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A New Approach to Abel Statistical Convergence in Metric Spaces

Huseyin Kaplan

abstract: In this study, we first consider the sequences in the sense of Abel statistical together with the
functions preserving the convergence of this kind of sequences called Abel statistical continuous functions in
a metric space X. Then we relate this kind of continuity with some others. A function f is Abel statistically
continuous on a subset E of a metric space X, if it preserves Abel statistical convergent sequences, i.e.
(f(pk)) is Abel statistically convergent whenever (pk) is an Abel statistical convergent sequence of points
in E, where a sequence (pk) of points in X is called Abel statistically convergent to a point L in X if
limx→1− (1−x)

∑
k∈N:d(pk,L)≥ε x

k = 0 for every ε > 0. Some other types of continuities are also studied and

interesting results are obtained.
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1. Introduction

The continuity concept plays a very important role in computer science, combinatorics, geographic
information systems, information theory, economics, biological science, population modelling, and motion
modelling in robotics. N, R, and X denote the set of positive integers and the set of real numbers, a
metric space, respectively. The boldface letters p, q, r, and w will be used for sequences p = (pk),
q = (qk), r = (rk), w = (wk), ... of points in X. The continuity of a function f with the domain a subset
E in a metric space X is equivalent to the preserving of the function the convergences of the sequences
of the points in E. Motivated by this fact about the continuity of a function concerning the convergent
sequences, many types of continuities in such as real and metric spaces have been developed by introducing
and investigating the convergences associated with them. The most common of these continuities can be
recalled with their citations as follows. By the abuse of the language we miss the word “continuity” for
the continuities and just rephrase the names of the methods associated with: slowly oscillating continuity
( [13]), ∆ slowly oscillating continuity ( [8]), ward continuity ( [16], [2], [20] ), statistical continuity, (
[17], [5]), λ-statistical continuity ( [26]), rho statistical continuity, ( [32]), lacunary statistical continuity
( [21] , [33] ), ideal sequential continuity ( [7,19]), Nθ-sequential continuity ( [4]. delta Abel statistical
continuity ( [41]). Parallel to the usual theory for the convergences of the sequences with real terms, a
generalization of the usual convergence idea of real-valued sequences for statistical convergence the reader
is referred to the references [28], [29], [15], [9], [23], and [10]. A sequence (pk) of points in X is called
statistically convergent to an L ∈ X if limn→∞

1
n |{k ≤ n : d(pk, L) ≥ ε}| = 0 for every ε > 0, and this

is denoted by st − lim pk = L. A sequence (pk) is called lacunary statistically convergent ( [31] , [43] )
to an L ∈ X if limr⇒∞

1
hr
|{k ∈ Ir : d(pk, L) ≥ ε}| = 0 for every ε > 0, where Ir = (kr−1, kr], and

k0 = 0, hr : kr − kr−1 ⇒ ∞ as r ⇒ ∞ and θ = (kr) is an increasing sequence of positive integers, and
this is denoted by Sθ − lim pn = L (see [12], [38], and [39]). Throughout this paper, we assume that
lim infr

kr

kr−1
> 1. A sequence (pk) of real numbers is called Abel convergent (or Abel summable) to L

if the series Σ∞
k=0pkx

k is convergent for 0 < x < 1 and limx→1−(1 − x)
∑∞

k=0 pkx
k = L ( [1], [35], [30],
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[40], [42]). In this case, we write Abel − lim pk = L. A will denote the set of Abel convergent sequences.
A subset E of R is called Abel sequentially compact if whenever p = (pk) is a sequence of point in E,
there is an Abel convergent subsequence r = (rk) = (pnk

) of p, i.e. limx→1−(1−x)
∑∞

k=0 rkx
k exists and

belongs to E. ( [6]).
A method of sequential convergence is a linear function G defined on a linear subspace of s, denoted

by cG, into X where s denotes the space of all sequences. A sequence p=(pn) is said to be G-convergent
to L if p∈ cG, and G(p) = L ( [11]). A method G is called regular if every convergent sequence p=(pn)
is G-convergent with G(p)=lim p. A method G is called subsequential if whenever p is G-convergent
with G(p)=L, then there is a subsequence (pnk

) of the sequence p with limk pnk
= L. A function f is

called G-continuous if G(f(p))=f(G(p)) for any G-convergent sequence p ( [14], [3], [36]). Any matrix
summability method on a subspace of s is a method of sequential convergence. Abel summability method
is a regular method of sequential convergence in this manner.

The purpose of this paper is to extend the concept of Abel statistically convergence to metric spaces,
and investigate the concept of Abel statistical continuity in metric spaces presenting interesting results.

2. Abel statistical compactness in metric spaces

Recently the concept of Abel statistical convergence of a sequence is introduced and investigated in
[42] (see also [37]). Although the definitions and the most of the results are also valid in a topological
Hausdorff group, which allows countable local base at the origin, we investigate the notion in the metric
space setting:

Definition 2.1 A sequence p = (pk) is called Abel statistically convergent to a point L if Abel density
of the set {k ∈ N : d(pk, L) ≥ ε} is 0, i.e. limx→1−(1− x)

∑
k∈N:d(pk,L)≥ε x

k = 0

for every ε > 0, and denoted by Abelst − lim pk = L ( [37]).
We note that Abel statistical limit of an Abel statistical convergent sequence is unique.

Theorem 2.1 If a sequence p = (pk) is Abel statistically convergent to L1 and L2, then L1 = L2.

Proof: Write d(L1, L2) = α. Then limx→1−(1−x)
∑

k∈N:d(L1,L2)≥α xk = 1. On the other hand, we have∑
k∈N:d(L1,L2)≥α xk ≤

∑
k∈N:d(L1,pk)≥α

3
xk +

∑
k∈N:d(pk,L2)≥α

3
xk for every 0 < x < 1. Now it follow that

limx→1−(1− x)
∑

k∈N:d(L1,L2)≥α xk ≤ limx→1−(1− x)
∑

k∈N:d(L1,pk)≥α
3
xk

+ limx→1−(1− x)
∑

k∈N:d(pk,L2)≥α
3
xk = 0 + 0 = 0.

This implies that limx→1−(1− x)
∑

k∈N:d(L1,L2)≥α xk = 0. This is a contradiction. 2

Theorem 2.2 Any convergent sequence is Abel statistically convergent, i.e. the Abel statistical method
is regular.

Proof: let (pk) be a convergent sequence with lim pk = L. Then for any ε > 0 there exists a k0 ∈ N
such that d(pk, L) < ε for k ≥ k0. Thus the number of indices is less than k0, i.e. {k ∈ N : d(pk, L) ≥
ε} ⊆ {1, 2, 3, ..., k0}. Hence (1− x)

∑
k∈N:d(pk,L)≥ε x

k ≤ (1− x)
∑k0

k=0 x
k = 1− xk0+1. Now it follow that

limx→1−(1− x)
∑

k∈N:d(pk,L)≥ε x
k = 0. So the Abel statistical sequential method is regular. 2

On the other hand, Abel statistical sequential method is a sequential method in the manner of [14], [3],
[18], and [36].

Now we give a characterization of Abel statistical convergence in the following:

Theorem 2.3 . A sequence (xn) is Abel statistically convergent if and only if the following condition is
satisfied.

(AstC) For each ε > 0 there exists a subsequence of (xk′(r)) of (xn) such that limr⇒∞ xk′(r) = ℓ and

limx→1−(1− x)
∑

k∈N:d(pk,pk′(r))≥ε x
k = 0
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Proof: Take any sequence with Abelst − limn⇒∞ pn = ℓ. Write K(j) = {k ∈ N : k ≤ n and d(pk, ℓ) ≤
1/j} for any positive integer j. Thus for each j, K(j + 1) ⊂ K(j) and limx→1−(1− x)

∑
K(j) x

k = 1.

Choose m(1) such that n > m(1) implies that (1 − x)
∑

K(j) x
k > 0, i.e. K(1)Neq∅. Then for each

positive integer r such that m(1) ≤ r < m(2), choose k(r) ∈ Kp, i.e. p(xk′(r), ℓ) ≤ 1. In general,
choose m(p + 1) > m(p) such that r > m(p + 1) implies that Kp+1Neq∅. Then for all r satisfying
m(p) ≤ r < m(p+ 1), choose k′(r) ∈ Kp, i.e. d(xk′(r), ℓ) < 1/p. Then

(1− x)
∑

{k≤n:d(xk,xk′(r))<1/2 x
k ≤ (1− x)

∑
{k≤n:d(xk,ℓ)<1/2} +(1− x)

∑
{k≤n:d(ℓ,xk′(r))<1/2}

SinceAbelst−limn⇒∞ xn = ℓ, and limr⇒∞ xk′(r) = ℓ, (1−x)
∑

k∈N:d(pk,ℓ)≥ε x
k ≤ (1−x)

∑
k∈N:d(pk,pk′(r))≥ε x

k+

(1− x)
∑

k∈N:d(pk′(r),ℓ)≥ε x
k , hence the condition (AstC) is satisfied. This completes the proof of the the-

orem.
2

Corollary 2.1 Any Abel statistically convergent sequence has a convergent subsequence.

Proof: The proof follows from the preceding theorem, so is omitted. 2

The preceding theorem ensures that Abel statistical limit method is subsequential, where a sequential
method G is called subsequential if a sequence is G-summable to a point in X, then there is convergent
subsequence of the sequence with G-limit is equal to the limit of the subsequence.

Definition 2.2 A subset E of X is called Abel statistically compact if any sequence of points in E
has an Abel statistical convergent subsequence whose Abel statistical limit is in E, i.e. whenever
p = (pn) is a sequence of points in E, there is an Abel statistical convergent subsequence r = (rk) =
(rnk

) of the sequence p satisfying Abelst − lim r ∈ E.

Theorem 2.4 A subset of X is Abel statistically compact if and only if it is compact in the ordinary
sense.

Proof: The proof of this theorem follows from Lemma 2 in [3], and Corollary 2.1 so is omitted. 2

Definition 2.3 A point L in X is said to be in the Abel statistical sequential closure of a subset E of

X, denoted by E
Abelst

if there is a sequence p = (pk) of points in E such that Abelst − limpk = L,

and it is called Abel statistically sequentially closed if E
Abelst

= E.
In the following we see that ordinary closure of a subset of X coincides with the Abel statistically

sequential closure.

Theorem 2.5 E
Abelst

= E

3. Abel statistical continuity in metric spaces

We now introduce a new type of continuity defined via Abel statistical convergent sequences.

Definition 3.1 A function f is called Abel statistically continuous if it preserves Abel statistical
convergent sequences, i.e. (f(pk)) is Abel statistical convergent to f(L) whenever (pk) is Abel
statistically convergent to L.
In connection with Abel statistical convergent sequences and convergent sequences the problem arises

to investigate the following types of continuity of functions on X.

(Ast) (pn) ∈ Ast ⇒ (f(pn)) ∈ Ast

(Astc) (pn) ∈ Ast ⇒ (f(pn)) ∈ c

(c) (pn) ∈ c ⇒ (f(pn)) ∈ c

(cAst) (pn) ∈ c ⇒ (f(pn)) ∈ Ast
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We see that Ast is Abel statistical continuity of f , and (c) states the ordinary continuity of f . We easily
see that (c) implies (cAst), (Ast) implies (cAst), and (Astc) implies (Ast). The converses are not always
true as the identity function could be taken as a counter example for all the cases.

Now we give the implication (Ast) implies (c), i.e. any Abel statistical continuous function is contin-
uous in the ordinary sense.

Theorem 3.1 If a function f is Abel statistically continuous on a subset E of X, then it is continuous
on E in the ordinary sense.

Proof: The proof of this theorem follows from the preceding theorem and Lemma 2 in [3], so is omitted.
2

Corollary 3.1 Any Abel statistical continuous function on an Abel statistical compact subset of X is
uniformly continuous.

It is well known that uniform limit of a sequence of continuous functions is continuous. This is also
true for Abel statistical continuity, i.e. uniform limit of a sequence of Abel statistical continuous functions
is Abel statistical continuous.

Theorem 3.2 If (fn) is a sequence of Abel statistical continuous functions defined on a subset E of X
and (fn) is uniformly convergent to a function f , then f is Abel statistically continuous on E.

Proof: Let (pn) be an Abel statistical convergent sequence of points in E. Write Abelst−lim pn = L. Take
any ε > 0. Since (fn) is uniformly convergent to f , there exists an N ∈ N such that d(fk(t), f(t)) < ε/3
for all t ∈ E whenever k ≥ N . Thus limx→1−(1 − x)

∑
d(f(pk),fN (pk))≥ ε

3
xk = 0. Since fN is Abel

statistically continuous, we have
limx→1−(1− x)

∑
d(fN (pk)),fN (L)|)≥ ε

3
xk = 0.

On the other hand,∑
d(f(pk),f(L))≥ε x

k ≤
∑

d(f(pk),fN (pk))≥ ε
3
xk +

∑
d(fN (pk)),fN (L))≥ ε

3
xk +

∑
d(fN (L),f(L))≥ ε

3
xk

for every x satisfying 0 < x < 1. Hence
limx→1−(1− x)

∑
d(f(pk),f(L))≥ε x

k ≤
limx→1−(1− x)

∑
d(f(pk),fN (pk))≥ ε

3
xk + limx→1−(1− x)

∑
d(fN (pk)),fN (L))≥ ε

3
xk +

limx→1−(1− x)
∑

d(fN (L),f(L))≥ ε
3
xk = 0 + 0 + 0 = 0.

This completes the proof of the theorem. 2

In the following theorem we prove that the set of Abel statistical continuous functions is a closed subset
of the space of continuous functions.

Theorem 3.3 The set of Abel statistical continuous functions on a subset E of X is a closed subset of
the set of all continuous functions on E, i.e. AstC(E) = AstC(E), where AstC(E) is the set of all Abel
statistical continuous functions on E, AstC(E) denotes the set of all cluster points of AstC(E).

Proof: Let f be any element in the closure of AC(E). Then there exists a sequence (fn) of points in
AC(E) such that limk→∞ fk = f. To show that f is Abel statistical continuous, take any Abel statistical
convergent sequence (pk) of points E with Abel statistical limit L. Let ε > 0. Since (fk) is convergent
to f , there exists a positive integer N such that d(fk(t), f(t)) < ε/3 for all t ∈ E whenever k ≥ N .
Thus limx→1−(1 − x)

∑
d(f(pk),fN (pk))≥ ε

3
xk = 0. Since fN is Abel statistically continuous, limx→1−(1 −

x)
∑

d(fN (pk)),fN (L))≥ ε
3
xk = 0. On the other hand,∑

d(f(pk),f(L))≥ε x
k ≤∑

d(f(pk),fN (pk))≥ ε
3
xk +

∑
d(fN (pk)),fN (L))≥ ε

3
xk +

∑
d(fN (L),f(L))≥ ε

3
xk

for every x satisfying 0 < x < 1. Hence
limx→1−(1− x)

∑
d(f(pk),f(L))≥ε x

k ≤
limx→1−(1− x)

∑
d(f(pk),fN (pk))≥ ε

3
xk + limx→1−(1− x)

∑
d(fN (pk)),fN (L))≥ ε

3
xk +
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limx→1−(1− x)
∑

d(fN (L),f(L))≥ ε
3
xk = 0 + 0 + 0 = 0.

This completes the proof of the theorem. 2

Corollary 3.2 The set of all Abel statistical continuous functions on a subset E of X is a complete
subspace of the space of all continuous functions on E.

Proof: The proof follows from the preceding theorem, and the fact that the set of all continuous functions
on E is complete. 2

Theorem 3.4 Abel statistical continuous image of any Abel statistical compact subset of X is Abel sta-
tistically compact.

Proof: The proof follws easily, so is omitted. 2

For G := Abel − lim, we have the following:

Theorem 3.5 If a function f is Abel statistical continuous on a subset E of X, then

f(B
Abelst

) ⊂ (f(B))
Abelst

for every subset B of E.

Proof: The proof follows from the regularity and subsequenelity of Abel statistical sequential method,
and Theorem 8 on page 316 of [3]. 2

4. Conclusion

In this paper we introduce a concept of Abel statistical continuity in a metric space X, and present
theorems related to this kind of continuity, and some other kinds of continuities. The concept of Abel
statistical compactness is also introduced and investigated. One may expect this investigation to be
a useful tool in the field of analysis in modeling various problems occurring in many areas of science,
dynamical systems, computer science, information theory, and biological science.
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18. H. Çakallı, Sequential definitions of connectedness, Appl. Math. Lett. 25, 3, 461-465, (2012).
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23. H. Çakallı and M.K. Khan, Summability in topological Spaces, Appl. Math. Lett. 24, 348-352, (2011).
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