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Variants of Compatible Mappings and Fixed Point Results in Perturbed Metric Spaces

Kajal Kharb∗ and Sanjay Kumar

abstract: In this paper, we introduce variants of compatible mappings namely compatible mappings of
types (K), (R) and (E) along with the concept of faintly compatible mappings in the setting of perturbed
metric spaces. These classes extend and generalize the existing notions of compatible and weakly compatible
mappings. For each of these classes, we establish common fixed point theorems for four self-mappings satisfying
contraction-type conditions. The results obtained unify and extend several well-known fixed point results in the
literature, providing a broader framework for the study of fixed points in perturbed metric spaces. Illustrative
examples are included to demonstrate the applicability of the proved theorems.
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1. Introduction

The measurement of the distance between two points is not always exact. During measurement, some
errors may occur. These errors may be slightly positive, slightly negative, or sometimes zero. If error
is zero, then it corresponds to the metric. To account for these, a positive error is subtracted and a
negative error is added during determining the exact value of the distance function. These errors may
play a significant role during measurement.
In order to overcome the difficulty, whenever error is added in metric, Mohamed Jleli and Bessem Samet
[5] gave the notion of a perturbed metric space. Perturbed metric spaces represent a useful and practical
improvement over the metric spaces. The significance of perturbed metric spaces lies across a wide range
of mathematical and applied disciplines.
Even though for small positive errors, the structure of these spaces still retains the properties of metric
spaces. In this way, perturbed metric spaces help to bridge the gap between the mathematical models
and real-world situations, where exact distance are not measurable.

In 2025, Mohamed Jleli and Bessem Samet [5] introduced a more general form of distance function,
known as perturbed metric space as follows :

Definition 1.1. Let D,P : X × X → [0,∞) be two given functions. The function D is called a
perturbed metric on X with respect to P , if the function

D − P : X ×X → R,
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defined by the relation
(D − P )(x, y) = D(x, y)− P (x, y),

for all x, y, z ∈ X, is a exact metric on X, i.e., for all x, y, z ∈ X, it satisfies the following conditions

(i) (D − P )(x, y) ≥ 0;

(ii) (D − P )(x, y) = 0 if and only if x = y;

(iii) (D − P )(x, y) = (D − P )(y, x);

(iv) (D − P )(x, y) ≤ (D − P )(x, z) + (D − P )(z, y).

P is called a perturbing function and D = d+ P be an perturbed metric.
The set X endowed with D and perturbed function P denoted by (X,D,P ) is known as perturbed metric
spaces.

Notice that a perturbed metric on X is not necessarily a metric on X. But a metric is always perturbed
metric when perturbed error is zero.

Example 1.1. Let D : R× R → [0,∞) be the mapping defined by

D(x, y) = |x− y|+ x2y4, for all x, y ∈ R.

Then D is a perturbed metric on R with respect to the perturbed mapping

P : R× R → [0,∞)

given by
P (x, y) = x2y4, x, y ∈ R.

In this case, the exact metric is the mapping d : R× R → [0,∞) defined by

d(x, y) = D(x, y)− P (x, y) , where

d(x, y) = |x− y|, x, y ∈ R.

Here we note that D is not necessarily a metric, because D(1, 1) = 1 ̸= 0 as x = y, but D is perturbed
metric on X with respect to perturbed function P .

We now introduce topological structure in perturbed metric space.

The topological structure of the perturbed metric space (X,D,P ) corresponds to the balls in metric
spaces and is induced by the exact metric d = D − P . That is, the topology τD,P on X is defined as:

τD,P := τd = {U ⊆ X | ∀x ∈ U, ∃r > 0 such that Bd(x, r) ⊆ U} ,

where the open ball with respect to d is given by:

Bd(x, r) = {y ∈ X | d(x, y) = D(x, y)− P (x, y) < r} .

Definition 1.2. Let (X,D,P ) be a perturbed metric space with perturbed function P . A sequence {xn}
in X is said to be

(i) perturbed convergent sequence, if {xn} is convergent in the metric space (X, d), where d = D−P is
the exact metric.
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(ii) perturbed Cauchy sequence, if {xn} is a Cauchy sequence in the metric space (X, d).

A mapping T defined on (X,D,P ) is a perturbed continuous mapping, if T is continuous with respect to
the exact metric d.

We recall some elementary properties of perturbed metric spaces [5] .

Proposition 1.1. [5] Let D,P,Q : X ×X → [0,∞) be three given mappings and α > 0.

(i) If (X,D,P ) and (X,D,Q) be two perturbed metric spaces, then
(
X,D, P+Q

2

)
is a perturbed metric

space.

(ii) If (X,D,P ) is a perturbed metric space, then (X,αD,αP ) is a perturbed metric space.

Here for the convenience of readers, we provide the proof of the proposition 1.1.

Proof.

(i) Since D − P and D −Q are two metrics on X, then

1

2
[(D − P ) + (D −Q)] = D − P +Q

2

is a metric on X, which proves (i).

(ii) Since D − P is a metric on X and α > 0, then

α(D − P ) = αD − αP

is a metric on X, which proves (ii).

2. Variants of Compatible Mappings

In this section, we recall some basic definitions and results that will be used throughout the paper.
We also introduce new classes of compatible mappings in the framework of perturbed metric spaces.

Definition 2.1 [2] Let S and T be two mappings of a perturbed metric space (X,D,P ) into itself.
Then S and T are called compatible if and only if

lim
n→∞

D(STxn, TSxn) = 0,

whenever {xn}∞n=1 is a sequence in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = t for some t ∈ X.

Example 2.1 Let D : R× R → [0,∞) be the mapping defined by

D(x, y) = |x− y|+ x2y4, for all x, y ∈ R.

Then D is a perturbed metric on R with respect to the perturbed function

P : R× R → [0,∞)

given by
P (x, y) = x2y4, x, y ∈ R.

Let S, T : X → X be defined by Sx = x
2 and Tx = x

3 , for all x ∈ X, where X = [0,∞). Taking the
sequence {xn} as xn = 1

n , n > 0, such that

lim
n→∞

Sxn = lim
n→∞

Txn = t for some t ∈ X,
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then S and T are said to be compatible

lim
n→∞

D(STxn, TSxn) = 0.

Definition 2.2 [2] A pair (S, T ) of self-mappings of a perturbed metric space (X,D,P ) is said to be
compatible mappings of type (A) if and only if

lim
n→∞

D(SSxn, TSxn) = 0, and lim
n→∞

D(STxn, TTxn) = 0,

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = z for some z ∈ X.

Proposition 2.1 [2] Let S and T be compatible mappings of type (A). If one of S or T is continuous,
then S and T are compatible.

Proposition 2.2 [2] Let S and T be continuous mappings. If S and T are compatible, then they are
compatible mappings of type (A).

The direct consequence of propositions 2.1 and 2.2 is in the form of following :

Proposition 2.3 [2] Let S and T be continuous mappings. Then S and T are compatible if and only
if they are compatible mappings of type (A).

Proposition 2.4 [2] Let S and T be compatible mappings of type (A) of a perturbed metric space
(X,D,P ) into itself. If Sz = Tz for some z ∈ X, then

STz = SSz = TTz = TSz.

Proposition 2.5 [2] Let S and T be compatible mappings of type (A) of a perturbed metric space
(X,D,P ) into itself. Suppose that

lim
n→∞

Txn = z and lim
n→∞

Sxn = z for some z ∈ X.

Then

(a) limn→∞ STxn = Tz if T is continuous at z.

(b) STz = TSz and Sz = Tz if S and T are continuous at z.

Definition 2.3 [2] A pair (S, T ) of self-mappings of a perturbed metric space (X,D,P ) is said to be
compatible mappings of type (B) if and only if

lim
n→∞

D(TSxn, SSxn) ≤
1

2

[
lim
n→∞

D(TSxn, T z) + lim
n→∞

D(Tz, TTxn)
]
,

and

lim
n→∞

D(STxn, TTxn) ≤
1

2

[
lim
n→∞

D(STxn, Sz) + lim
n→∞

D(Sz, SSxn)
]
,

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = z for some z ∈ X.

Definition 2.4 [2] A pair (S, T ) of self-mappings of a perturbed metric space (X,D,P ) is said to be
compatible mappings of type (C) if and only if

lim
n→∞

D(STxn, TTxn) ≤
1

3

[
lim

n→∞
D(STxn, Sz) + lim

n→∞
D(Sz, SSxn) + lim

n→∞
D(Sz, TTxn)

]
,

and

lim
n→∞

D(TSxn, SSxn) ≤
1

3

[
lim

n→∞
D(TSxn, T z) + lim

n→∞
D(Tz, SSxn) + lim

n→∞
D(Tz, TTxn)

]
,
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whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = z for some z ∈ X.

Remark 2.1 Compatible mappings of type (A) =⇒ compatible mappings of type (B) =⇒ compatible
mappings of type (C), but the converse is not true in general.

Example 2.2 Let D : R× R → [0,∞) be the mapping defined by

D(x, y) = |x− y|+ x2y2, for all x, y ∈ R.

Then D is a perturbed metric on R with respect to the perturbed mapping

P : R× R → [0,∞)

given by
P (x, y) = x2y2, x, y ∈ R.

Let S, T : X → X be defined by Sx = x
2 and Tx = x

3 , for all x ∈ X, where X = [0,∞). Taking the
sequence {xn} as xn = 1

n , n > 0. Then, S and T are compatible of type (A), compatible of type (B) and
compatible of type (C) also. But the converse is not true in general.

Let X = [1, 20], and D : R× R → [1, 20] be the mapping defined by

D(x, y) = |x− y|+ x2y2, for all x, y ∈ R.

Then D is a perturbed metric on R with respect to the perturbed mapping

P : R× R → [1, 20]

given by
P (x, y) = x2y2, x, y ∈ R.

Defining S, T : X → X as below:

Sx =


1, if x = 1,

3, if 1 < x ≤ 7,

x− 6, if 7 < x ≤ 20.

and Tx =

{
1, if x = 1 or x ∈ (7, 20],

2, if 1 < x ≤ 7.

Taking sequence {xn} as xn = 7 + 1
n , n > 0. Then, S and T are compatible of type (C), but neither

compatible nor compatible of type (A) nor compatible of type (B).

Definition 2.5 [2] A pair (S, T ) of self-mappings of a metric space (X,D,P ) is said to be compatible
mappings of type (P ) if and only if

lim
n→∞

D(SSxn, TTxn) = 0,

whenever {xn} is a sequence in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = z for some z ∈ X.

Proposition 2.6 [2] Every pair of compatible mappings of type (A) is compatible of type (B).

Proposition 2.7 [2] Let S and T be continuous mappings of a perturbed metric space (X,D,P ) into
itself. If S and T are compatible mappings of type (B), then they are compatible of type (A).

Proposition 2.8 [2] Let S and T be continuous mappings of a perturbed metric space (X,D,P ) into
itself. If S and T are compatible of type (B), then they are compatible.
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Proposition 2.9 [2] Let S and T be continuous mappings of a perturbed metric space (X,D,P ) into
itself. If S and T are compatible, then they are compatible of type (B).

Proposition 2.10 [2] Let S and T be continuous mappings of a perturbed metric space (X,D,P ) into
itself. Then

(1) S and T are compatible if and only if they are compatible of type (B);

(2) S and T are compatible of type (A) if and only if they are compatible of type (B).

Proposition 2.11 [2] Let S and T be compatible mappings of a perturbed metric space (X,D,P ) into
itself. If Sz = Tz for some z ∈ X, then STz = SSz = TTz = TSz.

Proposition 2.12 [2] Let S and T be compatible mappings of a perturbed metric space (X,D,P ) into
itself. Suppose that

lim
n→∞

Sxn = lim
n→∞

Txn = z for some z ∈ X.

Then

(a) limn→∞ TSxn = Sz if S is continuous at z;

(b) limn→∞ STxn = Tz if T is continuous at z;

(c) STz = TSz and Sz = Tz if S and T are continuous at z.

Proposition 2.13 [2] Let S and T be compatible mappings of type (B) of a perturbed metric space
(X,D,P ) into itself. If Sz = Tz for some z ∈ X, then

STz = SSz = TTz = TSz.

Proposition 2.14 [2] Let S and T be compatible mappings of type (B) of a perturbed metric space
(X,D,P ) into itself. Suppose that

lim
n→∞

Txn = z and lim
n→∞

Sxn = z for some z ∈ X.

Then

(a) limn→∞ TTxn = Sz if S is continuous at z.

(b) limn→∞ SSxn = Tz if T is continuous at z.

(c) STz = TSz and Sz = Tz if S and T are continuous at z.

Remark 2.2 In Proposition 2.13, assume that S and T be compatible mappings of type (C) or of type
(P ) instead of of type (B). The conclusion of Proposition 2.13 still holds.

Remark 2.3 In Proposition 2.14, assume that S and T be compatible mappings of type (C) or of type
(P ) instead of of type (B). The conclusion of Proposition 2.14 still holds.

In 2004, Rohan et al. [13] introduced the concept of compatible mappings of type (R) in a metric space
as follows:
Definition 2.6 Let f and g be two mappings of a metric space (X, d) into itself. Then f and g are
called compatible of type (R) if

lim
n→∞

d(fgxn, gfxn) = 0 and lim
n→∞

d(ffxn, ggxn) = 0

whenever {xn} is a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t for some t ∈ X.
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In 2007, Singh and Singh [6] introduced the concept of compatible mappings of type (E) in a metric
space as follows:
Definition 2.7 Let f and g be two mappings of a metric space (X, d) into itself. Then f and g are
called compatible of type (E) if

lim
n→∞

ffxn = lim
n→∞

fgxn = gt and lim
n→∞

ggxn = lim
n→∞

gfxn = ft,

whenever {xn} is a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t

for some t ∈ X.

In 2014, Jha et al. [3] introduced the concept of compatible mappings of type (K) in a metric space
as follows:

Definition 2.8 Let f and g be two mappings of a metric space (X, d) into itself. Then f and g are
called compatible of type (K) if

lim
n→∞

d(ffxn, gt) = 0 and lim
n→∞

d(ggxn, ft) = 0,

whenever {xn} is a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t

for some t ∈ X.
In 1999, R.P.Pant [8] introduced the notion of reciprocally continuous in metric spaces as follows:
Definition 2.9 Let A and S be mappings from a metric space (X, d) into itself. Then A and S are said
to be reciprocally continuous if

lim
n→∞

ASxn = At and lim
n→∞

SAxn = St,

whenever {xn} is a sequence in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = t for some t ∈ X.

Now we introduce the analogues notions of compatible mappings and their variants in the setting of
perturbed metric spaces.
Definition 2.10 Let f and g be two mappings of a perturbed metric space (X,D,P ) into itself. Then
f and g are called compatible of type (R) if

lim
n→∞

D(fgxn, gfxn) = 0 and lim
n→∞

D(ffxn, ggxn) = 0

whenever {xn} is a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t for some t ∈ X.

Definition 2.11 Let f and g be two mappings of a perturbed metric space (X,D,P ) into itself. Then
f and g are called compatible of type (E) if

lim
n→∞

ffxn = lim
n→∞

fgxn = gt and lim
n→∞

ggxn = lim
n→∞

gfxn = ft,

whenever {xn} is a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t
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for some t ∈ X.
Splitting definition of compatible mapping of type (E) in two forms as:

Definition 2.11.1 A pair (f, g) of self-mappings of a perturbed metric space (X,D,P ) is said to be
g-compatible mappings of type (E) if and only if the following condition is satisfied:

lim
n→∞

ggxn = lim
n→∞

gfxn = fz,

whenever {xn} is a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = z

for some z ∈ X.
Definition 2.11.2 A pair (f, g) of self-mappings of a perturbed metric space (X,D,P ) is said to be
f -compatible mappings of type (E) if and only if the following condition is satisfied:

lim
n→∞

ffxn = lim
n→∞

fgxn = gz,

whenever {xn} is a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = z

for some z ∈ X.

Definition 2.12 Let f and g be two mappings of a perturbed metric space (X,D,P ) into itself. Then
f and g are called compatible of type (K) if

lim
n→∞

D(ffxn, gt) = 0 and lim
n→∞

D(ggxn, ft) = 0,

whenever {xn} is a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t

for some t ∈ X.

Definition 2.13 Let A and S be mappings from a perturbed metric space (X,D,P ) into itself. Then
A and S are said to be reciprocally continuous if

lim
n→∞

ASxn = At and lim
n→∞

SAxn = St,

whenever {xn} is a sequence in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = t for some t ∈ X.

Remark 2.4 Continuous mappings are reciprocally continuous on (X,D,P ) but the converse may not
be true.

Example 2.3 Let X = [2, 20] and D be the perturbed metric on X. Define mappings A,S : X → X by

Ax = 2 if x = 2, Sx = 2 if x = 2,

Ax = 3 if x > 2, Sx = 6 if x > 2.

It is noted that A and S are reciprocally continuous mappings but they are not continuous.
Now we give some properties related to compatible mappings of type (R) and type (E).
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Proposition 2.15 Let f and g be compatible mappings of type (R) of a perturbed metric space (X,D,P )
into itself. If ft = gt for some t ∈ X, then

fgt = fft = ggt = gft.

Proof: Suppose that {xn} is a sequence in X defined by xn = t, n = 1, 2, . . . for some t ∈ X and
ft = gt. We have fxn, gxn → ft as n → ∞. Since f and g are compatible of type (R), we have

D(fgt, gft) = lim
n→∞

D(fgxn, gfxn) = 0.

Hence we have fgt = gft. Therefore, since ft = gt, we have fgt = fft = ggt = gft. This completes the
proof. □

Proposition 2.16 Let f and g be compatible mappings of type (R) of a perturbed metric space (X,D,P )
into itself. Suppose that limn→∞ fxn = limn→∞ gxn = t for some t ∈ X. Then

(a) limn→∞ gfxn = ft if f is continuous at t.

(b) limn→∞ fgxn = gt if g is continuous at t.

(c) fgt = gft and ft = gt if f and g are continuous at t.

Proof: (a) Suppose that f is continuous at t. Since limn→∞ fxn = limn→∞ gxn = t for some t ∈ X,
we have fxn, fgxn → ft as n → ∞. Since f and g are compatible of type (R), we have

lim
n→∞

D(gfxn, ft) = lim
n→∞

D(gfxn, fgxn) = 0.

Therefore, limn→∞ gfxn = ft. (a) holds.
(b) The proof of limn→∞ fgxn = gt follows by similar arguments as in (a).
(c) Suppose that f and g are continuous at t and {xn} is a sequence in X defined xn = t (n = 1, 2, . . .)

for some t ∈ X. Since gxn → t as n → ∞ and f is continuous at t, by (a), gfxn → ft as n → ∞. On
the other hand, g is also continuous at t, and {xn} defined as above have fxn → t as n → ∞. So by (b)
and by Proposition 2.15, we have fgt = gft. This completes the proof. □

Proposition 2.17 Let f and g be compatible mappings of type (E) of a perturbed metric space (X,D,P )
into itself. Let one of f and g be continuous. Suppose that

lim
n→∞

fxn = lim
n→∞

gxn = t for some t ∈ X.

Then

(a) ft = gt and limn→∞ ffxn = limn→∞ ggxn = limn→∞ fgxn = limn→∞ gfxn.

(b) If there exists u ∈ X such that fu = gu = t, then fgu = gfu.

Proof: (a) Let {xn} be a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t

for some t ∈ X. Then by definition of compatible mappings of type (E), we have

lim
n→∞

ffxn = lim
n→∞

fgxn = gt.

If f is continuous, then we get

lim
n→∞

ffxn = ft = lim
n→∞

ggxn = lim
n→∞

gfxn,
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which implies that ft = gt. Also,

lim
n→∞

ffxn = lim
n→∞

ggxn = lim
n→∞

fgxn = lim
n→∞

gfxn.

Similarly, if g is continuous, then we get the same result.
(b) Next, suppose that fu = gu = t for some u ∈ X. Then

fgu = f(gu) = ft and gfu = g(fu) = gt.

From (a), we have ft = gt. Hence fgu = gfu. This completes the proof. □

3. Fixed Point Results for Compatible Mappings and Variants of Compatible Mappings

In this section, we establish a sequence of common fixed point theorems for four self-mappings in the
framework of perturbed metric spaces. The results are developed under different types of compatibility
conditions, namely (A), (B), (C), (P ), (K), (R) and (E) introduced in the previous section. Each
theorem provides sufficient conditions for the existence and uniqueness of a common fixed point.
Theorem 3.1. Let A,B, S and T be mappings of a complete perturbed metric space (X,D,P ) into
itself satisfying the following conditions:

(3.1) S(X) ⊂ B(X), T (X) ⊂ A(X);

(3.2)
D(Sx, Ty) ≤ λ

[
max{D(Ax,By), D(Ax, Sx), D(By, Ty), D(Sx,By), D(Ax, Ty)}

]
,

for all x, y ∈ X, where λ ∈
(
0, 1

2

)
;

(3.3) one of the mappings A,B, S and T is continuous.

Assume that the pairs (A,S) and (B, T ) are compatible. Then S, T,A and B have a unique common
fixed point.
Proof: Since S(X) ⊂ B(X), choose x0 ∈ X such that there exists x1 ∈ X with Sx0 = Bx1 = y0.
Similarly, select x2 ∈ X such that Tx1 = Ax2 = y1. Continuing this process, we can construct a sequence
{yn} in X as follows:

Sx2n = Bx2n+1 = y2n, Tx2n+1 = Ax2n+2 = y2n+1.

From the contractive condition, we obtain

D(y2n, y2n+1) = D(Sx2n, Tx2n+1)

≤

{
λmax

[
D(Ax2n, Bx2n+1), D(Ax2n, Sx2n), D(Bx2n+1, Tx2n+1),

D(Sx2n, Bx2n+1), D(Ax2n, Tx2n+1)
]}

,

≤

{
λmax

[
D(y2n−1, y2n), D(y2n−1, y2n), D(y2n, y2n+1), D(y2n, y2n), D(y2n−1, y2n+1)

]}
,

≤

{
λmax

[
D(y2n−1, y2n), D(y2n, y2n+1), 0, [D(y2n−1, y2n) +D(y2n, y2n+1)]

]}
.

This implies that
D(y2n, y2n+1) ≤ λ[D(y2n−1, y2n) +D(y2n, y2n+1)].

(1− λ)D(y2n, y2n+1) ≤ λD(y2n−1, y2n).
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D(y2n, y2n+1) ≤
λ

1− λ
D(y2n−1, y2n).

Let
λ

1− λ
= h,

then
D(y2n, y2n+1) ≤ hD(y2n−1, y2n).

We also obtain
D(y2n+1, y2n+2) ≤ hD(y2n, y2n+1).

But
D(yn, yn+1) ≤ hD(yn−1, yn) ≤ · · · ≤ hnD(y0, y1), ∀n ≥ 2.

D(yn, yn+1) ≤ hnD(y0, y1).

Let d = D − P be the exact metric, we deduce that

d(yn, yn+1) + P (yn, yn+1) ≤ hnD(y0, y1) , n ∈ N.

Since,
d(yn, yn+1) ≤ d(yn, yn+1) + P (yn, yn+1).

Therefore,
d(yn, yn+1) ≤ hnD(y0, y1) , n ∈ N.

Moreover, for every integer m > 0, we get

d(yn, yn+m) ≤ d(yn, yn+1) + d(yn+1, yn+2) + · · ·+ d(yn+m−1, yn+m)

≤ hnD(y0, y1) + hn+1D(y0, y1) + · · ·+ hn+m−1D(y0, y1)

= hnD(y0, y1) (1 + h+ h2 + · · ·+ hm−1)

d(yn, yn+m) ≤ hn

1− h
D(y0, y1).

Therefore {yn} is a Cauchy sequence in metric space (X, d), so {yn} is also a perturbed Cauchy sequence
in the perturbed metric space (X,D,P ).

Taking limit as n → ∞, we have d(yn, yn+m) → 0. Therefore, {yn} is a perturbed Cauchy sequence in
(X,D,P ).
By the completeness of (X,D,P ), there exists z ∈ X such that yn → z as n → ∞. Consequently, the
subsequences {Sx2n}, {Ax2n}, {Tx2n+1} and {Bx2n+1} of the sequence {yn} also converge to z.

Now suppose that A is continuous. Then AAx2n, ASx2n converge to Az as n → ∞. Since (A,S) are
compatible on X, it follows from Proposition 2.12 that SAx2n converges to Az as n → ∞.

We claim that z = Az. Consider

D(SAx2n, Tx2n+1) ≤
[
λmax

{
D(AAx2n, Bx2n+1), D(AAx2n, SAx2n), D(Bx2n+1, Tx2n+1),

D(SAx2n, Bx2n+1), D(AAx2n, Tx2n+1)
}]

.

Letting n → ∞, we have

D(Az, z) ≤
[
λmax{D(Az, z), D(Az,Az), D(z, z), D(Az, z), D(Az, z)}

]
= λ(Az, z).

This implies that D(Az, z) = 0 implies Az = z. Next we claim that Sz = z. Consider

D(Sz, Tx2n+1) ≤
[
λmax

{
D(Az,Bx2n+1), D(Az, Sz), D(Bx2n+1, Tx2n+1), D(Sz,Bx2n+1), D(Az, Tx2n+1)

}]
.
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Letting n → ∞, we have

D(Sz, z) ≤
[
λmax{D(z, z), D(z, Sz), D(z, z), D(Sz, z), D(Sz, z)}

]
= λ(Sz, z).

This implies that Sz = z. Since SX ⊂ BX and hence there exists a point u ∈ X such that z = Sz = Bu.
We claim that z = Tu.

D(z, Tu) = D(Sz, Tu) ≤
[
λmax

{
D(Az,Bu), D(Az, Sz), D(Bu, Tu), D(Sz,Bu), D(Az, Tu)

}]
=

[
λmax{D(z, z), D(z, z), D(z, Tu), D(z, z), D(z, Tu)}

]
.

This implies that z = Tu. Since (B, T ) is compatible in X and Bu = Tu = z, by Proposition 2.11, we
have BTu = TBu and hence Bz = BTu = TBu = Tz. Also, we have

D(z,Bz) = D(Sz, Tz) ≤
[
λmax

{
D(Az,Bz), D(Az, Sz), D(Bz, Tz), D(Sz,Bz), D(Az, Tz)

}]
=

[
λmax{D(z,Bz), D(z, z), D(Bz, Tz), D(z,Bz), D(z,Bz)}

]
.

This implies that z = Bz. Hence, z = Bz = Tz = Az = Sz. Therefore, z is the common fixed point of
S, T,A, and B.
Similarly, we can also complete the proof when B is continuous. Next, suppose that S is continuous.
Then SSx2n, SAx2n converge to Az as n → ∞. Since A and S are compatible on X, it follows from
Proposition 2.12 that ASx2n converges to Az as n → ∞.

Consider

D(SSx2n, Tx2n+1) ≤
[
λmax

{
D(ASx2n, Bx2n+1), D(ASxn, SSx2n),

D(Bx2n+1, Tx2n+1), D(SSx2n, Bx2n+1), D(ASx2n, Tx2n+1)
}]

.

Letting n → ∞, we get

D(Sz, z) ≤ [λmax{D(Sz, z), D(Sz, Sz), D(z, z), D(Sz, z), D(Sz, z)}] = λD(Sz, z),

which implies that Sz = z. Since SX ⊂ BX, there exists a point v ∈ X such that z = Sz = Bv.
Consider

D(SSx2n, T v) ≤ [λmax{D(ASx2n, Bv), D(ASx2n, SSx2n), D(Bv, Tv), D(SSx2n, Bv), D(ASx2n, T v)}] .

Letting n → ∞, we have

D(z, Tv) ≤
[
λmax{D(z, z), D(z, z), D(z, Tv), D(z, z), D(z, Tv)}

]
= λD(z, Tv).

This implies that z = Tv. Since B and T are compatible on X and Bv = Tv = z, by Proposition 2.11,
we have BTv = TBv and hence Bz = BTv = TBv = Tz. Consider

D(Sx2n, T z) ≤
[
λmax

{
D(Ax2n, Bz), D(Ax2n, Sx2n), D(Bz, Tz), D(Sx2n, Bz), D(Ax2n, T z)

}]
.

Letting n → ∞, we get

D(z, Tz) ≤
[
λmax{D(z, Tz), D(z, z), D(Tz, Tz), D(z, Tz), D(z, Tz)}

]
= λD(z, Tz).

This implies that Tz = z. Since TX ⊂ AX, so there exists a point w ∈ X such that z = Tz = Aw.
Consider

D(Sw, z) = D(Sw, Tz) ≤
[
λmax

{
D(Aw,Bz), D(Aw,Sw), D(Bz, Tz), D(Sw,Bz), D(Aw, Tz)

}]
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=
[
λmax{D(z, z), D(z, Sw), D(z, Tz), D(Sw, z), D(z, z)}

]
.

This implies that Sw = z. Since S and A are compatible on X, Sw = Aw = z, by Proposition 2.11, we
have ASw = SAw and hence Az = ASw = SAw = Sz. That is, z = Az = Sz = Bz = Tz. Therefore, z
is common fixed point of S, T,A and B.

Similarly, we can complete the proof when T is continuous. Finally, suppose that z and w (z ̸= w)
are two common fixed points of S, T,A and B. Consider

D(z, w) = D(Sz, Tw) ≤
[
λmax

{
D(Az,Bw), D(Az, Sz), D(Bw, Tw), D(Sz,Bw), D(Az, Tw)

}]
=

[
λmax{D(z, w), D(z, z), D(w,w), D(z, w), D(z, w)}

]
= λD(z, w).

This implies that z = w. Therefore, z is a unique common fixed point of S, T,A and B. This completes
the proof.

Next we give the following theorem for compatible mappings of type (A).

Theorem 3.2. Let S, T,A and B be mappings of a complete perturbed metric space (X,D,P ) into
itself satisfying (3.1)–(3.3). Assume that the pairs (A,S) and (B, T ) are compatible of type (A). Then
S, T,A and B have a unique common fixed point.
Proof: Suppose that A is continuous. Since (A,S) are compatible of type (A), by Proposition 2.1, the
pair (A,S) is compatible, so the result easily follows from Theorem 3.1. Similarly, if B is continuous and
(B, T ) is compatible of type (A), then (B, T ) is compatible, so the result easily follows from Theorem 3.1.
Similarly, we can complete the proof when S or T is continuous. This completes the proof.

Also we give the following theorem for compatible mappings of type (B).

Theorem 3.3. Let S, T,A and B be mappings of a complete perturbed metric space (X,D,P ) into
itself satisfying (3.1)–(3.3).
Assume that the pairs (A,S) and (B, T ) are compatible of type (B). Then S, T,A and B have a unique
common fixed point.
Proof: From the proof of Theorem 3.1, {yn} is a perturbed Cauchy sequence in X. Consequently, the
subsequences {Sx2n}, {Ax2n}, {Tx2n+1} and {Bx2n+1} of {yn} converge to z.

Suppose that S is continuous. Then SSx2n, SAx2n converge to Sz as n → ∞. Since the pair (A,S)
is compatible of type (B), it follows from Proposition 2.14 that AAx2n converges to Sz as n → ∞.

Consider

D(SAx2n, Tx2n+1) ≤ λmax
{
D(AAx2n, Bx2n+1), D(AAx2n, SAx2n), D(Bx2n+1, Tx2n+1),

D(SAx2n, Bx2n+1), D(AAx2n, Tx2n+1)
}
.

Letting n → ∞, we get

D(Sz, z) ≤
[
λmax{D(Sz, z), D(Sz, Sz), D(z, z), D(Sz, z), D(Sz, z)}

]
.

This implies that Sz = z. Since SX ⊂ BX, there exists a point u ∈ X such that z = Sz = Bu.
Consider

D(SAx2n, Tu) ≤
[
λmax

{
D(AAx2n, Bu), D(AAx2n, SAx2n), D(Bu, Tu), D(SAx2n, Bu), D(AAx2n, Tu)

}]
.

Letting n → ∞, we get
D(Sz, Tu) ≤ λD(Sz, Tu).

This implies that Tu = Sz (z = Tu). Since the pair (B, T ) is compatible of type (B) and Bu = z = Tu,
by Proposition 2.13 we have TBu = BTu and so Bz = BTu = TBu = Tz. Consider

D(Sx2n, T z) ≤
[
λmax

{
D(Ax2n, Bz), D(Ax2n, Sx2n), D(Bz, Tz), D(Sx2n, Bz), D(Ax2n, T z)

}]
.
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Letting n → ∞, we get
D(z, Tz) ≤ λD(z, Tz),

which implies that Tz = z. Since TX ⊂ AX, there exists a point v ∈ X such that z = Tz = Av.
Consider

D(Sv, Tz) ≤
[
λmax

{
D(Av,Bz), D(Av, Sv), D(Bz, Tz), D(Sv,Bz), D(Av, Tz)

}]
,

which implies that
D(Sv, z) ≤ λD(Sv, z).

This implies Sv = z. Since the pair (A,S) is compatible of type (B) and Sv = z = Av, it follows from
Proposition 2.13 that Sz = SAv = ASv = Az. Therefore, Az = Bz = Sz = Tz = z and hence z is
the common fixed point of S, T,A and B. Now suppose that A is continuous. Then AAx2n and ASx2n

converge to Az as n → ∞. Since (A,S) is compatible of type (B), it follows from Proposition 2.14 that
SSx2n converges to Az as n → ∞. Consider

D(SSx2n, Tx2n+1) ≤ λmax
{
D(ASx2n, Bx2n+1), D(ASx2n, SSx2n), D(Bx2n+1, Tx2n+1),

D(SSx2n, Bx2n+1), D(ASx2n, Tx2n+1)
}
.

Letting n → ∞, we get
D(Az, z) ≤ λD(Az, z).

This implies Az = z. Consider

D(Sz, Tx2n+1) ≤
[
λmax

{
D(Az,Bx2n+1), D(Az, Sz), D(Bx2n+1, Tx2n+1), D(Sz,Bx2n+1), D(Az, Tx2n+1)

}]
.

Letting n → ∞, we get
D(Sz, z) ≤ λD(Sz, z).

This implies Sz = z. Since SX ⊂ BX, there exists a point w ∈ X such that z = Sz = Bw. Consider

D(z, Tw) = D(Sz, Tw) ≤
[
λmax

{
D(Az,Bw), D(Az, Sz), D(Bw, Tw), D(Sz,Bw), D(Az, Tw)

}]
=

[
λmax{D(z, z), D(z, z), D(z, Tw), D(z, z), D(z, Tw)}

]
.

This implies that z = Tw. Since (B, T ) is compatible of type (B) and Bw = z = Tw, from Proposi-
tion 2.13, TBw = BTw and so Bz = BTw = TBw = Tz. Consider

D(Sz, Tz) ≤
[
λmax

{
D(z, Tz), D(z, z), D(Tz, Tz), D(z, Tz), D(z, Tz)

}]
= λD(z, Tz).

This implies that z = Tz. Therefore, z is a common fixed point of S, T,A and B.
Similarly, we can complete the proof when B or T is continuous.
Finally, if z and w (z ̸= w) are two common fixed points, then we have

D(z, w) = D(Sz, Tw) ≤
[
λmax

{
D(Az,Bw), D(Az, Sz), D(Bw, Tw), D(Sz,Bw), D(Az, Tw)

}]
= λD(z, w).

This implies z = w. This implies that z = w. Therefore, z is a unique common fixed point of S, T,A
and B. This completes the proofs.

Now we give the following theorem for compatible mappings of type (C).

Theorem 3.4. Let S, T,A and B be mappings of a perturbed metric space (X,D,P ) into itself satis-
fying (3.1)–(3.3).
Assume that the pair (A,S) and (B, T ) are compatible of type (C). Then S, T,A and B have a unique
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common fixed point.

Proof: From the proof of Theorem 3.1, {yn} is a perturbed Cauchy sequence in X. Consequently, the
subsequences {Sx2n}, {Ax2n}, {Tx2n+1} and {Bx2n+1} of {yn} also converge to z.

Suppose that S is continuous. Then SSx2n, SAx2n converge to Sz as n → ∞. Since the pair (A,S)
is compatible of type (C), it follows from Remark 2.3 that AAx2n converges to Sz as n → ∞.

We claim that Sz = z. Consider

D(SAx2n, Tx2n+1) ≤
[
λmax

{
D(AAx2n, Bx2n+1), D(AAx2n, SAx2n), D(Bx2n+1, Tx2n+1),

D(SAx2n, Bx2n+1), D(AAx2n, Tx2n+1)
}]

.

Letting n → ∞, we get

D(Sz, z) ≤
[
λmax{D(Sz, z), D(Sz, Sz), D(z, z), D(Sz, z), D(Sz, z)}

]
= λD(Sz, z).

This implies that Sz = z. Since SX ⊂ BX, there exists a point u ∈ X such that z = Sz = Bu. Consider

D(SAx2n, Tu) ≤
[
λmax

{
D(AAx2n, Bu), D(AAx2n, SAx2n), D(Bu, Tu), D(SAx2n, Bu), D(AAx2n, Tu)

}]
.

Letting n → ∞, we get

D(Sz, Tu) ≤
[
λmax{D(Sz, Sz), D(Sz, Sz), D(Sz, Tu), D(Sz, Tu), D(Sz, Tu)}

]
= λD(Sz, Tu).

This implies that Sz = Tu (z = Tu). Since the pair (B, T ) is compatible of type (C) and Bu = z = Tu,
by Remark 2.2, we get TBu = BTu and so Bz = BTu = TBu = Tz. Consider

D(Sx2n, T z) ≤
[
λmax

{
D(Ax2n, Bz), D(Ax2n, Sx2n), D(Bz, Tz), D(Sx2n, Bz), D(Ax2n, T z)

}]
.

Letting n → ∞, we have

D(z, Tz) ≤
[
λmax{D(z, Tz), D(z, z), 0, D(z, Tz), D(z, Tz)}

]
= λD(z, Tz).

This implies that Tz = z. Since TX ⊂ AX, there exists a point v ∈ X such that z = Tz = Av. Consider

D(Sv, z) = D(Sv, Tz) ≤
[
λmax

{
D(Av,Bz), D(Av, Sv), D(Bz, Tz), D(Sv,Bz), D(Av, Tz)

}]
≤

[
λmax{D(z, z), D(Sv, z), D(z, z), D(Sv, z), D(z, z)}

]
= λD(Sv, z).

This implies that z = Sv. Since the pair (A,S) is compatible of type (C) and Sv = z = Av, by
Remark 2.2, ASv = SAv. We have Sz = SAv = ASv = Az. Therefore, Bz = Az = Tz = Sz = z and
hence z is the common fixed point of S, T,A and B.

Suppose that A is continuous. Then AAx2n and ASx2n converge to Az as n → ∞. Since the pair
(A,S) is compatible of type (C), it follows from Remark 2.3 that SSx2n converges to Az as n → ∞. Also
we have

D(SSx2n, Tx2n+1) ≤
[
max

{
λD(ASx2n, Bx2n+1), D(ASx2n, SSx2n), D(Bx2n+1, Tx2n+1),

D(SSx2n, Bx2n+1), D(ASx2n, Tx2n+1)
}]

.

Letting n → ∞, we get

D(Az, z) ≤
[
λmax{D(Az, z), D(Az,Av), D(z, z), D(Az, z), D(Az, z)}

]
= λD(Az, z).
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This implies that Az = z. Consider

D(Sz, Tx2n+1) ≤
[
λmax

{
D(Az,Bx2n+1), D(Az, Sz), D(Bx2n+1, Tx2n+1), D(Sz,Bx2n+1), D(Az, Tx2n+1)

}]
.

Letting n → ∞, we get
D(Sz, z) ≤ λD(Sz, z).

This implies Sz = z. Since SX ⊂ BX, there exists a point w ∈ X such that z = Sz = Bw. Again, we
have

D(z, Tw) = D(Sz, Tw) ≤
[
λmax

{
D(Az,Bw), D(Az, Sz), D(Bw, Tw), D(Sz,Bw), D(Az, Tw)

}]
= λD(z, Tw).

This implies that Tw = z. Since (B, T ) is compatible of type (C) and Bw = z = Tw, by Remark 2.2 we
have TBw = BTw and so Bz = BTw = TBw = Tz.

Also consider
D(z, Tz) = D(Sz, Tz) ≤ λD(z, Tz).

Thus implies that Tz = z. Hence Tz = Bz = Sz = Az = z. Therefore, z is the common fixed point of
S, T,A and B.

Similarly, we can complete the proof when B or T is continuous. Uniqueness follows easily. This
completes the proofs.

Next, we give the following theorem for compatible mappings of type (P ).
Theorem 3.5. Let S, T,A and B be mappings of a complete perturbed metric space (X,D,P ) into
itself satisfying (3.1)–(3.3).
Assume that the pairs (A,S) and (B, T ) are compatible of type (P ). Then S, T,A and B have a unique
common fixed point.

Proof: From the proof of Theorem 3.1, {yn} is a perturbed Cauchy sequence in X. Consequently, the
subsequences {Sx2n}, {Ax2n}, {Tx2n+1} and {Bx2n+1} of {yn} converge to z as n → ∞.

Suppose that S is continuous. Then SSx2n, SAx2n converge to Sz as n → ∞. Since (A,S) is
compatible of type (P ), it follows from Remark 2.3 that AAx2n converges to Sz as n → ∞. We claim
Sz = z. Consider

D(SAx2n, Tx2n+1) ≤
[
λmax

{
D(AAx2n, Bx2n+1), D(AAx2n, SAx2n), D(Bx2n+1, Tx2n+1),

D(SAx2n, Bx2n+1), D(AAx2n, Tx2n+1)
}]

.

Letting n → ∞, we have

D(Sz, z) ≤
[
λmax{D(Sz, z), D(Sz, Sz), D(z, z), D(Sz, z), D(Sz, z)}

]
= λD(Sz, z).

This implies that Sz = z. Since SX ⊂ BX, so there exists a point u ∈ X such that z = Sz = Bu.
Now we claim that Tu = z. Consider

D(Sx2n, Tu) ≤
[
λmax

{
D(Ax2n, Bu), D(Ax2n, Sx2n), D(Bu, Tu), D(Sx2n, Bu), D(Ax2n, Tu)

}]
.

Letting n → ∞, we get

D(z, Tu) ≤
[
λmax{D(z, z), D(z, z), D(z, Tu), D(z, z), D(z, Tu)}

]
= λD(z, Tu).

This implies that z = Tu. Therefore, Bu = Tu = z. Since (B, T ) is compatible of type (P ), by
Remark 2.2, we have TTu = BBu, which implies that D(Bz, Tz) = 1. Hence Tz = Bz.

Now we claim that Tz = z. Consider

D(Sx2n, T z) ≤
[
λmax

{
D(Ax2n, Bz), D(Ax2n, Sx2n), D(Bz, Tz), D(Sx2n, Bz), D(Ax2n, T z)

}]
.
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Letting n → ∞, we have

D(z, Tz) ≤ λD(z, Tz),

which implies that Tz = z. Therefore, Bz = Tz = z. Since TX ⊂ AX, so there exists a point v ∈ X
such that z = Tz = Av.

Now we claim that Sv = z. Consider

D(Sv, z) = D(Sv, Tz) ≤
[
λmax

{
D(Av,Bz), D(Av, Sv), D(Bz, Tz), D(Sv,Bz), D(Av, Tz)

}]
= λD(Sv, z).

This implies that z = Sv. Therefore z = Sv = Av. Since (A,S) is compatible of type (P ), by Remark 2.2,
we have SSv = AAv, which implies thatD(Sz,Az) = 0. Hence Sz = Az. Since Az = Bz = Sz = Tz = z,
z is a common fixed point of S, T,A and B.

Similarly, we can complete the proof when A or B or T is continuous. The uniqueness follows easily.
This completes the proofs.

Next, we give the following theorem for compatible mappings of type (R).
Theorem 3.6. Let A,B, S and T be mappings of a complete perturbed metric space (X,D,P ) into
itself satisfying the conditions (3.1) , (3.2) and (3.3).

Assume that the pairs (A,S) and (B, T ) are compatible mappings of type (R). Then A,B, S and T
have a unique common fixed point.

Proof: From the proof of Theorem 3.1, the sequence {yn} is a perturbed Cauchy sequence in X, and
hence it converges to some point z ∈ X. Consequently, the subsequences {Sx2n}, {Bx2n+1}, {Tx2n+1}
and {Ax2n} also converge to z.

Now suppose that A is continuous. Since A and S are compatible of type (R), by Proposition 2.16,
AAx2n and SAx2n converge to Az as n → ∞.

We claim that z = Az. Putting x = Ax2n and y = x2n+1 in inequality (3.2), we have

D(SAx2n, Tx2n+1) ≤ λmax{D(AAx2n, Bx2n+1), D(AAx2n, SAx2n), D(Bx2n+1, Tx2n+1),

D(SAx2n, Bx2n+1), D(AAx2n, Tx2n+1)}.

Letting n → ∞, we get

D(Az, z) ≤ λmax{D(Az, z), D(Az,Az), D(z, z), D(Az, z), D(Az, z)} = λD(Az, z),

which implies that Az = z.
Next, we claim that Sz = z. Putting x = z and y = x2n+1 in (3.2), we have

D(Sz, Tx2n+1) ≤ [λmax{D(Az,Bx2n+1), D(Az, Sz), D(Bx2n+1, Tx2n+1), D(Sz,Bx2n+1), D(Az, Tx2n+1)}].

Letting n → ∞, we obtain

D(Sz, z) ≤ [λmax{D(z, z), D(z, Sz), D(z, z), D(Sz, z), D(z, z)}] = λ D(Sz, z),

which implies that Sz = z.
Since S(X) ⊂ B(X), there exists a point u ∈ X such that z = Sz = Bu.

We claim that z = Tu. Putting x = z and y = u in (3.2), we get

D(z, Tu) = D(Sz, Tu) ≤ [λmax{D(Az,Bu), D(Az, Sz), D(Bu, Tu), D(Sz,Bu), D(Az, Tu)}],

= [λmax{D(z, z), D(z, z), D(z, Tu), D(z, z), D(z, Tu)}],

= λD(z, Tu).

Substituting limits, we have

D(z, Tu) ≤ λD(z, Tu),
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which implies that z = Tu. Since B and T are compatible of type (R) and Bu = Tu = z, by Proposi-
tion 2.15, BTu = TBu, and hence Bz = BTu = TBu = Tz. Also we have

D(z,Bz) = D(Sz, Tz)

≤
{
λmax

[
D(Az,Bz), D(Az, Sz), D(Bz, Tz), D(Sz,Bz), D(Az, Tz)

]}
=

{
λmax

[
D(z,Bz), D(z, z), D(Bz,Bz), D(z,Bz), D(z,Bz)

]}
= λD(z,Bz),

which implies that z = Bz. Hence, z = Bz = Tz = Az = Sz. Therefore, z is a common fixed point
of A,S,B, and T .

Similarly, we can complete the proof when B is continuous.
Next, suppose that S is continuous. Since A and S are compatible of type (R), by Proposition 2.16,

SSx2n and Sx2n converge to Sz as n → ∞.
We claim that z = Sz. Putting x = Sx2n and y = x2n+1 in (3.2), we have

D(SSx2n, Tx2n+1) ≤

{
λmax

[
D(ASx2n, Bx2n+1), D(ASx2n, SSx2n), D(Bx2n+1, Tx2n+1),

D(SSx2n, Bx2n+1), D(ASx2n, Tx2n+1)
]}

.

Letting n → ∞, we get

D(Sz, z) ≤
{
λmax

[
D(Sz, z), D(Sz, Sz), D(z, z), D(Sz, z), D(Sz, z)

]}
= λD(Sz, z),

which implies that Sz = z. Since SX ⊂ BX, hence there exists a point v ∈ X such that z = Sz = Bv.
We claim that z = Tv. Putting x = Sx2n and y = v in (3.2), we have

D(SSx2n, T v) ≤
{
λmax

[
D(ASx2n, Bv), D(ASx2n, SSx2n), D(Bv, Tv), D(SSx2n, Bv), D(ASx2n, T v)

]}
.

Letting n → ∞, we have

D(z, Tv) ≤
{
λmax

[
D(z, z), D(z, z), D(z, Tv), D(z, z), D(z, Tv)

]}
= λD(z, Tv),

which implies that z = Tv. Since B and T are compatible of type (R) and Bv = Tv = z, by Proposi-
tion 2.15, BTv = TBv and hence Bz = BTv = TBv = Tz.
We claim that z = Tz. Putting x = x2n and y = z in (3.2), we have

D(Sx2n, T z) ≤
{
λmax

[
D(Ax2n, Bz), D(Ax2n, Sx2n), D(Bz, Tz), D(Sx2n, Bz), D(Ax2n, T z)

]}
.

Letting n → ∞, we have

D(z, Tz) ≤
{
λmax

[
D(z, Tz), D(z, z), D(Tz, Tz), D(z, Tz), D(z, Tz)

]}
= λD(z, Tz),

which implies that z = Tz. Since TX ⊂ AX, there exists a point w ∈ X such that z = Tz = Aw.

We claim that z = Sw. Putting x = w and y = z in (3.2), we have

D(Sw, z) = D(Sw, Tz)

≤
{
λmax

[
D(Aw,Bz), D(Aw,Sw), D(Bz, Tz), D(Sw,Bz), D(Aw, Tz)

]}
=

{
λmax

[
D(z, z), D(z, Sw), D(Tz, Tz), D(Sw, z), D(z, z)

]}
= λD(z, Sw),
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which implies that Sw = z.

Since A and S are compatible of type (R) and Sw = Aw = z, by Proposition 2.15, ASw = SAw and
hence Az = ASw = SAw = Sz. That is, z = Az = Sz = Bz = Tz. Therefore, z is a common fixed point
of A,S,B, and T .

Similarly, we can complete the proof when T is continuous. Uniqueness follows easily, which completes
the proof.

Next, we prove the following theorem for compatible mappings of type (K).

Theorem 3.7. Let A,B, S and T be mappings of a complete perturbed metric space (X,D,P ) into
itself satisfying the conditions (3.1) and (3.2). Suppose that the pairs (A,S) and (B, T ) are reciprocally
continuous. Assume that the pairs (A,S) and (B, T ) are compatible of type (K). Then A,B, S, and T
have a unique common fixed point.

Proof: From the proof of Theorem 3.1, the sequence {yn} is a perturbed Cauchy sequence in X, and
hence it converges to some point z ∈ X. Consequently, the subsequences {Sxn}, {Bx2n+1}, {Tx2n+1}
and {Ax2n} of {yn} also converge to z.

Since the pairs (A,S) and (B, T ) are compatible of type (K), we have AAx2n → Sz, SSx2n → Az,
and BBx2n → Tz, TTx2n+1 → Bz as n → ∞.

We claim that Bz = Az. Putting x = Sx2n and y = Tx2n+1 in (3.2), we have

D(SSx2n, TTx2n+1) ≤

{
λmax

[
D(ASx2n, BTx2n+1), D(ASx2n, SSx2n), D(BTx2n+1, TTx2n+1),

D(SSx2n, BTx2n+1), D(ASx2n, TTx2n+1)
]}

.

Letting n → ∞ and using reciprocal continuity of the pairs A,S and B, T , we have

D(Az,Bz) ≤
{
λmax

[
D(Az,Bz), D(Az,Az), D(Bz,Bz), D(Az,Bz), D(Az,Bz)

]}
= λD(Az,Bz),

which implies that D(Az,Bz) = 0 and hence Az = Bz.

Next, we claim that Sz = Bz. Putting x = z and y = Tx2n+1 in (3.2), we have

D(Sz, TTx2n+1) ≤

{
λmax

[
D(Az,BTx2n+1), D(Az, Sz), D(BTx2n+1, TTx2n+1),

D(Sz,BTx2n+1), D(Az, TTx2n+1)
]}

.

Letting n → ∞, and using reciprocal continuity of the pairs A,S and B, T , we have

D(Sz,Bz) ≤
{
λmax

[
D(Bz,Bz), D(Bz, Sz), D(Bz,Bz), D(Sz,Bz), D(Bz,Bz)

]}
= λ D(Sz,Bz),

which implies that Sz = Bz.

We claim that Sz = Tz. Putting x = z and y = z in (3.2), we have

D(Sz, Tz) ≤
{
λmax

[
D(Az,Bz), D(Az, Sz), D(Bz, Tz), D(Sz,Bz), D(Az, Tz)

]}
= {λmax[0, 0, D(Sz, Tz), 0, D(Sz, Tz)]}
= λD(Sz, Tz),
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which implies that Sz = Tz.

We claim that z = Tz. Putting x = x2n and y = z in (3.2), we have

D(Sx2n, T z) ≤

{
λmax

[
D(Ax2n, Bz), D(Ax2n, Sx2n), D(Bz, Tz), D(Sx2n, Bz), D(Ax2n, T z)

]}
.

Letting n → ∞, we have

D(z, Tz) ≤
{
λmax

[
D(z,Bz), D(z, z), D(z,Bz), D(z,Bz), D(z, Tz)

]}
= {λmax[D(z, Tz), 0, 0, D(z, Tz), D(z, Tz)]}
= λD(z, Tz),

which implies that z = Tz.

Hence, z = Az = Bz = Sz = Tz. Therefore, z is a common fixed point of A,B, S, and T .
Uniqueness follows easily, which completes the proof.

Finally, we prove the following theorem for compatible mappings of type (E).

Theorem 3.8. Let A,B, S and T be mappings of a complete perturbed metric space (X,D,P ) into
itself satisfying the conditions (3.1) and (3.2). Suppose that one of A and S is continuous, and one of B
and T is continuous. Assume that the pairs (A,S) and (B, T ) are compatible of type (E). Then A,B, S
and T have a unique common fixed point.

Proof: From the proof of Theorem 3.1, {yn} is a perturbed Cauchy sequence inX, and hence it converges
to some point z ∈ X. Consequently, the subsequences {Sx2n}, {Bx2n+1}, {Tx2n+1} and {Ax2n} of {yn}
also converge to z.

Now suppose that A and S are compatible of type (E) and one of the mappings A and S is continuous.
Then by Proposition 2.17, we have Az = Sz. Since SX ⊂ BX, there exists a point w ∈ X such that
Sz = Bw. Putting x = z and y = w in (3.2), we have

D(Sz, Tw) ≤

{
λmax

[
D(Az,Bw), D(Az, Sz), D(Bw, Tw), D(Sz,Bw), D(Az, Tw)

]}

=

{
λmax

[
D(Az, Sz), D(Sz, Sz), D(Sz, Tw), D(Sz,Bw), D(Sz, Tw)

]}
= λD(Sz, Tw),

which implies that D(Sz, Tw) = 0 and hence Sz = Tw. Thus, we have Az = Sz = Tw = Bw.

Putting x = z and y = x2n+1 in (3.2), we have

D(Sz, Tx2n+1) ≤

{
λmax

[
D(Az,Bx2n+1), D(Az, Sz), D(Bx2n+1, Tx2n+1),

D(Sz,Bx2n+1), D(Az, Tx2n+1)
]}

.

Letting n → ∞, we have

D(Sz, z) ≤
{
λmax

[
D(Sz, z), 0, D(z, z), D(Sz, z), D(Sz, z)

]}
= λD(Sz, z),
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which implies that D(Sz, z) = 0, that is, Sz = z.
Therefore, z is a common fixed point of A and S.

Again, suppose that B and T are compatible of type (E) and one of the mappings B and T is continuous.
Then we get Bw = Tw = z. By Proposition 2.3, we have BBw = BTw = TBw = TTw, that is,
Bz = Tz.

Putting x = x2n and y = z in (3.2), we have

D(Sx2n, T z) ≤

{
λmax

[
D(Ax2n, Bz), D(Ax2n, Sx2n), D(Bz, Tz), D(Sx2n, Bz), D(Ax2n, T z)

]}
.

Letting n → ∞, we have

D(z, Tz) ≤
{
λmax

[
D(z, Tz), D(z, z), D(Tz, Tz), D(z, Tz), D(z, Tz)

]}
= λD(z, Tz),

which implies that D(z, Tz) = 0, that is, Tz = z. Thus, we have Tz = Bz = z. Therefore, z is a common
fixed point of B and T . Hence, z is a common fixed point of A,B, S, and T .

Uniqueness can be easily shown. This completes the proof.

4. Faintly Compatible Mappings

In this section, we introduce the concept of faintly compatible mappings in the framework of perturbed
metric spaces.

Before proceeding further, we recall some relevant concepts.
Definition 4.1. [12] Two self-mappings A and B of a metric space (X, d) are said to be semi-compatible
if

(i) Ax = Bx =⇒ ABx = BAx;

(ii) lim
n→∞

Axn = lim
n→∞

Bxn = z for some z ∈ X =⇒ limn→∞ d(ABxn, Bxn) = 0.

Definition 4.2. [1] Two self-mappings A and B of a metric space (X, d) are said to be weakly compatible
if they commute at their coincidence points, that is, if ABx = BAx whenever Ax = Bx, x ∈ X.

Definition 4.3. [9] Two self-mappings A and B of a metric space (X, d) are said to be non-compatible
if there exists a sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Bxn = z for some z ∈ X,

but
lim

n→∞
d(ABxn, BAxn)

is either non-zero or non-existent.
Definition 4.4. [4] A pair (S, T ) of self-mappings of a metric space (X, d) is said to be occasionally
weakly compatible (OWC) if

STx = TSx for some x ∈ C(S, T ).

In the sense of Jungck and Rhodes, a pair (S, T ) of self-mappings of a metric space (X, d) is said to
be occasionally weakly compatible (OWC) if there exists at least one coincidence point at which S and
T commute, i.e., if ST = TS for some x ∈ X, then STx = TSx.
Definition 4.5. [10] A pair (A,S) of self-mappings of a metric space (X, d) is said to be conditionally
compatible mappings if and only if whenever the set of sequences {yn} satisfying

lim
n→∞

A(yn) = lim
n→∞

S(yn)
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is nonempty, there exists another sequence {zn} such that

lim
n→∞

A(zn) = lim
n→∞

S(zn) = t and lim
n→∞

d(A(Szn), S(Azn)) = 0.

Definition 4.6. Two self-mappings A and S of a metric space (X, d) will be called to be faintly compat-
ible if A and S are conditionally compatible and A and S commute on a nonempty subset of coincidence
points whenever the set of coincidences is nonempty.
Now we introduce the analogues notions of faintly compatible mappings and other variants in the setting
of perturbed metric spaces.

Definition 4.7. Two self-mappings A and B of a perturbed metric space (X,D,P ) are said to be
semi-compatible if

(i) Ax = Bx =⇒ ABx = BAx;

(ii) lim
n→∞

Axn = lim
n→∞

Bxn = z for some z ∈ X =⇒ limn→∞ D(ABxn, Bxn) = 0.

Definition 4.8. Two self-mappings A and B of a perturbed metric space (X,D,P ) are said to be weakly
compatible if they commute at their coincidence points, that is, if ABx = BAx whenever Ax = Bx,
x ∈ X.
Definition 4.9. [9] Two self-mappings A and B of a perturbed metric space (X,D,P ) are said to be
non-compatible if there exists a sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Bxn = z for some z ∈ X,

but
lim

n→∞
D(ABxn, BAxn)

is either non-zero or non-existent.
Definition 4.10. [4] A pair (S, T ) of self-mappings of a perturbed metric space (X,D,P ) is said to be
occasionally weakly compatible (OWC) if

STx = TSx for some x ∈ C(S, T ).

Definition 4.11. :A pair (A,S) of self-mappings of a perturbed metric space (X,D,P ) is said to be
conditionally compatible mappings if and only if whenever the set of sequences {yn} satisfying

lim
n→∞

A(yn) = lim
n→∞

S(yn)

is nonempty, there exists another sequence {zn} such that

lim
n→∞

A(zn) = lim
n→∞

S(zn) = t and lim
n→∞

D(A(Szn), S(Azn)) = 0.

It may be observed that compatibility is independent of the notion of conditional compatibility, and
in the setting of a unique common fixed point (or unique point of coincidence), conditional compatibility
does not reduce to the class of compatibility. The following example illustrate these facts.
Example 4.1 Let D : X× X → [0,∞) be the mapping defined by

D(x, y) = |x− y|+ |x− y|1/2, for all x, y ∈ X.

Then D is a perturbed metric on X with respect to the perturbed function

P : X× X → [0,∞)

given by
P (x, y) = |x− y|1/2, x, y ∈ X.
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Let X = [1, 8] with the perturbed metric

D(x, y) = |x− y|+ |x− y|1/2.

Define A,S : X → X by

A(x) =

{
2, x ≤ 2,

5, x > 2,
S(x) =

{
6− 2x, x ≤ 2,

8, x > 2.

Take the constant sequence zn ≡ 2. Then

A(zn) = 2, S(zn) = 2,

so
A(S(zn)) = A(2) = 2, S(A(zn)) = S(2) = 2,

and therefore
lim

n→∞
D
(
A(S(zn)), S(A(zn))

)
= D(2, 2) = 0.

If now consider yn = 2− 1
n (so yn → 2). For large n we have

A(yn) = 2, S(yn) = 6− 2yn = 2 + 2
n > 2,

hence A(S(yn)) = 5 while S(A(yn)) = S(2) = 2. Therefore

D
(
A(S(yn)), S(A(yn))

)
= D(5, 2) = |5− 2|+ |5− 2|1/2 = 3 +

√
3 ̸= 0.

Then it can be verified that A and S are not compatible. But conditionally compatible.

Definition 4.12. Two self-mappings A and S of a perturbed metric space (X,D,P ) will be called to be
faintly compatible if A and S are conditionally compatible and A and S commute on a nonempty subset
of coincidence points whenever the set of coincidences is nonempty.

We now proceed to prove some theorems related to faintly compatible mappings.

Theorem 4.1. [11] Let A and S be non-compatible faintly compatible self-mappings of a metric space
(X, d) satisfying:

(4.1) A(X) ⊆ S(X),

(4.2) d(A(x), A(y)) ≤ k d(S(x), S(y)), 0 ≤ k < 1.

If either A or S is continuous, then A and S have a unique common fixed point.

Theorem 4.2. Let A and S be non-compatible faintly compatible self-mappings of a perturbed metric
space (X,D,P ) satisfying:

(4.3) A(X) ⊆ S(X),

(4.4) D(A(x), A(y)) ≤ kD(S(x), S(y)), 0 ≤ k < 1.

If either A or S is continuous, then A and S have a unique common fixed point.
Proof. Non-compatibility of A and S implies that there exists some sequence {xn} in X such that

A(xn) → t and S(xn) → t

for some t ∈ X, but
lim

n→∞
D(A(S(xn)), S(A(xn)))
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is either nonzero or non-existent.
Since A and S are faintly compatible and limn→∞ A(xn) = limn→∞ S(xn) = t, there exists a sequence

{zn} in X satisfying
lim

n→∞
A(zn) = lim

n→∞
S(zn) = u

such that
lim
n→∞

D(A(S(zn)), S(A(zn))) = 0.

Further, since A is continuous, then

lim
n→∞

A(A(zn)) = A(u) and lim
n→∞

A(S(zn)) = A(u).

The last three limits together imply
lim
n→∞

S(A(zn)) = A(u).

Since A(X) ⊆ S(X), this implies that A(u) = S(v) for some v ∈ X, and

A(A(zn)) → S(v), S(A(zn)) → S(v).

Also, using (4.4), we get
D(A(v), A(A(zn))) ≤ kD(S(v), S(A(zn))).

On letting n → ∞, we get A(v) = S(v). Thus v is a coincidence point of A and S.
Further, faint compatibility implies

A(S(v)) = S(A(v)),

and hence
A(S(v)) = A(A(v)) = S(S(v)).

If A(v) ̸= A(A(v)), then using (4.4) we get

D(A(v), A(A(v))) ≤ kD(S(v), S(A(v))) = kD(A(v), A(A(v))),

a contradiction. Hence A(v) is a common fixed point of A and S.
The same conclusion is obtained if S is assumed to be continuous instead of A. The uniqueness of the

common fixed point theorem is an easy consequence of the condition (4.4). Hence the result is proved. □

Example 4.2. Let D : X× X → [0,∞) be the mapping defined by

D(x, y) = |x− y|+ |x− y|1/2, for all x, y ∈ X.

Then D is a perturbed metric on X with respect to the perturbed function

P : X× X → [0,∞)

given by
P (x, y) = |x− y|1/2, x, y ∈ X.

Let X = [0, 20] with the perturbed metric

D(x, y) = |x− y|+ |x− y|1/2, x, y ∈ X.

Define mappings A,S : X → X by

A(x) =


x

10
, if x < 10,

20− x

10
, if x ≥ 10,

S(x) =

0, if x = 0,

20− x, if x > 0.
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Then A and S satisfy all the conditions of Theorem 4.2 and have a unique common fixed point at
x = 0. It can be verified in this example that A and S satisfy condition (4.4) with k = 1

10 . Furthermore,
A and S are faintly compatible. Also, A and S are noncompatible. To see that, let us consider an
increasing sequence {xn} in X = [2, 20] such that xn → 20. Then

A(xn) → 0, S(xn) → 0, A(S(xn)) → 0, S(A(xn)) → 20 as n → ∞.

Therefore, A and S are noncompatible.
It is well known that the strict contractive condition

D(A(x), A(y)) < D(S(x), S(y))

does not ensure the existence of common fixed points unless the space taken is compact or some sequence
of iterates is assumed to be a Cauchy sequence. The next theorem illustrates the applicability of faintly
compatible mappings satisfying the strict contractive condition.

Theorem 4.3. Let A and S be non-compatible faintly compatible self-mappings of a perturbed metric
space (X,D,P ) satisfying the condition (4.3) of Theorem 4.2 and

(4.5) D(A(x), A(y)) < D(S(x), S(y)) whenever Sx ̸= Sy.

If either A or S is continuous, then A and S have a unique common fixed point.
Proof. Non-compatibility of A and S implies that there exists some sequence {xn} in X such that

A(xn) → t and S(xn) → t

for some t ∈ X, but
lim
n→∞

D(A(S(xn)), S(A(xn))) ̸= 0

or is nonexistent.
Since A and S are faintly compatible, there exists a sequence {zn} in X satisfying

lim
n→∞

A(zn) = lim
n→∞

S(zn) = v

such that
lim
n→∞

D(A(S(zn)), S(A(zn))) = 0.

Further, since A is continuous, we have

lim
n→∞

A(A(zn)) = A(v) and lim
n→∞

A(S(zn)) = A(v).

The last three limits together imply
lim

n→∞
S(A(zn)) = A(v).

Since A(X) ⊆ S(X), this implies that A(v) = S(w) for some w ∈ X, and

A(A(zn)) → S(w), S(A(zn)) → S(w).

Also, using (4.5), we get
D(A(w), A(A(zn))) < D(S(w), S(A(zn))).

On letting n → ∞, we get A(w) = S(w).
Again, in view of faint compatibility of A and S, we get

A(S(w)) = S(A(w)),

and hence
A(S(w)) = S(A(w)) = S(S(w)).
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We claim that A(w) = A(A(w)). If not, then by (4.5) we get

D(A(w), A(A(w))) < D(S(w), S(A(w))) = D(A(w), A(A(w))),

which is a contradiction, implying that

A(w) = A(A(w)) = S(A(w)).

Hence A(w) is a common fixed point of A and S.
The same conclusion can be drawn when S is assumed to be continuous instead of A. Thus, the

uniqueness of the common fixed point of A and S is obtained. □

Theorem 4.4. Let A and S be non-compatible faintly compatible self-mappings of a perturbed metric
space (X,D,P ) satisfying the condition (4.3) of Theorem 4.2 and

(4.6) D(A(x), A(y)) ≤ kD(S(x), S(y)), k ≥ 0;

(4.7) D(A(x), A(A(x))) ̸= max{D(A(x), S(A(x))), D(S(A(x)), A(A(x)))} whenever the right-hand side
is nonzero.

Suppose either A or S is continuous. Then A and S have a common fixed point.
Proof. Non-compatibility of A and S implies that there exists some sequence {xn} in X such that

A(xn) → t and S(xn) → t

for some t ∈ X, but
lim
n→∞

D(A(S(xn)), S(A(xn))) ̸= 0

or is nonexistent.
Since A and S are faintly compatible and limn→∞ A(xn) = limn→∞ S(xn) = t, there exists a sequence

{zn} in X satisfying
lim

n→∞
A(zn) = lim

n→∞
S(zn) = v (say)

such that
lim
n→∞

D(A(S(zn)), S(A(zn))) = 0.

Further, since A is continuous, we have

lim
n→∞

A(A(zn)) = A(v) and lim
n→∞

A(S(zn)) = A(v).

The last three limits together imply
lim

n→∞
S(A(zn)) = A(v).

Since A(X) ⊆ S(X), this implies that A(v) = S(w) for some w ∈ X, and

A(A(zn)) → S(w), S(A(zn)) → S(w).

Also, using (4.6), we get
D(A(w), A(A(zn))) ≤ kD(S(w), S(A(zn))).

On letting n → ∞, we get A(w) = S(w). This implies that w is a coincidence point of A and S.
In view of faint compatibility of A and S, we get

A(S(w)) = S(A(w)) = A(A(w)) = S(S(w)).

We claim that A(w) = A(A(w)). If not, by virtue of (4.7) we get

D(A(w), A(A(w))) ̸= max{D(A(w), S(A(w))), D(S(A(w)), A(A(w)))} = D(A(w), A(A(w))),
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which is a contradiction, implying that

A(w) = A(A(w)) = A(S(w)).

Hence, A(w) is a common fixed point of A and S.
The same conclusion can be drawn when S is assumed to be continuous instead of A. Thus, the

uniqueness of the common fixed point of A and S follows. □

As an application of faint compatible mappings, we now prove a common fixed point theorem under a
more general condition that may hold for mappings satisfying contractive, as well as non-expansive and
Lipschitz-type conditions.

Theorem 4.5. Let A and S be non-compatible faintly compatible self-mappings of a perturbed metric
space (X,D,P ) satisfying

(4.8) D(A(x), A(A(x))) ̸= max{D(A(x), S(A(x))), D(S(A(x)), A(A(x)))} whenever the right-hand side
is nonzero.

Suppose A and S are continuous. Then A and S have a common fixed point.
Proof. Non-compatibility of A and S implies that there exists some sequence {xn} in X such that

A(xn) → t and S(xn) → t

for some t ∈ X, but
lim
n→∞

D(A(S(xn)), S(A(xn))) ̸= 0

or is nonexistent.
The continuity of A and S implies that

lim
n→∞

A(S(xn)) = A(t) and lim
n→∞

S(A(xn)) = S(t).

In view of faint compatibility and continuity of A and S, we can easily obtain a common fixed point as
has been proved in the corresponding part of Theorem 4.4. □

Remark 4.1. Theorem 4.5 remains true if one replaces the condition (4.8) by any one of the following
conditions:

(4.9) D(S(x), S(S(x))) ̸= max{D(S(x), A(S(x))), D(A(S(x)), S(S(x)))},

(4.10) D(A(x), A(A(x))) ̸= D(A(x), S(x)) +D(S(x), A(A(x))),

(4.11) D(S(x), S(S(x))) ̸= D(S(x), A(x))+D(A(x), S(S(x))) whenever the right-hand side is non-zero.

Remark 4.2. Faint compatibility is a necessary condition for the existence of common fixed points of
given mappings A and S satisfying contractive or more general Lipschitz-type mapping pairs. Let A and
S be a Lipschitz-type pair of self-mappings of a perturbed metric space (X,D,P ) and let A and S have
a common fixed point x. Then A(x) = S(x) = A(S(x)) = S(A(x)) = x.

If we choose the constant sequence xn = x, then

lim
n→∞

A(xn) = lim
n→∞

S(xn) = lim
n→∞

A(S(xn)) = lim
n→∞

S(A(xn)) = x,

and
lim
n→∞

D(A(S(xn)), S(A(xn))) = D(x, x) = 0,

that is, A and S are faintly compatible.
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