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Optimal Strategies for a Controlled SIR Model with Dynamic Reproduction Number and
Economic Feedback

Achraf Bouhmady∗, Mustapha Serhani, Nadia Raissi

abstract: Mathematical models play a critical role in analyzing infectious disease dynamics, yet exist-
ing frameworks often overlook the interplay between epidemiological and socio-economic factors. This study
develops the SIRKρ model, a novel mathematical framework that integrates time-varying transmission dy-
namics with economic feedback mechanisms. The model incorporates optimal control theory to determine
vaccination v and public health intervention c strategies that simultaneously minimize disease prevalence and
economic losses while maintaining the effective reproduction number below unity. Through analytical deriva-
tion using Pontryagin’s Maximum Principle and numerical validation with Hepatitis B (HBV) parameters,
we demonstrate the model’s effectiveness in outbreak control. Simulation results show that optimized inter-
vention strategies can reduce HBV infections while supporting economic recovery. The SIRKρ framework
provides a comprehensive approach for public health decision-making that balances epidemiological control
with economic considerations.
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1. Introduction

Mathematical modeling has become an indispensable tool in modern epidemiology, providing cru-
cial insights into disease transmission patterns and the effectiveness of intervention strategies. Since
the development of the foundational Susceptible-Infected-Recovered (SIR) model by Kermack and McK-
endrick, compartmental models have served as the cornerstone for analyzing infectious disease dynamics
[17,20]. The versatility of these models has led to numerous extensions addressing various aspects of
disease spread, including deterministic formulations [21], stochastic approaches [25], and age-structured
variations [19].
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Despite these advancements, significant gaps remain in current modeling frameworks. Traditional
epidemiological models often treat key parameters, such as the reproduction number, as static values,
ignoring their inherent dynamism in real-world scenarios. Furthermore, while many studies have success-
fully captured biological aspects of disease transmission, they frequently overlook the crucial interplay
between epidemiological processes and socio-economic factors. This limitation becomes particularly ap-
parent when modeling long-term epidemics or designing sustainable intervention strategies, where eco-
nomic considerations often determine practical implementation feasibility.

Recent research has made important strides in addressing these limitations. Several studies have devel-
oped methods for estimating time-varying reproduction numbers [18,29], while others have incorporated
economic factors into epidemic models [24]. Advanced modeling techniques, including delay differential
equations [30], fractional calculus approaches [5], and stochastic formulations [3], have provided new
tools for capturing complex transmission dynamics. In parallel, optimal control theory has emerged as
a powerful framework for designing intervention strategies [11], particularly for diseases like Hepatitis B
where vaccination plays a crucial role [16].

However, current approaches often treat epidemiological and economic components separately, failing
to capture their dynamic interdependence. This separation limits models’ ability to inform comprehensive
public health strategies that must balance infection control with economic sustainability. Additionally,
many existing frameworks lack the flexibility to adapt to changing transmission patterns resulting from
behavioral changes or policy interventions, reducing their practical utility for long-term epidemic man-
agement.

This study introduces the SIRKρ model, a novel framework that addresses these limitations through
three key innovations. First, it incorporates a dynamic reproduction number ρ(t) that responds to both
disease prevalence and intervention measures. Second, it explicitly models economic impacts through a
dedicated state variable K(t) that tracks both the costs of infection and the benefits of control measures.
Third, it integrates these components into an optimal control framework to identify balanced interven-
tion strategies that simultaneously minimize disease burden and economic losses while preventing future
outbreaks through reproduction number control.

Control theory offers several complementary approaches for analyzing and designing dynamic deci-
sion systems. Recent advances include multi-objective formulations that characterize trade-offs between
conflicting sustainability goals through Pareto-efficient control [7], and viability-based approaches that
maintain system trajectories within safety or feasibility domains over time [4]. These perspectives demon-
strate the flexibility of control theory tools for addressing coupled bioeconomic and ecological processes.
In the present work, our aim is not to explore Pareto frontiers or viability kernels but to determine
time-dependent control functions that minimize a single objective functional representing the combined
epidemiological and economic burden. For such maximization or minimization settings, the Pontryagin
Maximum Principle (PMP) provides the natural analytical framework, allowing us to derive necessary
optimality conditions and characterize the structure of optimal intervention strategies.

We formulate this as an optimal control problem with vaccination rate v(t) and public health in-
tervention intensity c(t) as control variables. Our analytical approach employs Pontryagin’s Maximum
Principle [8,22], a well-established method for solving such dynamic optimization problems [2,28,6]. This
methodology has proven particularly effective in epidemiological applications, from outbreak containment
[10] to vaccine deployment optimization [23]. We complement our theoretical analysis with numerical
simulations using Hepatitis B (HBV) parameters, demonstrating the model’s practical utility for public
health decision-making.

The paper is organized as follows. Section 2 presents the complete SIRKρ model formulation and
its biological rationale. Section 3 conducts a thorough dynamical analysis, establishing fundamental
properties such as solution positivity and disease-free equilibria. Section 4 develops the optimal control
framework and derives characterization theorems for intervention strategies. Finally, Section 5 presents
numerical results and discusses their implications for HBV control policy, followed by conclusions and
future research directions.
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2. Mathematical Model Description

In epidemiological modeling, compartmental systems are fundamental for analyzing the transmission
dynamics of infectious diseases. In this section, we propose an extended SIR model that includes two
additional features: a time-dependent effective reproduction number ρ and an economic impact variable
K. The resulting framework, referred to as the SIRKρ model, integrates both biological and socio-
economic dimensions of disease spread and control. The population is divided into three epidemiological
compartments: susceptible S(t), infected I(t), and recovered R(t). The force of infection is governed
by a modified incidence term ρ(t) · γ SI

N , where γ is a scaling factor, and N is the total population
(N(t) = S(t) + R(t) + I(t)). The variable ρ(t) denotes the effective reproduction number at time t,
evolving dynamically in response to epidemic pressure and interventions.
A visual summary of the model’s structure and interactions among compartments, control functions,
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K

Figure 1: Workflow diagram of the generalized SIRKρ epidemic model.

and the economic state is provided in Fig. 1.
The model is defined by the following system of differential equations over the time interval [0, T ].

dS

dt
= Λ− ρ · γ SI

N
− (µ+ v)S,

dI

dt
= ρ · γ SI

N
− (µ+ ν + σ)I,

dR

dt
= vS + νI − µR,

dρ

dt
= η − kI − α(ρ− ρ0)− βvv − βcc,

dK

dt
= −δI + ϵR,

S(0) = S0, I(0) = I0, R(0) = R0, ρ(0) = ρ0, K(0) = K0.

(2.1)

All parameters are strictly positive: Λ, µ, γ, ν, σ, η, k, α, βv, βc, δ, ϵ > 0, and the initial condition x0 =
(S0, I0, R0, ρ0,K0) lies in R5

+. In this system, Λ represents the recruitment rate into the susceptible class,
while µ denotes the natural death rate. The time-dependent vaccination policy v transfers individuals
from the susceptible to the recovered compartment. Parameters ν and σ correspond to recovery and
disease-induced mortality rates, respectively, making µ + ν + σ the total outflow rate from the infected
class. The scaling parameter γ relates the reproduction number to transmission dynamics.

The effective reproduction number ρ is modeled as a dynamic state variable. The term −kI captures
adaptive behavioral responses [15]. Reversion to the baseline ρ0 is governed by −α(ρ(t)− ρ0), reflecting
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the tendency for transmission to normalize when interventions are relaxed. The parameter η represents a
baseline level of behavioral activation (e.g., sustained public awareness or social norms) that maintains a
non-zero response in ρ even without infections, accounting for societal influences independent of prevalence
[9,27]. Vaccination v and public health interventions c reduce transmission through the terms −βvv and
−βcc, respectively, capturing effects of immunization and altered risk perception [1,12]. The function c
encodes non-pharmaceutical interventions such as lockdowns, mobility restrictions, and mask mandates
[13].

The economic state variable K quantifies societal burden, where −δI represents economic losses
from healthcare costs and lost productivity, while ϵR models economic gains from workforce reentry and
societal stabilization. The parameters k, δ, and ϵ are socio-economic in nature: k governs responsiveness
to infection prevalence, δ quantifies per capita infection costs, and ϵ reflects recovery strength through
immunity.

The primary objective is to control the system in order to reduce viral spread by minimizing infections.
To achieve this, we first conduct a qualitative analysis of the uncontrolled system to examine its behavior
around critical points.

3. Dynamical Analysis of the Model

This section investigates the qualitative behavior of the model. We assume constant control mea-
sures v(t) ≡ v ∈ [0, vmax] (vaccination rate) and c(t) ≡ c ∈ [0, cmax] (public health intervention). Here,
vmax > 0 is the maximal feasible vaccination rate (limited by logistics and supply), and cmax ∈ (0, 1] is
the maximal attainable intensity of non-pharmaceutical interventions.
The system (2.1) admits a dynamical reduction to the (S, I,R, ρ)-subsystem through structural decou-
pling, K(t) functioning as output variable. The essential dynamics are captured by:

dS

dt
= Λ− ρ · γ SI

N
− (µ+ v)S,

dI

dt
= ρ · γ SI

N
− (µ+ ν + σ)I,

dR

dt
= vS + νI − µR,

dρ

dt
= η − kI − α(ρ− ρ0)− βvv − βcc,

S(0) = S0, I(0) = I0, R(0) = R0, ρ(0) = ρ0.

(3.1)

The economic variable evolves as

K(t) = K0 +

∫ t

0

(−δI(τ) + ϵR(τ)) dτ.

The model’s plausibility is established through the following invariant region result.
The model’s plausibility is established through proving the positivity and boundedness of trajectories.

Proposition 3.1 Consider x = (S, I,R, ρ) a trajectory of the system (3.1), starting at
x0 = (S0, I0, R0, ρ0). If (S0, I0, R0) ∈ R3

+, then (S(t), I(t), R(t)) ∈ R3
+, ∀ t ≥ 0.

Proof: From the first differential equation in the system (3.1), we get

dS

dt
≥ (−ρ · γ I

N
− (µ+ v))S.

Hence, using standards arguments of differential inequalities, it derives that

S ≥ S0exp

(∫ t

0

−ρ(r) · γ I(r)

N(r)
dr − (µ+ v)t

)
.
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So, S is non negative as soon as S0 is too.
The same arguments can be applied to the second equation of the vector field to prove that I ≥ 0.
For the third R−equation, since S and I are nonnegative, we obtain that

dR

dt
≥ −µR,

which lead to
R ≥ R0e

−µt.

then, R is non negative since R0 is too. 2

In the next proposition, we establish the boundedness of trajectories and accordingly, the positivity
of ρ.
Assume that

η > k
Λ

µ
+ β(vmax + cmax)− αρ0, (3.2)

where β = max(βv;βc). We define the set Γ as:

Γ =

{
(S, I,R, ρ) ∈ R4

+

∣∣∣∣ S + I +R ≤ Λ

µ
, ρ ∈ [ρmin, ρmax]

}
where ρmin = ρ0 +

η−k Λ
µ−βvv−βcc

α , and ρmax = ρ0 +
η−βvv−βcc

α .

Proposition 3.2 Consider x = (S, I,R, ρ) a trajectory of the system (3.1), starting at
x0 = (S0, I0, R0, ρ0). If x0 ∈ Γ, then x(t) ∈ Γ, ∀t ≥ 0.

Proof: The proof establishes three key properties: boundedness of the total population, confinement of
the reproduction number, and its non-negativity.
For the total population N = S+I+R, the summation of the first three equations of the reduced system
(3.1) yields

dN

dt
= Λ− µN − σI,

≤ Λ− µN. (3.3)

Application of Gronwall’s inequality demonstrates that

N(t) ≤ Λ

µ
+

(
N0 −

Λ

µ

)
e−µt, (3.4)

confirming that if N0 ∈ Γ, then N(t) ∈ Γ, ∀ ≥ 0.
For the reproduction number, from the ρ-equation in the dynamical system (3.1), it follows that

dρ

dt
≤ −αρ+ η + αρ0 − (βvv + βcc).

It emerges that
ρ(t) ≤ ρmax + (ρ0 − ρmax)e

−αt,

with ρmax = ρ0 +
η−βvv−βcc

α .
Since ρ0 ≤ ρmax, we get

ρ(t) ≤ ρmax.

The lower bound follows similarly by considering the worst-case infection prevalence and the inequality
(3.4),

I ≤ N ≤ Λ

µ
,
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yielding

ρ(t) ≥ ρmin = ρ0 +
η − kΛ

µ − βvv − βcc

α
.

We achieve the proof by remarking that according to assumption (3.2), ρmin ≥ 0 and by the way

ρ(t) ≥ 0, ∀t ≥ 0.

2

3.1. Stability Analysis

Consider the reduced epidemiological system (3.1) with feasible region Γ. We restrict ourselves to
analyzing the stability of the disease-free equilibrium, since our aim consists in proving that this equi-
librium is only locally stable if the effective reproduction number is lower than 1. This fact justifies the
use of optimal control to eradicate the pandemic. But, there exists an endemic equilibrium which we will
prove the existence and uniqueness in the appendix A. By setting the right-hand sides of the system to
zero and assuming I = 0, we obtain the disease-free equilibrium (DFE) point:

E0 = (S∗, I∗, R∗, ρ∗) =

(
Λ

µ+ v
, 0,

v

µ
· Λ

µ+ v
, ρ0 +

η − βvv − βcc

α

)
.

To examine the local stability of E0, we define the effective reproduction number, denoted Reff , given
by:

Reff = ρ · γ

µ+ ν + σ
· S
N

.

At the DFE, we have S = S∗, R = R∗, and N = S∗ +R∗, yielding:

RDFE := Reff(E0) =
γ

µ+ ν + σ

(
ρ0 +

η − βvv − βcc

α

)
· S∗

S∗ +R∗ .

This quantity characterizes the potential of disease invasion in a population where vaccination may
create a positive recovered class even in the absence of infection.

Theorem 3.1 The disease-free equilibrium E0 of the system (3.1) is locally asymptotically stable (LAS)
if and only if RDFE < 1.

Proof: The Jacobian matrix at E0 is:

J(E0) =


−(µ+ v) −γ

(
ρ0 +

η−βvv−βcc
α

)
S∗

N∗ 0 0

0 γ
(
ρ0 +

η−βvv−βcc
α

)
S∗

N∗ − (µ+ ν + σ) 0 0

v ν −µ 0
0 −k 0 −α

 .

The eigenvalues are:

λ1 = −(µ+ v), λ2 = −µ, λ3 = (µ+ ν + σ)(RDFE − 1), λ4 = −α.

It follows that E0 is locally asymptotically stable if all eigenvalues are negative, i.e., if and only if
RDFE < 1. Conversely, if RDFE > 1, then λ3 > 0, and the equilibrium is a saddle point. 2

The preceding stability analysis establishes a critical threshold: when the basic reproduction number
RDFE < 1, the disease is expected to die out. Conversely, if RDFE > 1, the disease-free equilibrium
becomes unstable, creating the potential for a sustained endemic state.

However, this equilibrium-based analysis has practical limitations. It does not address the transient
disease burden during an outbreak, nor does it provide a strategy for optimally allocating limited resources
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(e.g., vaccines, public health campaigns) over time to minimize both epidemiological and socioeconomic
costs.

To address these dynamic challenges, we turn to optimal control theory. Our goal is to design time-
dependent intervention strategies, namely vaccination v(t) and public awareness campaigns c(t), that
actively steer the epidemic’s trajectory. This framework allows us to find a balance between mitigating
the infection and managing the costs of intervention.

4. Optimal Control Problem (OCP)

We formulate time-dependent control strategies that minimize both disease prevalence and interven-
tion costs over a finite horizon T . The control vector u(t) = (v(t), c(t)), comprises the vaccination rate
v(t) and public health intervention intensity c(t), where the admissible set

Uad =
{
u = (v, c) ∈ L2([0, T ];R2)

∣∣ (v(t), c(t)) ∈ U, ∀t ∈ [0, T ].
}
,

where U = [0, vmax]× [0, cmax].

The cost functional combines epidemiological and economic effects. It penalizes large numbers of
infections, deviations of the economic indicator from its benchmark Ktarget, and excessive use of inter-
ventions.
Here Ktarget > 0 represents the desired economic level (e.g., pre-epidemic baseline or a normalized target
such as 100). The running cost is∫ T

0

[
wII(t)

2 + wK(K(t)−Ktarget)
2 + wvv(t)

2 + wcc(t)
2
]
dt,

where wI , wK , wv, wc > 0 are weighting parameters reflecting the relative importance of each term.

A crucial epidemiological constraint is that the reproduction number ρ(T ) remains below a critical
threshold ρcrit at T. Enforcing this ensures the epidemic does not grow uncontrollably, keeping the number
of secondary infections per case at a manageable level:

ρ(T ) ≤ ρcrit.

The OCP is formulated as:

min
u(·)∈Uad

J(u) =

∫ T

0

[
wII(t)

2 + wK(K(t)−Ktarget)
2 + wvv(t)

2 + wcc(t)
2
]
dt (4.1)

subject to: 

dS

dt
= Λ− ρ · γ SI

N
− (µ+ v)S,

dI

dt
= ρ · γ SI

N
− (µ+ ν + σ)I,

dR

dt
= vS + νI − µR,

dρ

dt
= η − kI − α(ρ− ρ0)− βvv − βcc,

dK

dt
= −δI + ϵR,

x(0) = x0,

ρ(T ) ≤ ρcrit.

(4.2)
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4.1. Existence of an Optimal Solution

To ensure that an optimal solution exists for the control problem, we first define the system dynamics
explicitly. The evolution of the state variables x(t) = (S(t), I(t), R(t), ρ(t),K(t)) is governed by the vector
field f(x, u), which represents the time derivatives of the states under the influence of the control variable
u = (v, c) ∈ Uad. The vector field f(x, u) is defined, for x = (S, I,R, ρ,K) ∈ Γ and u = (v, c) ∈ U, as

f(x, u) =


Λ− ρ · γ SI

N − (µ+ v)S,
ρ · γ SI

N − (µ+ ν + σ)I,
vS + νI − µR,

η − kI − α(ρ− ρ0)− βvv − βcc,
−δI + ϵR

 .

Assume that
η − α(ρcrit − ρ0)

min(βv, βc)
≤ vmax + cmax. (4.3)

Proposition 4.1 (Existence of an optimal control) The optimal control problem (4.1) -(4.2) admits
at least one optimal solution.

Proof: In the first part, we prove that the dynamical system (4.2) admits a unique solution x(·) =
(S(·), I(·), R(·), ρ(·),K(·)), for each control u = (v, c) ∈ Uad. Indeed, the dynamic f(x, u), for (x, u) ∈
Γ×U, is continuously differentiable, C1, this regularity follows from the structure of the system ensuring
smoothness in both state and control variables. Moreover, the dynamics f satisfy the linear growth con-
dition. To show this, we must prove that there exists a constant C > 0 such that ∥f(x, u)∥ ≤ C(1+∥x∥),
for each (x, u) ∈ Γ× U.
Using the positivity and boundedness of S, I,R, as proven in propositions (3.1) - (3.2), and the bounded-
ness of the control values v, c, we get for each component |fi|, with i = 1, · · · , 5, and x = (S, I,R, ρ,K) ∈
Γ, u = (v, c) ∈ U

|f1(x, u)| ≤ Λ + γρ
S

N
I + (µ+ vmax)S;

≤ Λ + γNmaxρ+ (µ+ vmax)Nmax,

|f2(x, u)| ≤ γρ
S

N
I + (µ+ ν + σ)I;

≤ γNmaxρ+ (µ+ ν + σ)Nmax,

|f3(x, u)| ≤ (vmax + ν + µ)Nmax,

|f4(x, u)| ≤ η + kI + αρ+ αρ0 + βvvmax + βccmax;

≤ η + kNmax + αρ+ αρ0 + βvvmax + βccmax,

|f5(x, u)| ≤ δI + ϵR;

≤ (δ + ϵ)Nmax,

where Nmax is the upper bound of N = S + I +R.
Summing these inequalities leads to

∥fx, u)∥1 ≤ C1 + C2ρ,

where C1 = Λ+(3µ+2vmax+2ν+σ+k+δ+ϵ)Nmax+η+αρ0+βvvmax+βccmax, and C2 = 2γNmax+α.
Since ρ ≤ ∥x∥1, then we get

∥f(x, u)∥1 ≤ C(1 + ∥x∥1),

where C = max{C1, C2}. Thus, the function f satisfies the linear growth condition.
It derives from these features that the dynamical system (4.1), without terminal constraint ρ(T ) ≤ ρcrit,
admit a unique solution x(·) for each control pair u = (v, c) ∈ Uad.

To take into account on this final constraint, we must prove that the system is controllable, that is,
there exist a control pairs u = (v, c) ∈ Uad, generating a trajectory x(·) = (S(·), I(·), R(·), ρ(·),K(·)),
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fulfilling ρ(T ) ≤ ρcrit.
The assumption (4.3) implies that there exists u = (v, c) ∈ U such that

η − α(ρcritic − ρ0)

min(βv, βc)
≤ v + c ≤ vmax + cmax,

which implies that

η − α(ρcritic − ρ0) ≤ min(βv, βc)(v + c),

≤ βvv + βcc. (4.4)

It follows that

ρ0 +
η − (βvv + βcc)

α
≤ ρcrit.

So,
ρmax < ρcrit.

On the other hand, according to the proposition (3.2), since ρ ≤ ρmax, we conclude the existence of
u = (v, c) ∈ U such that ρ(T ) ≤ ρmax, which implies that

ρ(T ) ≤ ρcrit,

indicating that the terminal constraint is satisfied.
Therefore we establish the existence of a control u = (v, c) ∈ Uad, with u(t) = u, for all t ∈ [0, T ]
such that the system (4.2) admits a unique solution fulfilling the terminal constraint, and consequently
ensuring the controllability.

The second part concerns the existence of an optimal control of the problem (4.1) - (4.2). For this,
we invoke [Theorem 6.2.1 in [26]].
Since U is compact, we can demonstrate through standard arguments that Uad is also compact. Further-
more, the cost functional is given by

J(u) =

∫ T

0

f0(x(t),u(t)) dt,

where
f0(x, u) = wII

2 + wK(K −Ktarget)
2 + wvv

2 + wcc
2.

The function f0 is convex with respect to u, as it is a positive weighted sum of the quadratic functions.
We must now establish that the set

Ṽ (t,x) =
{
(f(x, u), f0(x, u) + ξ) ∈ R5 × R

∣∣∣u ∈ U, ξ > 0
}
.

is convex for each (t, x) ∈ [0, T ] × R5. Since f is affine in u and f0 is convex in u, the mapping

u 7→ (f(x, u), f0(x, u) + ξ is convex for every fixed (t, x) and ξ > 0. Consequently, the set Ṽ (t, x) is
convex for all (t, x).

Moreover, by Proposition (3.2), all trajectories starting from the feasible initial conditions remain
bounded for all t ∈ [0, T ]. In particular, there exists a constant b > 0 such that, for every admissible
control u ∈ Uad,

sup
t∈[0,T ]

(∥x(t)∥+ T ) ≤ b.

Thus, the solutions are uniformly bounded over time.
Since all hypotheses of Theorem 6.2.1 in [26] are satisfied, we conclude that there exists at least one

optimal control u∗(·) ∈ Uad minimizing the cost functional J(u) while satisfying the system dynamics
and the state constraints.

2
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4.2. Features of optimal control

Let H be the Hamiltonian corresponding to the optimal control problem (4.1-4.2):

H : R5 × R5 × U → R, (ξ,λ, u) 7→ H(ξ,λ, u) = L(ξ, u) + ⟨λ, f(ξ, u)⟩,

where ξ = (S, I,R, ρ,K)⊤ is the state vector, λ = (λS , λI , λR, λρ, λK)⊤ is the adjoint vector, and
u = (v, c)⊤ ∈ U ⊂ R2 is the control value. The associated control function is denoted u(t) = (v(t), c(t)).

According to Pontryagin’s Maximum Principle [8,22], there exists an absolutely continuous adjoint
function λ(t) = (λS(t), λI(t), λR(t), λρ(t), λK(t))⊤, defined on [0, T ], such that the following necessary
conditions hold almost everywhere:

ξ̇(t) =
∂H
∂λ

(ξ(t),λ(t),u(t)) , (4.5)

λ̇(t) = −∂H
∂ξ

(ξ(t),λ(t),u(t)) , (4.6)

H(ξ(t),λ(t),u(t)) = max
u∈U

H(ξ(t),λ(t), u), (4.7)

λ(T ) ∈ NM (ξ(T )), (4.8)

where M =
{
ξ ∈ R5 | ρ ≤ ρcrit

}
and NM (ξ(T )) denotes the normal cone to M at ξ(T ). This cone is

reduced to zero when the constraint is inactive, that is ρ(T ) < ρcrit. However, when the constraint is
active, ρ(T ) = ρcrit, the normal cone is explicitly given by

NM (ξ(T )) =
{
(0, 0, 0, ν, 0)⊤ | ν ≥ 0

}
.

This leads to the following complementarity condition:

λρ(T ) · (ρ(T )− ρcrit) = 0, λρ(T ) ≥ 0.

Therefore for,
H(ξ,λ, u) =wII

2 + wK(K −Ktarget)
2 + wvv

2 + wcc
2

+ λS

[
Λ− ργ

SI

N
− (µ+ v)S

]
+ λI

[
ργ

SI

N
− (µ+ ν + σ)I

]
+ λR [vS + νI − µR]

+ λρ [η − kI − α(ρ− ρ0)− βvv − βcc]

+ λK [−δI + ϵR] .

The adjoint vector λ evolves according to the following system:

λ̇S = λS

(
ργ

I

N
+ µ+ v

)
− λIργ

I

N
− λRv,

λ̇I = −2wII + λSργ
S

N
− λI

(
ργ

S

N
− (µ+ ν + σ)

)
− λRν + λρk + λKδ,

λ̇R = µλR − ϵλK ,

λ̇ρ = −λSγ
SI

N
+ λIγ

SI

N
+ αλρ + ϵλK ,

λ̇K = −2wK(K −Ktarget),

with transversality conditions:

λS(T ) = 0, λI(T ) = 0, λR(T ) = 0, λK(T ) = 0, λρ(T ) ≥ 0 and λρ(T ).(ρ(T )− ρcrit) = 0.
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The maximization condition (4.7) yields the optimal control function u∗(t) = (v∗(t), c∗(t)), where v∗(t)
and c∗(t) are obtained by minimizing H with respect to the control values v and c.

v∗(t) = min

(
max

(
(λS − λR)S − βvλρ

2wv
, 0

)
, vmax

)
,

c∗(t) = min

(
max

(
−βcλρ

2wc
, 0

)
, cmax

)
.

Thus, the optimal control function is u∗(t) = (v∗(t), c∗(t)).

This structure ensures continuous adaptation to evolving epidemiological conditions. The temporal
evolution of optimal strategies occurs in distinct phases. Outbreak suppression requires near-maximal
public health intervention (c∗ ≈ cmax) to quickly lower transmission rates. As the number of susceptible
population individuals decreases, vaccination efforts progressively increase by v∗. When terminal con-
straints ρ(T ) ≤ ρcrit is applied, the controls often intensify in the final phase to achieve epidemiological
targets. The economic trade-off appears through the adjoint variable λK(t), which measures marginal
economic costs as shown in the relation equation:

λ̇K = −2wK(K(t)−Ktarget). (4.9)

Negative values of λK resulting from economic shortfalls (K(t) < Ktarget) automatically temper inter-
vention intensity, balancing epidemiological benefits. These controls interact through complementary
mechanisms: vaccination induces durable protection via S → R transitions while public health measures
reduce transient transmission.

The next section demonstrates how these principles apply to HBV scenarios, revealing the complex re-
lationship between control effectiveness, economic impact, and implementation constraints that influence
optimal policy design.

5. Numerical Simulation: Analysis of Intervention Strategies

We employ direct numerical optimization to solve the optimal control problem (OCP) formulated in
Section 4 and evaluate intervention strategies. Our Python-based framework utilizes robust scientific
computing tools, including SciPy, CasADi, and the IPOPT solver, which is particularly effective for
nonlinear optimization problems arising from OCPs.

The continuous-time OCP is discretized into a finite-dimensional nonlinear programming (NLP) prob-
lem using state and control variable discretization. We implement a Crank-Nicolson time integration
scheme for this purpose, ensuring both numerical stability and accuracy. Table 1 summarizes the key
numerical configuration details, including discretization parameters and solver settings.

For our simulations, we use epidemiological parameters derived from HBV (Hepatitis B Virus) trans-
mission dynamics [19], complemented by economic parameters representing a realistic scenario (see Ta-
ble 2). We acknowledge that the classic SIR model is a simplification of HBV transmission, as it does
not explicitly account for the chronic carrier state, a key feature of the disease.

However, the primary objective of this study is not to create a definitive predictive model for HBV,
but rather to introduce and demonstrate a novel optimal control framework that integrates dynamic
economic feedback (the K variable) with a time-varying reproduction number (the ρ variable). The
foundational SIR structure provides a clear, tractable, and well-understood baseline to rigorously analyze
the dynamics of this new methodology. This approach allows us to illustrate the core principles of
balancing public health outcomes with economic considerations effectively. This work therefore serves as
a proof-of-concept, and the SIRKρ framework developed here can be extended in future research to more
complex, disease-specific models (e.g., SEICR) that incorporate features like chronic infection.

The vaccination rate vmax + cmax = 1.5 satisfies the existence condition from Proposition 4.1. Thus,
the theoretical existence guarantee holds for our simulations. The empirical results in Fig. 3 confirm this,
showing ρ(t) remains controlled without exceeding implementable vaccination rates.
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Table 1: Numerical Configuration for Optimal Control Simulations
Category Metric Value

Solver NLP Solver Ipopt (Interior Point Optimizer)
Discretization Method Crank-Nicolson Scheme
Precision Tolerance 10−8

Grid Time Steps 1000

Table 2: Model Parameters
Parameter Description Value

Λ Recruitment rate 2.5
µ Natural death rate 0.013
γ Transmission rate 0.25
ν Recovery rate 0.1
σ Disease-induced mortality rate 0.05
z Feedback on ρ from infections 0.02
α Return rate to ρ0 0.15
ρ0 Basic reproduction number 4.0
βv Vaccination effectiveness 0.7
βc Control effectiveness 0.7
η Behavioral feedback on ρ 0.4
k Infection feedback scaling 0.002
δ Economic loss factor 0.1
ϵ Economic recovery via ρ 0.08
Ktarget Target economy level 100
ρcrit Critical ρ threshold 1.0
wI Weight on infection minimization 1.0
wK Weight on economy preservation 0.3
wv Weight on vaccination effort 0.2
wc Weight on control effort 0.2
vmax Max vaccination rate 0.8
cmax Max public health intervention 0.7
N Total population size 100
T Time horizon (years) 20

5.1. Infection Dynamics and Control Interventions

Simulation results shown in Fig. 2 demonstrate that the implementation of control strategies leads to
a substantial reduction in infection levels. Specifically, the controlled intervention reduced infections by
approximately 60% compared to the baseline scenario without intervention. The intensive control phase,
implemented early in the outbreak, had the most significant impact. Following the peak, a relaxed control
phase was introduced to reduce intervention-related costs while maintaining epidemic suppression.

5.2. Reproduction Number and Control Effectiveness

The dynamics of the effective reproduction number, denoted as ρ(t), highlight the success of early
and sustained intervention. The simulation in Fig. 3 shows that ρ drops below the critical threshold of
1.0 by year 8 under the optimized strategy. This reduction is primarily due to the early implementation
of high-intensity control measures. Furthermore, the vaccination phase plays a key role in preventing
resurgence, ensuring that ρ remains below 1.0 throughout the simulation period.
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Figure 2: Infection dynamics under different control strategies (left) and corresponding intervention
timeline (right).
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Figure 3: Evolution of the effective reproduction number (left) and control interventions timeline (right).

5.3. Economic Impact of Intervention Strategies

In addition to reducing infections, as indicated in Fig. 4 the proposed strategies support faster eco-
nomic recovery. The simulated scenario with intervention recovers economically 25% faster than the
uncontrolled case. Notably, public health actions implemented during the early and peak phases helped
minimize long-term economic disruption. After year 12, the model shows limited fluctuation in economic
output, attributed to a stabilized health situation and a decrease in control intensity.
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Figure 4: Economic output under different scenarios (left) and corresponding control strategy timeline
(right).
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5.4. Cost-Benefit Analysis

A comparative analysis of total costs in Fig. 5 indicates that the proposed control strategy is eco-
nomically efficient. While the early phase of intervention demands substantial resources, the cumulative
cost is 42% lower than the baseline by the end of the simulation. This is due to the long-term benefits of
infection control, reduced mortality, and preserved economic productivity. The results support a strategy
that balances health outcomes and economic stability.
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Figure 5: Total cost comparison between intervention and baseline scenarios.

5.5. Discussion

The SIRKρ framework generates dynamic intervention strategies that successfully balance epidemio-
logical control with economic activity. The resulting optimal trajectories reveal a consistent three-phase
pattern: an initial, intensive suppression of transmission using public health measures c(t); a sustained
vaccination effort v(t) to build population immunity; and a final phase of adaptive interventions to
prevent resurgence while minimizing economic disruption. This sequence emerges organically from the
optimization process, not from predefined assumptions, suggesting it is a robust principle for reconciling
short-term containment with long-term recovery.

Our model quantifies the non-linear trade-off between infection control and economic cost, confirming
that early, decisive interventions, though costly upfront, avert greater long-term economic damage by pre-
venting widespread transmission. This aligns with established findings where delayed action necessitates
harsher, more costly corrections [1,12].

A key feature enabling this balance is the modeling of the effective reproduction number, ρ(t), as
a dynamic state variable. The terminal condition ρ(T ) ≤ ρcrit is crucial, as it ensures the epidemic is
subcritical by the planning horizon’s end, providing a rigorous foundation for a sustainable exit strategy
by preventing the premature relaxation of controls.

While our experiments used HBV parameters, the quantitative results are specific to the chosen
cost weights and model settings. The primary contribution is the adaptable framework itself, which
can be tailored to other diseases, data contexts, and policy priorities. Future work could enhance its
practical applicability by incorporating richer economic structures (e.g., sectoral costs) or accounting for
uncertainty through robust or stochastic control.

Overall, the SIRKρ framework offers a structured basis for designing adaptive exit strategies. It
allows authorities to move beyond cycles of rigid lockdowns and abrupt reopenings, instead using dynamic
optimization to continuously adjust interventions based on real-time indicators. Our results demonstrate
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that maintaining moderate, adaptable controls throughout a vaccination campaign yields superior long-
term outcomes compared to the complete removal of restrictions.

6. Conclusion

The SIRKρ model presented in this study offers a significant advance in mathematical epidemiol-
ogy by unifying the dynamics of disease transmission with economic impacts. Our framework extends
traditional compartmental models through the incorporation of time-varying reproduction numbers and
explicit economic feedback, enabling more realistic policy optimization. The analytical derivation of op-
timal control strategies using Pontryagin’s Maximum Principle provides rigorous theoretical foundations
for intervention design, while numerical simulations with HBV parameters demonstrate practical appli-
cability.
Key findings reveal that the phased implementation of vaccination and public health measures can ef-
fectively control the spread of the disease while minimizing economic disruption. The model’s ability
to maintain the reproduction number below critical thresholds while accounting for economic costs rep-
resents an important contribution to both theoretical epidemiology and public health practice. These
results suggest that integrated approaches considering both biological and socioeconomic factors can lead
to more sustainable and effective outbreak response strategies.
Future research directions could explore model extensions to account for spatial heterogeneity, multi-
strain dynamics, or behavioral adaptations. The flexibility of the framework allows for adaptation to
various infectious diseases and public health contexts, making it a valuable tool for evidence-based policy
making. The SIRKρ model ultimately bridges the gap between theoretical epidemiology and practi-
cal disease control, offering a robust platform to optimize intervention strategies in complex real-world
scenarios.

A. Existence and Characterization of the Endemic Equilibrium

We derive the expressions for the endemic equilibrium of the reduced system (3.1). Thus, the steady-
state equations are:

0 = Λ− (µ+ v)S∗ − ρ∗γ
S∗I∗

N∗ , (A.1)

0 = ρ∗γ
S∗I∗

N∗ − (µ+ ν + σ)I∗, (A.2)

0 = η − α(ρ∗ − ρ0)− kI∗ − βvv − βcc. (A.3)

Theorem A.1 For the system (A.1)-(A.3), there exists a unique endemic equilibrium

E∗ = (S∗, I∗, ρ∗), S∗ > 0, I∗ > 0,

if and only if the disease-free reproduction number satisfies

RDFE > 1.

Proof: The proof proceeds in three steps: characterization, existence, and uniqueness.

1. Characterization. At equilibrium with I∗ > 0, equation (A.2) implies

ρ∗γ
S∗

N∗ = µ+ ν + σ. (A.4)

From (A.1),

S∗ =
Λ− (µ+ ν + σ)I∗

µ+ v
, 0 < I∗ <

Λ

µ+ ν + σ
. (A.5)

From (A.3),

ρ∗ = ρ0 +
1

α

(
η − kI∗ − βvv − βcc

)
. (A.6)
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Substituting (A.5) and (A.6) into (A.4) eliminates S∗ and ρ∗, yielding a single scalar condition for I∗:

F(I∗) := ρ∗(I∗) γ S∗(I∗)− (µ+ ν + σ)
(
S∗(I∗) + I∗

)
= 0. (A.7)

Thus, an endemic equilibrium corresponds to a root of F(I∗) in the interval

I∗ ∈
(
0, Λ

µ+ν+σ

)
.

2. Existence. At the disease-free equilibrium (DFE), I∗ = 0, we have

S0 =
Λ

µ+ v
, ρDFE = ρ0 +

1

α

(
η − βvv − βcc

)
. (A.8)

The reproduction number is

RDFE =
ρDFEγ

µ+ ν + σ
. (A.9)

Now evaluate F(I∗):

F(0) = S0

(
ρDFEγ − (µ+ ν + σ)

)
= S0(µ+ ν + σ)(RDFE − 1). (A.10)

Hence F(0) > 0 ⇐⇒ RDFE > 1.
At I∗max = Λ

µ+ν+σ , we have S∗ = 0, so

F(I∗max) = −(µ+ ν + σ)I∗max = −Λ < 0. (A.11)

Since F is continuous on [0, I∗max], the Intermediate Value Theorem implies that if RDFE > 1, then F
has at least one root in (0, I∗max). Thus, an endemic equilibrium exists.

3. Uniqueness. Substituting (A.5)–(A.6) into (A.7) shows that F(I∗) is quadratic:

F(I∗) = A(I∗)2 +BI∗ + C, (A.12)

with leading coefficient

A =
kγ(µ+ ν + σ)

α(µ+ v)
> 0. (A.13)

Thus, F is concave-up. From Step 2, if RDFE > 1 then

F(0) > 0, F(I∗max) < 0. (A.14)

Hence F has a unique root, which determines unique values of S∗ and ρ∗ via (A.5) and (A.6). This
establishes the uniqueness of the endemic equilibrium. 2
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