let X be a real finite dimensional Banach space, ® : X — R be a continuously Gateaux
differetiable function whose Gateaux derivative admits a continuous inverse on X* and ¥ : X — R be a
continuously Gdteauz differetiable function. Fiz infx ® < r < supy ® and assume that S(r) > 0 and for
each A > ﬁ, the functional Iy = ® — AWV is coercive. Then for each

1
A E (M,‘i‘(}o),

there is ugy € ®~1(r, +00) such that I(uox) < Ix(u), for all u € ®1(r, +00) and I, (upr) = 0.

We refer interested readers to [9], [13], [14], and [16], where Theorems 2.1 and 2.2 have been applied to
establish the existence of solutions for various boundary value problems
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3. Main Results

Put
_ QU+ a0,
Q|7

that [0Q| = [, do = 0(09) and as = esssupg a(x).
For two non-negative constants ¢ and d with

c# kvd,
put
27 )7
a1 Ly 4 @ BUE s F(z,d)dx
ac(d)zl T 1 SLT s fQ (z,d) ’
‘S;Tpp (Cpfkdp)

where k; is defined in (2.2).
We now state and prove the main result of this paper, which establishes a qualitative property of
solutions to problem (1.1).

Theorem 3.1 Assume that f be a Carathéodory function that satisfies both the subcritical growth con-
dition and AR-condition and there exist three positive constants c1, co and d with

C1 Co
<d< —, 3.1
Q¥ T 5 (3.1)
such that
e, (d) < ae, (d). (3.2)

Then, for each A € ( @ a (d)) the problem (1.1) admits at least two non-trivial solutions uy and usg
i X, such that
1

%@, i=1,2.

[

—— < Jui] <
T(l +aoo|6Q|TP|Q|”_zT*)p

Proof: Let us apply Theorem 2.1 to the functionals ® and ¥. By (2.3), we have ® is coercive, i.e.
lim|j, |00 ®(u) = +00. We claim that, ® has a continuous inverse on X*. By direct calculation, one has

@%w—@%»u—vw=/va—wum“%uu—wu»vw~wxmm
+ [ =) @P = o) @) =)@
/’auMu—w<ﬂp%u o) (u — v)do
o0

> Jlu— of]?,

from this we deduce that ® is uniformly monotone in X. Put v =0, by p > 1 we have

L P

lull—oo  [|ul|

= —’—OO’
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so, @’ is coercive. By [28, Theorem 26. A], we can see that ® admits a continuous inverse on X*. By
condition (l1), we have

H@ﬂgmm+%MiWLﬂ€QxR (3.3)

Then, from (3.3) it is easy to see that

a
U(u) = / F(z,u(x))dx < ailjul|pr + ?2||u| e
Q

For all u € WHP(Q) with ®(u) < r, inequality (2.3) implies [jul| < (pr)%. Thus,
1
®7(] — 00, 7)) € {u € WHP(Q) : [Jull < (pr)7}.

Then, by (2.1) and (2.3) for every u € X such that ®(u) < r, we have

a 1 a s
sup  U(w) < sup  armlfull + ZwSul® < arkr(rp)T + RS (rp) .
u€P—1(—o0,r] u€P—1(—o0,r] S s

Define w(x) = d as a constant function in w € X. Then,

P
%

dp/ / dar ar|Q7
w) = — dr + a(z)do ) < — (1] + as|00|) = k,
@) =" | det | a@do) < 100+ awlofl) = = o

P
g
p
and
M@z/F@@M.
Q
Now, we set

|
pTe "

T B Q7
Cp To = pr Cg

T =

By (3.1), a direct computation yields r; < ®(w) < ro. Therefore, we have

B . SUPyed—1(ry,ry) \If('l)) - \Il(u)
19(7"177‘2) - ue‘b_l{l(’l‘l,’!'g) ro — @(u)

< SUPyed—1(—o0,r2) \I/(U) - \I/(OJ)
- ro — ®(w)

_ ai(rap) 7y + %2 (rop) P2 — [y, Fle, d)de

—= D

y
Q| p* Q| r*
Q| 0127_| [P kdp

pT? pT?

= Qcy (d)7
on the other hand, arguing as before, we have

\I/(u) — SUPyed—1(—co,r] \I/(U)
ﬁ(rla 712) = sup =
wEP—1(r1,r2) (I)(U) -n
o (W) —SUPyeo1(—oor) T(v)
= D(w) —1r
1 s
Jo F(@,d)dx — a1 (rip)» k1 — %2 (r1p)? &5

P
p*

G

_p_
127" 3 gp 19|
pT? kd pT

= Q¢ (d)a
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from (3.2), one has 9(ry,r2) < B(r1,72). By conditions (I1), (I2) and [10, Lemma 1], the functional I

satisfies (PS)-condition. Hence, from Theorem 2.1 for each A € %M)’ %M)), the functional I, admits
cy co

at least one non-trivial critical point u; such that 1 < ®(u;) < r. This condition by the following
inequality

1 1
Z;Hul\lp <P(w) < ||u1||”+§aoo|69|m’fllu1||p

S

p(p*—1)
<l l? (1+ awcloQUTr|R) "7,

bS]

is equivalent to
|2

1 1
7*01 QFCQ
< < 27

T(1 +aoo\amTp|Q|p*p%)"

Then, u; € X is a non-trivial local minimum for I in X. Without loss of generality, we can assume that
uy is a strict local minimum of I in the X. So, there is 7 > 0 such that infy, _y, = Ix(u) > Ix(u1). Fur-
thermore, (I) implies through standard arguments that I is unbounded from below. Consequently, there
exists ug € X satisfying Iy (u2) < Ix(uq), for which I verifies the mountain pass geometry. Moreover, by
using (AR) again, we deduce that Iy satisfies the Palais-Smale condition. Applying the classical Theorem
of Ambrosetti and Rabinowitz, we obtain a second critical point @ € X of I with I(@) > Ix(uq). Thus,
w1 and @ are two distinct weak solutions to the problem (1.1). O

Remark 3.1 Owing to the (AR)-condition in Theorem 3.1, we infer that the energy functional I is
unbounded from below and fulfills the classical (PS)-condition, so the classical Mountain Pass Theorem
can be used. Hence, (AR)-condition could be replaced by a Cerami-type condition (C.) in Theorem 3.1
to attain the second solution. The reader is referred to the papers [3,15,25], for more information on the
subject.

The functional I € C1(S,R) verifies the (C.)-condition, if every sequence {uy} such that
I{ur) = ¢, | (ur) (1 + JJugl)) =0,
has a convergent subsequence.

Remark 3.2 Theorem 3.1 ensures that the problem (1.1) admits at least two non-trivial solutions. One
of these solutions has been achieved based on the classical Ambrosetti-Rabinowitz condition on the data
by f(x,0) #£ 0 for every x € Q. If the condition f(x,0) # 0 for every x € Q does not hold, the second

solution ug to the problem (1.1) may indeed be zero.
Below we give a particular case of Theorem 3.1.

Corollary 3.1 Assume that, f be a Carathéodory function that satisfies both the subcritical growth con-
dition and AR-condition and there exist two positive constants ¢ and d with

kdP < P,
such that

1 _s_
Jo F(x,d)dx alL‘; k1 + %LI;S A
> . (3.4)
kdp cP

Then, for each

P

e Q7 kdP Q7" P
pT? [ F(x,d)de’ QP | ap Q" e ) ’

pr (al T K1 + s s R
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the problem (1.1) admits at least two non-zero weak solution uy,us in X, such that

Q1 ¢

[lui|| < T i=1,2.

Proof: In Theorem 3.1, we set ¢; = 0 and co = ¢. Indeed, by (3.4) we have

ac(d) = Sy
S (cP — ka)
1
Q| 7~ Q|P* c*
_ ay ! lTp cm—&-?' Ak
Q| p*
Ip\Tp P
f (x,d)dz
QQ = Qo (d)
| ‘ kdp
So, Theorem 3.1 ensures the result. O

By applying Corollary 3.1, we obtain the following result.

Theorem 3.2 Assume that f is a Carathéodory function that satisfies both the subcritical growth condi-
tion and AR-condition and

. Jo F(z,&)dx

1 = . 3.5
dm g = e 5
Moreover, let ¢ > 0 and put

i cP

|

Ap = - .
pTP (al ‘QlT K1 + 0«2 IQ‘ Kg)

Then, for every A € (0, %), the problem (1.1) admits at least one non-zero weak solution ug \ € X such
1

Q|77 ¢
T

that [Jug x| < and limy_,o+ |Jug x| = 0.

Proof: Fix A € (0,}). By (3.5), there is a positive constant d with kd? < ¢P, such that

P kdp N Q77 P
1 _s_ ‘
pT? [, F(x,d)dx ST (a1 |m;* oy + a2 10177t HS)

s Ts s

Applying Corollary 3.1, the problem (1.1) admits at least one non-zero solution g y such that [Jug || <
1

@. Then, for every X € (0, \}), there exists at least one non-zero weak solution ug y € ®71(0,72) for
the problem (1.1) and we get

P

29

1
EHUJO,AHP <D(upp) <re = c

pI?

S0,

luoall <
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Hence, from (3.6), (/1) and (2.2) one has

1 s
Q oF Q sl S
‘/ f(ac,uo’A(x))uo’A(x)dx‘ gal‘ich @Hicz s
Q

T 1 S Ts Rg, (37)

for every A € (0,)f). Since, Ii(up)(v) = 0 for all A\ € (0,A}) and every v € X, in particular
I3 (uo,x)(uo,n) = 0, we have

¥ (a0 (w02) = A | F(a w0 (@)uan(2)dz,
Q
for every A € (0, A%). Then, from
0 < [lug allP < @' (uo2) (uo,2),
and bearing (3.7) in mind, it follows

li P < lim AU =0
Jim g7 < lm AT (o) (uo,p) = 0,

consequently, limy o+ ||uoa||” = 0. 0

Example 3.1 Assume that N = 3,p = 2,a1 = l,as = 3,s = 3,¢ = 1,Q = {z = (v1,29,23) €
R3 |23 + 25 + 23 < 1},a(z) = 1 and so p* = 6. Set f(x,t) =1+ 2t?, fort € R. We have
[z, )] <1+ 3¢%,

then, (I1) holds. On the other hand

P, 1) :/0 Fla, O)dC =1+ %t?’,

and
I
[t}—oo F(z,t) ’

so, (l2) holds. A simple computation shows that

F(t)

limsup —= = +o0
t—0+

Also by definition of T, one has

(3)
and
\ Q7 _ (45)F x3n
41?2~ 4(F(3> H
r(3)

—2
A7) X 37

Applying Theorem 3.2 for every \ € (0, (& ), the problem (1.1) has at least one non-zero weak

S
-
e

—

[N

N———
win

solution.
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Remark 3.3 Bearing in mind the above assumptions, we claim that the mapping A — Ix(uo,x) is negative
and strictly decreasing on the interval (0,A%). Let ugx be the global minimum of the functional Iy

_p_
restricted to ®~1(0,rs), where ro is given by ro = ‘?Tpp

b, that is a critical point (local minimum) of I
in X. Furthermore, since w € ®~1(0,7r2) and
ar[5|7
Qw) 7k
V(w) [oF(z,d)dx

<\

it follows that

We see that

for any uw e X and fir 0 < Ay < Ao < A%, Define

D (u . D (u
nx, = <<A017)\1) — \IJ(U/O,)\l)> = 6@1111{'0 ) < A(l) _ m(u))

and

D(uor,) . P(u)
N, ( e (uo,AQ) u€q>£I11(O,T2) Ao (u)

Arguing as before, we have ny, <0, fori=1,2 and ny, < ny,, by A1 < A2. Owing to
Iy, (uo n,) = Aoy, < Aany, < Ainy, = Iy, (uo,n, ),
we observe that the mapping A — Ix(ug x) is strictly decreasing in (0,\%). So, the proof is complete.

Remark 3.4 We note that, if f is (p — 1)-sublinear at infinity, Theorem 3.2 guarantees the existence of
at least one non-zero weak solution for the problem (1.1), for every positive parameter \. This ensured
solution is non-trivial, whereas the classical direct method only ensures the existence of a solution that
may be zero.

Remark 3.5 If f be a non-negative function, we deduce that the attained weak solution is also non-
negative. Indeed, let ug be a weak solution of the problem (1.1). Arguing by contradiction, assume the
set A = {z € Qlug(x) < 0} has positive measure. Set vo(x) = min{0, ug(x)} for every x € Q. Evidently,
vg € X and

/ Vo ()72 Vo () - Voo (a)da: + / o () [P~ 20 () vo () da
Q Q
+ /asz a(x)|uo ()P 2ugvodo — /\/Q f(z,uo(x))vo(x)dz = 0.
So, we observe that
0 < uolP < & (uo)(ao) =X | Flauo(e)un(a)de < 0.

Thus, ug = 0, which contradicts the definition of A. Consequently, ug must be non-negative.
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Remark 3.6 By a careful analysis of the proof of Theorem 3.2, we can see that the result remains true,
when condition (3.5) is replaced by the more general assumption

fQ (z,&)dx

limsup =——— = +0o0
£E—0t fp

Furthermore, in the autonomous case, the previous asymptotic condition at zero, can be expressed as:

F(§)

lim sup —* = 400
£—0+ fp
We now present an application of Theorem 2.2, which will be used to establish the existence of multiple
solutions to problem (1.1).

Theorem 3.3 Suppose that f be a Carathéodory function and there exist two positive constants ¢ and d
that

— <4,
Q¥ T
_ Qe Q7 e
/QF(x,d)dx>a1 T < 1+%| |TSC K3,
and

F(z,&)d

1imsupM <0. (3.8)

£—0t |§‘p

Then, for any X\ > X\, where

P —p P
Q|77 kd”  |Q|PT P
pT® pT?

1

1 8 b
07, a o,
Jo F(z,d)dz — ay =5k — 255k

>~
Il

the problem (1.1) admits at least one non-trivial solution ug x € X, such that

1 P
_ p P P—p*
< B0) < JuoalP (1 -+ asclo0fT |0 ),

s0,

Q|7 e

T < [luoall-
T(l +aoo|aQ\Tp|Q|P7)”

Proof: Our aim is to apply Theorem 2.2. Take into account the real Banach space X and the functionals
® and U, as in the proof of Theorem 3.1. The functionals ® and ¥ satisfy all the assumptions requested
in Theorem 2.2. We show that functional I for each A > 0, is coercive. Fix 0 < § < )\p#. By (3.8),

there exist a function ps : @ — R such that [, ps(x) < co and F(xz,t) < 0[t|” + ps(x) for all z € Q and
t € R. Then for any u € X, we have

— u M* T, ulx X
Bu) ~ () = ALFL()M
[
> 2L Al A/mu>
> P awglulr = a [ psto)

1
— P p
( >\5I€p>”u” )\/ ps(x),
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S0,

this implies that the functional I is coercive. Let 7 =

we

S. VALIZADEH, S. HEIDARKHANI AND M. ABOLGHASEMI

lim (®(u) — AV (u)) = oo,

llull—o0

L7
M, arguing as in the proof of Theorem 3.1,

can see that

(7) > fQ F(a,d)dx — a 7K1+ ?%”s
2(T) = )

p_ —p p_
Q7™ kd” Q|7 eP
pT? pT?

B

From our assumptions, it can be concluded that 82(7) > 0. Therefore, Theorem 2.2 guarantees that the
functional ® — AU has at least one local minimum ug » such that

10.

11.

12.

13.

14.

15.

16.

17.

Q7 e

> >
(uo.2) T7
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