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Asymptotic Analysis of the Processor Sharing Multi-Queue

Amal Ezzidani, Mohamed Ghazali and Abdelghani Ben Tahar

abstract: Queueing theory is a key tool for analyzing complex systems like cloud computing and networks.
It helps understand how delays, congestion, and resource sharing behave under different regimes. This paper
studies the asymptotic behavior of the fluid model solution associated with a network of processor sharing
multi-queues. This model is particularly relevant to modern applications where multiple tasks share processing
resources. The network consists of J queues, each with a single server, an infinite waiting room and arbitrary
interarrival and service time distributions. Under the processor-sharing discipline, all customers present in
a queue are served simultaneously. In this system, customers may arrive at a queue either from outside the
system or from the previous queue. Upon completing service at one queue, customers proceed to the next.
Our results show that, as time approaches infinity, the fluid model solution converges in the critical regime
and grows asymptotically linearly with time in the supercritical regime.

Key Words: Processor Sharing, multi-queue, asymptotic behavior, critical regime, supercritical
regime.
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1. Introduction

Open queueing networks refer to mathematical models used to represent and analyze various computer
systems, particularly those where multiple tasks or processes interact with each other in a dynamic
manner. As a result, the processor sharing (PS) discipline is a specific way of managing and allocating
resources (such as CPU time) in these queueing networks. In PS, all tasks or processes present in a queue
are served simultaneously, with each receiving a fraction of the available resources proportional to its size.
Moreover, the relevance of PS extends beyond queueing theory and finds application in various computer
applications, as demonstrated in Kleinroc [1]. For real-world examples, the paper by Moscholios [2]
proposes teletraffic models in which arriving calls follow a random process and compete for service in the
cell under the bandwidth sharing policy. Other authors [3] address the challenge of task scheduling in
cloud computing by employing an analytical approach based on queuing theory.

To study the evolution of such systems, a fluid model solution constitutes a mathematical or ana-
lytical representation aimed at simplifying the analysis. Moreover, several authors have delved into the
examination of the asymptotic behavior of fluid model solutions. Chen et al. [4] initiated this exploration
by studying a fluid approximation for a PS queue, which focussed on approximating the queue length
process. Besides, Gromoll et al. [5] studied a heavily loaded PS queue. They studied the fluid (or
law of large numbers) approximation and continued by establishing the asymptotic behavior of critical
fluid model solutions in [6].On the other hand, Puha et al. [7] has established an analogous results
for supercritical fluid model solutions. They shown that the crucial differentiation between critical and
strictly supercritical fluid models lies in the behavior of the total mass. That is, for a solution that begins
from zero, the total mass increases over time in the case of strictly supercritical models. However, for
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critical models, the total mass remains consistently at zero. Consequently, these findings are particularly
intriguing and motivate us to further extend the analysis by examining the asymptotic behavior of the
fluid model solution for a finite sequence of queues. Specifically, we investigate the limiting behavior
of the queue length, the total number of arrivals, and the number of departures in each queue as time
approaches infinity, under both the critical regime (where the service and arrival rates are equal) and the
supercritical regime (where the service rate is lower than the arrival rate).

In this paper, we consider a network composed of J queues, indexed by j = 1, . . . , J . Each queue
(denoted by j) has a single server and an infinite waiting room. Following the PS rule, all customers
present in each queue are served simultaneously. Customers arrive at queue j from an external source
following a renewal process and have a general service time distribution. After receiving their service,
customers exit queue j and proceed to queue j + 1.

This paper establishes two main theorems. The first one (Theorem 3.1) demonstrates that, under
mild assumptions, the critical fluid model solution converges, and the queue length associated with each
queue becomes asymptotically constant. The second theorem (Theorem 3.2) characterizes the asymptotic
behavior in the supercritical regime, showing that the fluid model solution grows linearly with time. These
results extend the foundational analyses developed in [6] and [7].

The paper is organized in the following manner. Section 2 contains the model description and the
definition of fluid model solution. Section 3 states the main results along with their proofs. Section 4 is
devoted to examples. Finally, Section 5 provides concluding remarks.

2. Fluid model for the PS multi-queue

In this section we give the description of the fluid model of a network of the PS multi-queue consisting
of J queues. The model, as presented in Figure 1, has three parameters, α ∈ R∗J

+ , a vector of Borel

Figure 1: The processor sharing multi-queue

probability measure ν on R∗J
+ where [νj({0}) = 0] and the component νj which has a finite first moment

[⟨χ, νj⟩ < ∞] for each j = 1, . . . , J as well as the nonnegative matrix P is formed from the components
pji where

pji =

{
1 if i = j + 1
0 otherwise.

(2.1)

The network is considered to be open, meaning that the matrix Q = I + P ′ + (P ′)2 + . . . is finite where
P ′ represents the transpose of the matrix P . This condition is equivalent to requiring that (I − P ′) is
invertible. These parameters refer to queueing system parameters. In particular, α corresponds to the
exogenous arrival rate, the probability measure ν corresponds to the distribution of the i.i.d. service
times and the matrix P represents the routing probability between queues. Thus, the load factor of each
station j is given by:

ρj = ⟨χ, νj⟩
j∑

i=1

αi.

If ρj = 1 for all j = 1, . . . , J , the triple (α, ν, P ) is called a critical data. Otherwise if there is j such that
ρj > 1 then the data (α, ν, P ) is called a supercritical data.
At each queue j, any customer presents at time zero is called an initial customer and has an i.i.d. service
time distributed according to the probability measure ν0j . Moreover, we assume that all queues are
initially non-empty.
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Let M denote the space of finite, nonnegative Borel measures on R+ endowed with the topology of
weak convergence and MJ is the Cartesian product of J with itself J times. We express ⟨g, µ⟩ as the
integral of a Borel measurable function g with respect to the measure µ, where µ ∈ M and g is integrable
with respect to µ.

For a given data (α, ν, P ) and an initial state ξ ∈ MJ , a fluid model solution is a triple (A(t), D(t), µ(t))
of two real continuous and nondecreasing componentwise functions A,D : R+ → RJ

+ , and one measure-
valued vectors of continuous mappings µ : R+ → MJ such that, for every j, the following equations
hold

A1(t) = α1t and Aj(t) = αjt+Dj−1(t) (2.2)

Zj(t) = Zj(0) +Aj(t)−Dj(t) (2.3)

⟨1[x,∞), µj(t)⟩ = ⟨1[x+Sj(t),∞), ξj⟩+
∫ t

0

⟨1[x+Sj(t)−Sj(s),∞), νj⟩ dAj(s) (2.4)

for all t, x ∈ R+. Here:

Sj(t) =

∫ t

0

1

Zj(u)
du (2.5)

such that for all 0 ≤ s < t, inf
s≤u≤t

⟨1, Zj(u)⟩ > 0, and Sj(τ) − Sj(s) = ∞ for all s < τ such that

⟨1, Zj(τ)⟩ = 0.
The above equations can be interpreted as follows: Aj(t) represents the number of arrivals at queue j by
time t, Dj(t) signifies the number of departures from queue j by time t, and Zj(t) denotes the number
of customers present in queue j at time t. In addition, Sj(t) is the accumulated service quantity received
by a customer from the beginning of the observation up to time t in queue j.
Since ⟨1[x,∞), ξj⟩ = P(ν0j > x)Zj(0) for all x ≥ 0, then, for x = 0, Eq. (2.4) gives the evolution for
Zj(t) := ⟨1, µj(t)⟩:

Zj(t) = P(ν0j > Sj(t))Zj(0) +

∫ t

0

P(νj > Sj(t)− Sj(s)) dAj(s). (2.6)

3. Main results

In this section we state and prove the limit of the triple (Aj(t), Dj(t), Zj(t)) as t → ∞ for each
j = 1, . . . , J for both critical and supercritical data.
Define Mc,J = {ξ ∈ MJ : ξj({x}) = 0 for all x ∈ R+ and j = 1, . . . , J}.

Theorem 3.1 Let (α, ν, P ) be a critical data and ξ ∈ Mc,J . For each j = 1, . . . , J , let (Aj(t), Dj(t), Zj(t))
the triple defined by (2.2), (2.3) and (2.6). Assume that ⟨χ, ν0j ⟩ < ∞, ⟨χ, νj⟩ < ∞ and ⟨χ2, νj⟩ < ∞ for
all j = 1, . . . , J . Then

Zj(t) → Zj(∞) as t → ∞ (3.1)

where

Z1(∞) =
2⟨χ, ν01⟩Z1(0)

⟨χ2, ν1⟩α1
and (3.2)

Zj(∞) =
2
(
⟨χ, ν0j ⟩Zj(0) + ⟨χ, νj⟩

∑j−1
i=1 (Zi(0)− Zi(∞))

)
⟨χ2, νj⟩

∑j
i=1 αi

(3.3)

for j ≥ 2. Moreover,

lim
t→∞

Aj(t)

t
= lim

t→∞

Dj(t)

t
=

j∑
i=1

αi.
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Proof: We use the induction on j, in fact, for j = 1 this convergence is proved in Theorem 4.1 of [6].
Fix j = 2, . . . , J and assume that (3.1) holds for i = 1, . . . , j−1. Since the function Sj(·) defined by (2.5)
is continuous and strictly increasing, we have the same for the function Tj(·) defined by Tj(t) = S−1

j (t)
for all t ≥ 0. Moreover, lim

t→∞
Tj(t) = ∞. By changing of variable t → Tj(t) in Eq. (2.6), then we obtain:

Zj(Tj(t)) = P(ν0j > t)Zj(0) +

∫ t

0

P(νj > t− s) A′
j(Tj(s)) T

′
j(s) ds. (3.4)

Eq. (2.2) can be rewritten as

Aj(t) =

j∑
i=1

αi t+

j−1∑
i=1

(Zi(0)− Zi(t)).

Then Eq. (3.4) becomes

Zj(Tj(t)) = P(ν0j > t)Zj(0) −
∫ t

0

P(νj > t − s)

j−1∑
i=1

Zi(Tj(s))
′ ds +

j∑
i=1

αi

∫ t

0

P(νj > t − s) T ′
j(s) ds.

As a result:

Zj(Tj(t)) = P(ν0j > t)Zj(0) −
∫ t

0

P(νj > t − s)

j−1∑
i=1

Zi(Tj(s))
′ds + ρj

∫ t

0

P(νj > t− s)

⟨χ, νj⟩
T ′
j(s) ds.

On the other hand, since Zj(Tj(t)) = ⟨1, µj(Tj(t))⟩ = T ′
j(t) and ρj = 1, then we have

T ′
j(t) = hj(t) +

∫ t

0

Kj(t− s) T ′
j(s) ds, (3.5)

where hj(t) = P(ν0j > t)Zj(0)−
∫ t

0

P(νj > t− s)

j−1∑
i=1

Zi(Tj(s))
′ds and Kj(t) =

P(νj>t)
⟨χ,νj⟩ . Applying the key

renewal Theorem to Eq. (3.5), we have

lim
t→∞

T ′
j(t) =

∫∞
0

hj(t)dt∫∞
0

tKj(t)dt
=

⟨χ, ν0j ⟩Zj(0)
1

2⟨χ,νj⟩ ⟨χ
2, νj⟩

−

∫∞
0

∫ t

0
P(νj > t− s)

(∑j−1
i=1 (Zi(Tj(s)))

′
)
dsdt

1
2⟨χ,νj⟩ ⟨χ

2, νj⟩

=
⟨χ, ν0j ⟩Zj(0)− ⟨χ, νj⟩(

∑j−1
i=1 (Zi(∞)− Zi(0)))

1
2⟨χ,νj⟩ ⟨χ

2, νj⟩

=
⟨χ, ν0j ⟩Zj(0)− ⟨χ, νj⟩(

∑j−1
i=1 (Zi(∞)− Zi(0)))

1
2 ⟨χ2, νj⟩

∑j
i=1 αi

.

On the other hand, by induction and using (2.2) and (2.3), we obtain lim
t→∞

Aj(t)

t
= lim

t→∞

Dj(t)

t
=

j∑
i=1

αi.

2

To introduce Theorem 3.2, we first review some background. Let (α, ν, P ) be a data. For each j = 1, . . . , J ,
and by [8], there exists a unique positive real number mj solution to the equation:

mj =

(
1−

∫ ∞

0

e−mjsνj(ds)

)
aj , (3.6)
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such that ρ1 > 1 and ρj − ⟨χ, νj⟩
j−1∑
i=1

mi > 1, where

a1 = α1 and aj = αj +

j−1∑
i=1

(λi −mi), (3.7)

λ1 = α1 and λj = αj +

j−1∑
i=1

(αi −mi), (3.8)

for j = 2, . . . J . Moreover, define pj : R+ → R+ by

pj(x) = aj

∫ ∞

x

1[x,∞)(y) e
mj(x−y) νj(dy), (3.9)

for all x ∈ R+. For each j = 1, . . . , J , let ςj ∈ M denotes the measure that is absolutely continuous with
respect to Lebesgue’s measure where its Radon–Nikodym derivative is pj(·):

ςj(A) =

∫
A

pj(x) dx for all measurable A ⊆ R+. (3.10)

It’s obvious that
∫∞
0

pj(x) dx = mj = ⟨1, ςj⟩.

Theorem 3.2 Let (α, ν, P ) be a supercritical data and ξ ∈ Mc,J be an initial state. For each j = 1, . . . , J ,
let (Aj(t), Dj(t), Zj(t)) the triple defined by (2.2), (2.3) and (2.6). Then for each j = 1, . . . , J we have:

Zj(t)/t → mj as t → ∞, (3.11)

where, mj defined by (3.6). As a consequence,

lim
t→∞

Aj(t)/t = λj and lim
t→∞

Dj(t)/t = λj −mj . (3.12)

Proof: For j = 1, Theorem 3.2 follows from Theorem 3.5 of [7]. For j ≥ 2, we use a change of variable
Tj(t) → t, one has

lim
t→∞

Zj(t)/t = lim
t→∞

Zj(Tj(t))/Tj(t) = T ′
j(t)/Tj(t). (3.13)

Based on the arguments in Lemmas C.2 and C.3 of [9], and using Eq. (3.5), we obtain the following as
m → m+

j :

L(Tj)(m) ∼ L(hj)(mj)(
ρj − ⟨χ, νj⟩

∑j−1
i=1 mi

)
L′(νj)(mj)

1

m−mj
,

with L(f)(mj) =
∫∞
0

e−mjtdf(t) is the Laplace-Stieltjes transform of any function f and L′(νj)(t) =
dL(νj)(t)

dt . Then, the Tauberian Theorem gives us Tj(t) ∼ dj exp(mjt) where

d1 =
m−1

1

(
1− L(ν01)(m1)

)
Z1(0)

−1− L(ν1)(m1)α1
, (3.14)

and for j ≥ 2,

dj =
m−1

j

−1− L(νj)(mj) λj

[(
1− L(ν0j )(mj)

)
Zj(0) + (1− L(νj)(mj))

j−1∑
i=1

(Zi(0) +miL(Ti)(mj)− L(Zi(Tj))(mj))

]
. (3.15)

Thus, Eq. (3.13) becomes

lim
t→∞

Zj(t)/t = lim
t→∞

mjdje
mjt

djemjt
= mj . (3.16)

Moreover, by induction and using (2.2) and (2.3), the limits (3.12) holds. 2
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4. Examples

Example 4.1 Consider the PS system with two queues and the following critical data. Let α1 = 1 and
ν1 have a rate µ1 = 1 exponential distribution. Let α2 = 2 and ν2 have a rate µ2 = 3 exponential
distribution. We compute ρ1 = α1

µ1
= 1 and ρ2 = α1+α2

µ2
= 1. Besides ν01 and ν02 follow exponential

distributions with rates µ0
1 = 2 and µ0

2 = 2, respectively. Figure 2 suggests that the queue lengths of
each queue have finite limits: Z1(∞) = 1

2 and Z2(∞) = 2. This example is interesting because both

Figure 2: Total mass in both queues under critical condition and exponential service times

queues are critically loaded in the usual traffic-intensity sense: ρ1 = ρ2 = 1. Normally ρ = 1 signals
a borderline (critical) case where queues can grow without bound. Yet the computed fluid limits show
finite steady values, Z1(∞) = 1

2 and Z2(∞) = 2. This outcome has the following important implications
and interpretations:

1- Stability in the fluid sense despite critical loads: The finite limits mean that, under the model
assumptions (PS discipline and the specified residual-service-rate parameters µ0

1 = µ0
2 = 2, the

system admits nonzero but bounded equilibrium queue lengths. In other words, the system does
not blow up even though the nominal load parameters ρi equal 1. This highlights that the usual
ρ < 1 rule is a sufficient but not necessary condition for boundedness in more refined models.

2- Why the two queues settle at different levels:Queue 2 ends up larger (2 vs 1/2) because more work
is fed into queue 2: α2 = 2 contributes to the cumulative arrival intensity seen by server 2, so even
with the higher service rate µ2 = 3 the balance of arrivals and the sharing mechanism produces
a larger equilibrium backlog. Intuitively, PS spreads capacity among all present jobs, but the net
input to queue 2 (including feed-forward from queue 1 if present in the model) makes its long-run
occupancy higher.

Example 4.2 Consider the PS system with two queues and the following supercritical parameters. Let
α1 = 5

4 and ν1 be exponentially distributed with rate µ1 = 1. Let α2 = 1 and ν2 be exponentially
distributed with rate µ2 = 1. We compute the traffic intensity for the first queue as ρ1 = α1

µ1
= 5

4 > 1.

Furthermore, let m1 = −1+
√
6

2 , which is the unique positive solution of the quadratic equation

x2 + x− 5

4
= 0.

We also have

ρ2 − ⟨χ, ν1⟩m1 =
11− 2

√
6

4
> 1.

Figure 3 illustrates that, as time t → ∞, the queue lengths of both queues increase linearly on av-
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Figure 3: Total mass in both queues under supercritical critical data

erage. The corresponding asymptotic growth rates are m1 = 11−2
√
6

4 > 1 for the first queue and

m2 = −1+
√

12−2
√
6

2 for the second queue. This behavior has two important implications:

1- System instability : Both queues accumulate customers indefinitely, which is characteristic of a
supercritical system. Unlike the critical case where finite equilibria may exist, here the imbalance
between arrival rates and service capacities forces persistent growth.

2- Linear law of growth: The fact that the growth is asymptotically linear rather than exponential
highlights that, under the PS discipline, overload translates into a deterministic “drift” in the fluid
limit. The constants m1 and m2 quantify the precise speed of divergence for each queue.

5. Conclusion

In this paper, we have analyzed the evolution of a PS multi-queue system using fluid model asymp-
totics, focusing on two operational regimes: critical and supercritical. In the critical regime, we demon-
strated that each queue’s state converges to a constant over time. Conversely, in the supercritical regime,
we proved that each queue becomes transient, with queue lengths diverging over time. Comparatively,
the critical regime allows for system stabilization and predictable long-term behavior, while the supercrit-
ical regime leads to instability and unbounded growth. Understanding these regimes provides valuable
insights for designing and managing PS systems to ensure desired performance and stability.
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