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Numerical Approximation of the Timoshenko System with Temperature and
Microtemperature Effects in the Absence of Thermal Conductivity

Ali Smouk and Atika Radid

ABSTRACT: This study presents a numerical investigation of a thermoelastic Timoshenko system where
dissipation arises exclusively from microtemperature effects, with thermal diffusion neglected. The primary
objective is to analyze the system’s energy evolution and exponential decay properties. We start by formulating
the problem variationally, employing transformed derivatives to derive a coupled system of four first-order
variational equations. A fully discrete numerical scheme is then proposed, and its discrete stability is rigorously
established. We also derive a priori error estimates for the method. To support our theoretical analysis,
numerical experiments are carried out, confirming the expected decay behavior and accuracy of the solution.
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1. Introduction

Over the past few decades, a wide range of dynamic equations have been utilized as mathematical
models to represent engineering phenomena. Since many physical processes are governed by partial
differential equations (PDEs) that lack closed-form solutions, numerical methods have become essential
tools for analysis. Techniques such as the finite element method (FEM) and the finite difference method
(FDM) are commonly employed to obtain approximate solutions. These computational approaches enable
the simulation and understanding of complex physical behaviors that are otherwise difficult to analyze
analytically.

The numerical analysis of the Timoshenko system has garnered significant interest among researchers
due to its complexity and critical applications in engineering and material sciences. This advanced
system extends the classical beam theory by accounting for shear deformation and rotational inertia
effects, thereby improving the accuracy of predictive models. For further reading, we refer the reader to
seminal works [2,5,17,18], which provide comprehensive insights and methodologies for tackling various
challenges associated with the Timoshenko system.

In recent years, there has been significant research interest in Timoshenko-type systems, with nu-
merous researchers exploring the topic extensively. This growing attention focuses on understanding the
asymptotic behavior of these systems under various damping mechanisms, including frictional, structural,
and viscoelastic damping, both linear and nonlinear. Studies have been conducted with and without cou-
pling these systems with a heat equation (see, for instance, [3,8,15,19,21]). Moreover, contemporary
studies have considered linear Timoshenko systems with additional complexities like memory, delay, and
second sound effects (see, e.g., [4,6,10]).
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Alternatively, in contrast to the Timoshenko system, the study of the asymptotic behavior of porous
elastic systems with microtemperature effects has also attracted considerable attention. Noteworthy
results have been established in this domain. For example, a thermoelastic system was recently examined
by Dridi and Djebabla [11] under the influence of temperature and micro-temperatures. They specifically
considered the following system:

PUty = Py + by — 04, in (0,1) x (0, 00),
J@tt = QQPgy — buy, —fsﬁ—dwx-l-ma, in (071) X (0700)7
Oy = kOry — YU — loy — k1w, in (0,1) x (0, 00),
owy = kgwyy — dpe — kow — k3O, in (0,1) x (0,00).

Using the multipliers method, the authors proved exponential stability in the case of zero thermal con-
ductivity without any conditions placed on the system’s coefficients.

Understanding how the energy behavior of solutions in dynamic models depends on system parameters
is crucial. Recently, there has been considerable focus on the well-posedness and stability of Timoshenko
systems. Notably, Saci and Djebabla in [16] improved upon previous results, showing that dissipation
solely from micro-temperatures can achieve exponential stability, contingent on specific parameters. They
established that stability is attained if:

where

Meradji et al., in their work [12], explored system (1.1) which is a Timoshenko system characterized
by microtemperature dissipation without thermal diffusivity, described by four linear partial differential
equations. These equations include two hyperbolic equations and two parabolic equations representing
temperature and microtemperature differences. They used semigroup theory to establish the existence
and uniqueness of solutions and proved the energy decay property using the multipliers method.

In this paper, we analyze the following model [12]:

P1utt — k (u.L + <)0)(1: + 791‘ =0, in (O’ 1) X (O’ OO) s
P21t — b + k (uy + @) +yw, —v0 =0, in (0,1) x (0,00), (1.1)
03915 + klwm + 'Y(Ux + So)t - Oa in (Oa 1) X (03 OO) 5
wy — k2wxm + kdw + klem + VPtx = 07 in (0’ 1) X (0’ OO) ’

with the initial and boundary conditions

<p(.’E,0) = ¥o (x)v Pt ({E,O) =¥ (1')7 w(:c,O) = Wo (1’), for z € (071)7 (1 2)
ug (0,8) = ug (1,8) = ¢ (0,8) = ¢ (1,t) =0, Vit >0, '
0(0.1) = 0(1,1) = ws (0,8) = w, (1.1) 0, W >0

The constants pi1, p2, p3, b, k, k1, k2, k3, and v are positive and represent constitutive coefficients with
well-known physical significance. The variables u, ¢, 6, and w denote the displacement of the solid elastic
material, the volume fraction, the temperature difference, and the microtemperature, respectively.

The initial data ug, u1, g, @1, wo, By are given functions. The unknowns of the system are represented
by the variables:

(§07w797w) : (071) X (0700) — R4.
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2. Energy dissipation law

In this section, we summarize the results of exponential stability obtained in [12] for the problem
described by equations (1.1)-(1.2). The energy associated with the solution of the system (1.1)-(1.2) is
given by:

1t
E0) =5 | (o + pag? + pat? + 0 + b2+ by + ) (2.1)
0
Proposition 2.1 Let (u,p,0,w) be a solution of (1.1) — (1.2). The total energy E(t) of the system
(1.1)-(1.2) satisfies
€

1 1
7:4@/ wgdxfkg/ wldz <0, Vt>0.

The subsequent proof is an extended version of the one proposed in [12].

Proof: Multiplying equation (1.1); by u; and integrating by parts over (0,1) and using the boundary
conditions, we have

d 1 1
s / uldx + k/ (ug + p)uzdr —v [ Oupdr = 0. (2.2)
2 dt 0 0
Similarly, multiplying the equation (1.1)y by ¢, the equation (1.1)3 by 6, and (1.1)4 by w we get
ps d bd [ 1 1 1
5 O2dx + 5@ ©rdr + k ; (uz + ©)pedx + ; W ppdr — 7y ; Opidr = 0, (2.3)
p3 d 1 1
92d:c + ky / wy0dr + 7/ (ug + ¢)10dx = 0, (2.4)
1d [t 1 1 1 1
—— w?dx + kg/ wider + kg/ wdz — ky / wo0dx — 7/ prwedr = 0. (2.5)
2dt Jo 0 0 0 0

By summing (2.2) — (2.5), we find

1 1 1

prd u? kd p2 d o2 bd 2
wT sdx +2dt (ug + ¢)? d:c+2dt dx+2dt podr
L L (2.6)
P3 @ 2 la wide — — 25 2
+2dt/0 +2dt dx kg/owwdx kg/owda:.
Finally,
1 1
ad Z—k'g/ widm—kg/ widz. (2.7)
O

Theorem 2.1 Let (u,p, 0, w) be a solution of (1.1) — (1.2) and that the coefficients of the system satisfy
the condition

where

P3

Then, (u,, 8, w) decays exponentially, i.e., there exist two positive constants A1, Ay such that

E(t) < AE(0) exp(—Aat), Vt>0. (2.8)

Proof: See Ref. [12]. O
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3. Numerical approximation

In this section, we propose a finite element approximation to solve system (1.1) with initial conditions
and boundary conditions (1.2).

We define the following functions: u = u; and @ = ;. We can then rewrite the system described in
(1.1) as follows:

plat —k (ua: + @)g; + ’)/HI =0, in (O’ 1) X (07 OO) )

2Pt = bpwa + K (us + ) +ywy =70 =0, in (0,1) x (0,00), (3.1)

30 + krw, + v (4, + @) =0, in (0,1) x (0,00), '
— kowge + ksw + k160, + vp, =0, in (0,1) x (0,00)

We introduce an implicit Euler-type scheme utilizing finite differences for time discretization and finite
elements for spatial discretization. We analyze the behavior of the discrete energy and demonstrate that
this energy decays over time.

To derive the variational formulation of Problem (3.1) with boundary conditions (1.2), we define
an appropriate function space and denote the scalar product in the space L?(0,1) by (-,-), with the
corresponding norm denoted by || - ||

To obtain the weak form associated with system (3.1), we multiply the equations by test functions
& a € HY0,1),x,m € HE(0,1) and integrate by parts:

11 )+k(u.L+<)0£l)_ (efub)zoa
2 (Pt X) + 0 (Pas Xa) + K (uz + 0, X) — 7 (w, Xz) =7 (0, x) =0, (3.2)
3 (0t ) k1 (w,me) +7 (e +¢,n) =0, '

We consider a nonnegative integer J and define h = % as the subdivision size for the interval (0, 1).
This results in the points 0 = xo < 21 < --- < xj-1 < x5 = 1, where z; = jh for j = 0,...,J. We
introduce the space

St = {Uh eC0,1] ; ufy,, ..y € P [z z541]) 5=0,...,J = 1},

Vh = H0,1) N S",

and
Vgt = Hg(0,1) N S™,

where the set S” consists of functions uj that are continuous on [0, 1] and piecewise linear, specifically
linear on each subinterval [z;,7;4+1]. The notation P}([z;,2;:1]) denotes the space of polynomials of
degree at most one defined on the subinterval [z}, z;11]).

Given a final time T and a positive integer IV, we define the time step At = and the discrete time
levels t, = nAt forn=0,...,N.

The finite element method for solving system (3.2) using the backward Euler scheme involves finding
up, wp € VP and op, 0 € V' for each time step n = 1,..., N, such that the equations hold for all test
functions &y, ap € V* and xp, ny € VI

PL g =, 60) + ke (ufly + @) ne) — 7 (0}, En) = O,

At
P ~n ~n— n n n n
Ki (<ph — P 1>Xh) + b(@hx?xhw) +k (uhw + @h7Xh) - (wh7th)
_V(GZaXh) =0, 53)
At (071 azil,ﬂh) — k1 (wZ»nhm)""Y(ﬂzz‘f‘@Z,ﬂh) :07
1
Kt (wn - w;b 17 h) + kQ (me?ahw) + k3 (w;zla ah) + kl (eng ah)

+7 (&Zx’ ah) =0,



NUMERICAL APPROXIMATION OF THE TIMOSHENKO SYSTEM... 5

n—1 n—1

~n up —uy ~n _ Ph—¥
where, Up = - A ~and op = 7&1 . ' D o w0 .
are approximations to 4" = u, (¢,) and @™ = ¢, (t,,) respectively. Here, uy,u;, ¢, ¢, 6 and w) are

given approximations to the initial conditions ug, u1, @o, 1, 0o, wo respectively.

The following result presents a discrete version of the energy decay property that is satisfied by the
solution of the system (1.1).

Theorem 3.1 The discrete energy can be defined as:

n 1
& =5 oL IR + o2 BRI + psll ORI + leop |2 +k sy + G111 + bl ] - (3.4)

Then, the decay property
=&t
At
This holds forn =1,2,..., N, where ||-|| denotes the norm in the space L?(0,1).

<0. (3.5)

Proof: Taking

&hn=ay, Xh=9¢r, nn=0h and ap=wy}, (3.6)
in system (3.3), we have
pl ~n ~ ~n n n ~n n ~n
At ( _UZ 17 h)+k(uhx+gphvuhx)_7(0h7uhx):Oa (37)
P2 /-n ~ ~n n  ~=n n n ~n n ~n n ~n
At (eh — @n~ 179%) + b (Phes Pha) + K (Uhy + @1y O1) — 7 (Wi Phy) — v (05, 84) =0, (3.8)
D5 (03— 071, 08) — k(i O3) + 3 (i, + B3, 07) = 0. (39)
and
1 n n— n n n n n n n ~n n
At (wip = wy =t wit) + K (Wi, wit,) + ks (Wit wit) + k1 (Oh,, wit) + 7 (Ghy wi) = 0. (3.10)

By summing equations (3.7) through (3.10), we obtain

pl ~n ~n—1 ~n n n ~n ~n P2 ~n—1 ~n
At (ap — ay, 17uh) +k (Upy + @y Uhy + Pp) + - Al (eh — &h 1,9011)
n— 1 n n— n
+ b (Ohs Pha) + At (9 -0, ! eh) At (wh —wy, lawh) (3.11)
+ kz (whm? whz) + k3 (’(1)27 U)Z) = 0.
Using the following equality:
1
(a—b,a) = §(Ila—bH2+||all2— 1611%) , (3.12)
we have )
(@ —ap ', ap) = B (lap = a2 + llapl® = lap =) (3.13)
and similarly for
n—1 n n
~n ~n ..n n Up, — U T $p — P n n
(uhz+<phauhz+<ph): ( o Ath - hAt h7uh$+@h>
1 n n— n n
= a7 (he =k - (e = i) uila + ¢7) (3.14)
1 n n
= o (lupe — ¢ — (@ = oI

Hluiy = @hll? = llupg ' —en 1),
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~n—1 ~n 1 =n ~7l AN
(&h —@n ' on) = B (lleh — [ [ e [ 1||2) ) (3.15)

N O — Oy
(Phs) = (B o,

1 n— n
At (‘phw Sohzl’(phw) (316)
= m (157s = na 12 + 1l = 12h2 %)
1 1
(6r — 605", 65) =5 (65 — 65~ R L [ 8 (3.17)
n n— n 1 n n— n n—
(wpy = wp ™t wp) = 5 (lwp = wp 2 + flwp]® = flwp =) - (3.18)
From the above equations, we deduce that
~n—12 ~n |2 ~n—1
L (g — a2 + ag)® — )
k n—1 n—1y2 n n||2 n
+TM(Huhz e e e 2 | Rl (/o
P2 ~n AN—=
+ 557 (I 1||2+|| Al = len %)
b (3.19)
~n—12 ~ 2 ~n—1
+ 5x7 (ke = @i 17 + 18Rl = I8hs %)
p3 n n—12 2 n—12
+ a7 U168 = 05717 + ORI — 11657 11%)
1 n— n n
+ 5 (lwh —w THE A o P = [l HIP) + kallwp, | + ksllwh | =
So,
/ At (517 — 3 1P) + 5 (||uzm — Rl =l = )
e 2 q|,xn—1 2 _ ||,zn—1
+ 22 (1R - g ) + m Ikl = 1554 1%) (3.20)
S IO = 16 07) + g (R = T 1) + Bl ” + sl P
<0.
It follows that
n—1
& =&
At
P1 ~ 2 ~n—1 n n2 n—1 n—12
< 2L (gl - g 07) + Mt (ke — R 12 = s = 1)
2 ~n—1 2 || =n—1 (3.21)
+ L2 (IR = 18 17) + 5 (18807 = 165 1P)
1
n||12 n—1(2 n|2 n—12 n |2 n||2
+TN(H9 P =167 17) + 557 (il = i %) + kellwpa|® + ksllwhl
<0.
This inequality implies that # < 0, indicating that the discrete energy &, is decreasing over time.
Thus, the theorem is proven by utlhzmg the definition of the discrete energy. O

As a result, we derive the following stability estimates.
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Corollary 3.1 The discrete solution {u}, oy, uy, oy, 05, wi}, generated by discrete problem (3.3), satis-
fies
TR + BRI + lurs + @17 + e l* + 16717 + lwp”

arY i+ ArY i <
i=1 i=1

Proof: By summing (3.20) over n, the result follows. O

4. Error analysis: a priori error estimates

In this section, we will establish a priori error estimates for the numerical approximation. These esti-
mates will show that the algorithm converges linearly, given that certain additional regularity conditions
are satisfied.

Theorem 4.1 There exists a positive constant C, independent of the discretization parameters h and At

such that for all {5;, 0‘2}5\; c V" and {X;w 772}5\;0 c Vg,

n n 2
maxo<n<n {[[u" - u s +g" — @i s +lGuz + ") = (uhy + @Rl
+ 1l — oI +||9” O 117 + ™ — wil|*}

N ~n ~n ~n ~n ~n -n
< CAtY L | ap — 0wt |? + [[a” — &l + llug — &nall* + 127 — 68712
HE™ = xall? + g — 0pl® + 1I(wf + ™) — (uf + ¢™)|1* + (|67 — 560"

HI@ = Xna|* + 1107 = 060™|* + 110" — nul® + [0 + &" -, — G|
HO™ =l + wp = dw™ |2 + ™ — an® + [Jwf — wi,|* + |} — ane||?

HE - a2 ) + L IE - xh - @ - x| (4.1)
mz N (a1 ;Atz @ - g - @t -
+ SN [ - af — (wt — @l ||T 4+ Cmaxgenen (Hw —xPI? + - e

1107 = gl + o — ap)?) +C< @~ +[12° - &’
{9+ ¢%) — (uh, + oD+ |0 — |l + (100 — 62" + [0 - w2H2>-

Proof: Recall that = u; and @ = ¢;. For a continuous function f(t), we denote f™ = f(t,), and

for a sequence {f"}_,, we define §f" = JM_TJF. By subtracting equation (3.3); at time ¢t = ¢, for
£ =¢, € VP from (3.2)1, we obtain:

p1 (uf = 6up, &n) + k ((ui +¢") = (uiy +9h): Sha) + 7 (07 — 054, 6n) =0, (4.2)
Thus, for all &, € V", we obtain

P1 (ﬂ? - 61727?” _EZZ) +k ((u;’ + ) (uhz + @h) - uhm)
=0~ 0. )
= p1(uf —oup,u™ — &) + k ((ug +¢") = (up, + ¢5), Uy — &na)

- (gn - 927’&2 - ghz) .

(4.3)

Additionally, from equations (3.3)2-(3.3)4 and (3.2)2-(3.2)s, we deduce that for all x5,nm, € VJ' and
ay € VP, the following holds:

p2 (P — 5&2, O™ — OR) +b(Pf — Phs P — Pha) TR (uy + 0" —up, —op, 0" — &)
-y (w" — wh? <Phx) v (0" — 0 Q" — ‘ZZ)

= p2(pp — 5%, —Xn) +b(@r — Phes @Pp — Xna) + K (uy + " —up, —@p, " — Xn)
=y (W™ —wp, o — Xna) =7 (0" = 05, 0" = Xn) s

(4.4)
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w0 — O07,) (@ + §" — g — Gy 0" — 6f)

p3 (07 — 067,0™ — 07) — kq (w™ —
kl (w whvo nhﬁf)_‘_’Y(ﬂZ—i_&n_ﬁZz_&Zaan_nh)7

= p3(6F — 605, 6" —mn) —

(w?_atwi?’w wl?)+k2( _whsz whx)+k3( _w}r;’wn_w}r{)
k1 (07 — %7 —wy) +7 (s% Py W — W)

= (wp —otw},w —ah)+k2( —whi,w — pg) + ks (W™ — wp, Wt — ap)
+k1 (92 - 9;;;57 - ah) + Y (pr sohx’ ah) .

By adding these last equations and applying some simplifications, we obtain

pr (g — dup, u™ —ap) + k ((uy + ") — 0(up, +¢p), (up +¢") — (up, +¢1))

+p2 (PF — 03, @™ — D) + b (@ — 097 1, P% — h) + 3 (9 —005,0" —0p)

+ (wp — dwp, w™ — wit) + ko Jw — wit||* + ks lw" — whll

= p1 (uy — oup, u™ — &p) + k ((up + ") — (ujy, + ©}), Uy &m) dC 9;’{7?} ha)
+p2 (B} — 085, @™ — xn) + 0 (P — Phas P — Xna) + K (uf + @™ —ujy, — 0p, " — Xn)
- (wn - wﬁa@ﬁ - th) -7 (en - 92’62 - Xhac) + p3 (91? - 5927971 - nh)

—k1 (W™ —wp, 07 — npa) + v (U + @” = Upy — Py 0" —mp) + (Wi — Stwy, w" — ap)
+ko (Wl whw,w — Qpg) + k3 (W" —wp,wh —ap) + ki (0] — 607, wh —ap)

+v (soz Pha W™ — g

Applying the equality (a — b)a = % ((a —b)?+a? - bg), we derive

(ug — duy, u" —ujy)
= (W — 0u", T — up) + (6u" — oupr, u" — up)

= (i — o, — ) + ok (|fan - ap - @t - - - )
- m),
In the same way, we find
(b7 =005, P" = &1) o
= (@f — 60", 0" — @) + (6¢" — 04y, ¢" — &)
=@ -8 = + ok (Il - g - =)+l - P

~lent -z,

(6 — o6y, 6™ — 07)
= (07 — 50™, 0™ — O7) + (66™ — 567, 6™ — 0F)
= (6 — 807, 6" — 6) + 5 ([l6" — 6 — (6" — 657 )[|” + o — 611

_ 1|2
_Hen L_gr 1H )7
(wf — Suwfp w — )
= (wp — dw™, w"” —wp) + (dw" — dwp, w" — wy)

= (W — dw™, w" — wi) + %At (Hw” —wpp — (w" - wﬁ_l)H2 + |lw™ — w2||2

S

((ug + ™) — 0(upy, +p), (ug +¢") — (up, +©5))
= ((uy + ") — 6(up + "), (uf +¢") — (up, + 1))
+ ((5(% + ”) = 0(up, + @), (uf +¢") = (up, +¢i))

— 6l + "), (w2 + ") = (uf, + ¢})) 2
o (e +9m) = g + ) = (=t + 9 = (s + )|
2+ ™) = (g, + o) = |z + 7Y = (it + o) -

(4.7)

(4.8)

(4.10)

(4.11)

(4.12)
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(Pt = 0Pl P — Phry)
= (¢ — 00, 0t — ) + (00 — 00 O — o)

= (P2 — 02, — o) + ks (IleR — ¢ — (on = @) + et — oIl (4.13)
~let = i) -
From the latest equations, we achieve
pr (@ — 8a", T — ) + pa (B — 05", G — 1) + b (9l — 8, o — )
(9 = O+ "), (U + ") — (uf, + ) + pg (OF = 007, 0" — 67)
o (W = " = wp) g lwf = i | + ks flu” —whn )
+# ([ —ap = @t = a )|+ lan - ap)® - e - @)
ot (1 + ™) = (gt + o) — (Wi + ") = (st + op )|
n n—1 n—1 n—1 — 2
+||<u ") = (g, + o) = r T+ ) = (it + oY)
2 (6" 3~ @ g I + 1"~ &P —||¢"-1—~"*1H2)
+ax7 ([l — @i — (037 1—<th DI+l = el =l 1—<th1H) (4.14)
+4% (llom = op = (0m = o= )|* + lom — o) — lomt - 657 |%)
ok (lom = wf = (@ =0 P+ o = g = o = wp )
= pu (W) = ST, T = €n) + k (w2 + ") = (uft, + ) W8 = ha)
=y (07 = 03,05 — Sna) + 2 (P = 0G5, " = Xn) + b (9 = Py §F = Xnw)
+/f(u + " —up, —op, 0" = Xn) — 7 (W' =Wy, Op — Xha)
v (0" Gh,% Xha) + p3 (07 — 607,60™ —np,) — ki (W™ — wi, 07 — npy)
+v(u +</> —uhw @, 0" —nh) (wy —5wh, w" — ap)
+ko ( whx, ahm) + kg( — w}f, — Oéh> + k1 (9 9” n— ah)
+,Y((pa: (phra Oéh).
So, which implies
% (Hu g — @t =)+ - ap) - et -
ok ([ +9m) = (up, + ) = (2 + 9 = i + o))
11z + ™) = (upe + PP = [|(un 4+ ") = (upt + soz—1>||2)
+2& (67— - @ = I + 18" - &l - e - &)
+ 357 (102 = oo = (271 = i )P+ Nl = eall® = [lon ! —whxlu)
+4% (llom = op = (0n = o~ )|* + lom — o) = lomt — 65 7|%)
n— n n n— n— 2
ok (Jlon = wf = (@t = wp )+ o — wp)® — unt - wp ) (4.15)

o [Jwl — wi 12 + ks w™ — wp||?

= —p1 (up —6u™, " —up) — p2 (Pf — 6™, O™ — @) — b (Wl — 0, o — ¥iry)
—k ((u} + ™) = 0(uly + "), (up + @) — (up, +¢5)) — p3 (0 — 56™,0™ — 0})
— (wp —ow™, w" —wp) + py (@ — dup,ut — &) —y (0" — Op, uy — Epa)

+k ((uy +¢") = (up, + ¢h), Uy — §pa) + p2 (PF — 065, @™ — Xn)

+0 (Pl — Pl Py — Xha:)"’k(u + " = uh, — O, O™ — Xn)

n

=y (W™ —wp, @5 — Xna) =¥ (0" — 0}, 0% — Xna) + p3 (0 — 60}, 6™ —np)
—ky (w"—w};‘,@x Mhe) + v (g + " _uh:r P, 0" —nh)

+ (wp — dwp,w *Oéh)+k2 (w? fwhw,w — Qpg) + k3 (W" —wp, w" — ap)
k1 (07 — O, w™ — an) + 7 (0 — Phyw" —an).
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It follows that

MOW—%WﬁWA—wwﬁ £ (1 =@l ~ e - &)

ok (I + ) = (i, + )P = [lwnt + om0 = (g + o)

%z (Ilen = epal* = [l 1—%1”) £ (o —opP = (o= = e[

k7 (ko = wpl® = [l — w7 )

< —p (@ — 5T — ) — po (BT — 05", F" — BR) — b (el — 0, 0% — o)

e ((uf + @")e — 6(u + ™), (Ul + ™) — (uf, + 2)) — po (6F — 56", 6" — 6F) (4.16)

= (wi —ow", w" —wy) + p1 (a — duy,ut — &) — v (0" — Oy, uy — Ena)
+k ((uy +¢") = (uh, + ¢h), gy — &ra) + p2 (67 — 005, 0™ — Xn)

+b< ;L_(p;llx7(pz Xha:)—"_k(u +(P _uﬁx w;}?@n_xh)

- (wn - w27 ‘Zz th) ( 92’ &m Xh:v) +p3 (9 - 69h70n - nh)
—ky (w —wh,ﬂ 77m)+7((u +¢" —uhx on, 0" _77h)

+ (wp — dwp,w fah)Jrkz w? whw,w — Qpg) + k3 (W" —wp, wt — ap)
ki (07 = 05, w" —an) +7 (07 = Ppy,w"™ —an) .

By applying the Cauchy—Schwarz inequality and Young’s inequality, we derive:
# (1 - u"n @t =) + £ (16" - &l = e = & I1)
ok (I + 6 = (i, + )P = [lwn =+ om ) = (g + o)
+ 257 (llez - %n ~lez=t = ¢r ) £ (llom — o1 — [lo~— = 07
o (" —wpl? = [l =)

c( . o _ o
<5 (up — oup,u™ — &) + (PF — 605, 0" — xn) + (08 — 605,0™ — ny)

+ (wp — dwp, w" — ap) + [|[up —ou™||* + [|a" — apl]* + |u” — &n|?

+l(u + ™) — (uft, + e + 1ag — &nel® + |07 — 68" + [|&™ — &7
+1&" = xall® + llof — 6@pI? 4+ | (ulk + ™) — 0(up + ©™)||> + |67 — 66™
+lon — D ll? + 1128 = xnell® + 107 — 66™(1> + 0™ — na]|* + 0™ — 072
+ay +@" —ap, — Gpll> + 10" — mnll? + [wp — dw™[|? + [[w"™ — o

(4.17)

Hlwg — i, l? + [} — ane® + lw™ — wil* + |&" — G512

Thus, summing (4.17) over n yields, for all {5}1, aﬁl}ilio C V" and {X§17 772}?;0 C V&, we derive

) " =@ uy +¢") — (u ® Oy — @
[[u™ lezjll " lezgll( n ) — (ul, + o)+ llen — o)1
+10" = 031" + [Jw™ — wi ||

SCOAtSN | @) — ou, ™ — &) + (B — @5, & — xn) + (05 — 607,0™ — )

() = bt w” = ) + [ — 02 4 i = R - 6

+ (uz + ") = (uhy + @R)I1” + Uy = Sne |l + 197 = 6871 + (197" — &)

HIE™ = xnll? + 105 = 0@Rll* + 1I(ug + @™ — 0(uiy + ") |1* + |10 — 66"

ok = ehall? + 1188 = xnall® + 167 — 60712 + (16" — mn||* + [|6™ — 03] 41
~n =n ~n ~n||2 n 2 n n|l2 n 2 ( : 8)

Fllag + @™ = up, — Gpll* + 10" —mnll* + [[wi — dw™[|* + [Jw™ — an|

I

Hlwp — wiI? + [} — ana||* + lw™ — wit]|* + (18" — G312
C( @ = 51" + 118° = B01" + 11 +¢°) = (u, + )* + (|2 = ohe I

leo— gl + ||w0—w2||2)
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Finally, considering that (as referenced in [1]):

N
ALY (0ut = oup, u' — &) = (@ -y, uV - &) + (u) — vt - &)

i=1 N-1
3 (@ - g - @ -gr),
=1

A (55 505 ) = (B — 618 — ) + (B — 1.5 — )
i=1 _
P (F - - 7 ™).
Ati (66" — 563, 0" — ) = (9;{1 o, 0N — i) + (65, — 6°,6" — ;)
I M R )]
A1 (5 — o) = (" —ff® — ) + (a0, )
£ 3 (0w ] - (0.
i=1

The proof is concluded by utilizing the previous estimates and applying a discrete version of Gronwall’s
inequality (as referenced in [7]). O

Based on the previous estimates, linear convergence of the approximations can be achieved if the solution
to the continuous problem possesses sufficient additional regularity.

Corollary 4.1 Suppose that the solution to the continuous problem is sufficiently reqular, that is

u, ¢ € H*(0,T;L*(0,L)) N H? (0, T; H'(0,L)) nC" ([0,T]; H*(0, L)),
we H?(0,T;L*0,L)) N H" (0,T; H'(0,L)) N C ([0, T); H*(0, L)),
0 H'(0,T;L%(0,L)) nH" (0,T; H'(0,L)) N C ([0,T]; H*(0, L)) .

Then, there exists a positive constant C, independent of the discretization parameters h and At, such
that

~ ~n 112 ~ ~n 112 2
Jmax (@ =T + 7" = BRI + 2+ ") = (e + 27

16 = @Rl + 16" — 071 + " — wR P} < C (bt ().

5. Numerical Simulation

In this section, we provide numerical examples to evaluate energy decay and provide a priori error
estimates. Our initial focus is on validating the accuracy of our numerical approach, emphasizing the
error analysis related to problem (5.1). By selecting specific external forces g; for [ = 1,2,3, 4, we ensure
the system has a known exact solution. We consider the problem defined by system (3.3) with artificial
forces. The finite element method P; is applied to (5.1), with boundary and initial conditions (1.2), using
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the backward Euler scheme.

Z%j (@ — @yt &n) + k ((ufie + 08 Ene) =7 (63, Ena) = (970 6n)

At 2 (@ = @ xn) + b (s Xhe) + K (@ xn) + 7 (Wi Xn)
- ry (Q}Tzla Xh) = (g?riha Xh)

B B _ (5.1)
At (9h QZ 1» nh) + k1 (mev 77h) + (uZz + 9027 77h) = (gg,hv nh)
1 — n n n
N (wiy —wi ™" an) + k2 (Wi, ana) + ks (wit, o) — k1 (0}, e
=7 (Ph, na) = (gff,h, Oéh)
where,
n—1 n—1
n uh — Uy, %0 — ¥
— don = 5.2
h Al and @y Al (5.2)
The solution of (5.1) takes the form:
J J J
UZ:Z uh_zuhz (), Z:Z ,”ez ?&Z:Z&Z,iei(l‘)
i=0 jo i=0 (5.3)
O = Z O sei(x), wi =Y wi ei(),
i=0 i=0
for the equation’s right-hand side
9in = (9'1)o<j<a = (g1(zj, tn)o< < for I € {1,2,3,4}, (5.4)
where e; are the linear basis functions of space S". Taking &, = xp = nn, = o, = ej forall j =0,...,J
and lets denote _
U™ = (upo<i<ss U™ = (up ;)o<i<ss " = (¢} ;)o<i<, (5.5)
Q" = (Ph 1 )o<i<ss O" = (0 ))o<i<s, W™ = (wp ;)o<i<,
and let
My = ((eis €5))o<ij<t, M2 = ((eixs€j))o<ij<s, Mz = ((ei,€jz))o0<ij<, (5.:6)

M4 ((6176]))0<z J<J> Gl - (glj7ej)1<l<4 O<]<J

Finally we get from (5.1) — (5.5), the following linear system:
AY" =AY G,

where the block matrices defined as follows:

Iyj1  —Atlj_g Oj_1 Oj_1 Oj_1 Oj_1
kAtMy p1 M1 kAtMs Oj_1 —~yAtMs3 Oj_1
Ay = Oj_1 Oj_1 Iy —Atl;_q Oj_1 Oj_1
kAtMo Ojy_1 bAtMy + kAtMy p2 M1 —~yAtM; YAt Mo ’
Oj_1 YAt M2 051 YAtM; p3My k1 AtMs
Oj_1 Ojy_1 Ojy_1 —yAtM3  —k1AtMsz My + ks AtMy + ko AtMy

I;-1 Oj-1 Oj-1 Ojy_1 Oy_1 Oy
Oj1 My Oy-1 Oy-1 Oy-1 Oy
Ay — Oj-1 Oy1 Ij1 Oy_1 Oy_1 Oy_1
Oj-1 Oy-1 Oy-1 p2M1 Oy-1 Oy
Oj-1 Oj-1 Ojy_1 Ojy_1 p3sMi1 Oj_,
Oj-1 Oy—1 Oy—1 Oy_1 Oy_1 M

and vectors

ur Oj-1,1
ur T
n (I)n n OJfll
yvr=| ~, |, F'= W
" G5
o 3

wr Gy
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Example 1: Scheme Convergence

First, we conducted a simulation to assess the numerical error. To do this, we addressed problem
(5.1), where g1, g2, g3 and g4, in addition to the initial data, were determined using the exact solution for
all z € (0,1) and ¢ > 0 described below:

t2
u(z,t) = (1 — x)? eXp(E +1), o(x,t)=2xcos(rz+ g) exp(t),

5.7
(x,t) = sin(rx) exp(t), w(z,t) =231 - z)>3 exp(g). o0
Initially, we take the following parameters of the model:
p1 =01, po =03, p3=04,b=0.1, k=01, k1 =03, ke =1, (5.8)
ks =0.7, v = 2.
The calculated errors at time 7" = 1 are displayed in Table 1, with Error being defined as follows:
Brror =i, — in|* + 18 — Gull” + 165 = On* + wi; — il 59)

2 2
+ e + @i = (una + on)I” + 0he — nall”-

We observe that the error decreases by a factor of 1, indicating a linear convergence rate, as illustrated
in Fig. 3, which corresponds to the result stated in Corollary 4.1.

Table 1: Computed numerical errors for a final time T=1 and for some values of J and At.

JlAt— 0.1 0.05 0.0025 0.0125 0.00625  0.003125
25 8.044485 8.022602 8.014106 8.010503 8.008887 8.008167
50 3.874869  3.851257 3.842182 3.838326 3.836565 3.835724
100 1.903136 1.883671 1.876862 1.874181 1.873019 1.872483
200 0.948229 0.932160 0.927122 0.925336 0.924622 0.924309
400 0.479031 0.464991 0.460993 0.459728 0.459273  0.459090
800 0.246568 0.233626 0.230188  0.229202 0.228886 0.228772

Asymptotic behaviour Asymptotic  behaviour
T T T T T

9 2.5
8t 5l
7 .
15
6 .
1 L
« 5 §
§ o 05
S 4+ \g{_
0 .
3 .
05 |
2 L
.1 L
1 .
. ‘ ‘ ‘ ‘ ‘ ‘ 15 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 002 004 006  0.08 0.1 012 0.14 %5 5 45 485 325 2 15
h+ At log(h+ At)

Figure 1: Asymptotic behavior of Error. Figure 2: Behavior of log(Error).

Figure 3: Error estimate.
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Example 2: Energy Behavior
We recall that the energy is exponentially stable if (5.10) holds.

Pﬂz _
P3

v=>bp1 —kpa — 0. (5.10)

In this instance, we consider the initial system without external forces g; for [ =1, ...,4 and we observed
how energy decay evolves over time. The discrete energy is given by

1 ~n 112 ~n 112
& =5 [ 1@ + p2 1B + psllOp 2 + ]

2 (5.11)
+ lluges + SRI + b i ]
The discretization parameters are:
hzl, Atzz, J =200, T'=20, N = 2000. (5.12)
J N
Along with the initial conditions specified for all Vz € (0, 1):
uo(z) = uy(z) = 741 — 2)2, olz) = ¢1(z) = 2 cos(nz + g), (5.13)
0o () = 2(1 — 7) cos(mz), wo(z) = 2*(1 — z)?. '
In the present example, we have chosen the following values:
=1 p2=3, ps=4,b=15.0075, k=5, k1 = 0.5, kg = 0.6, (5.14)

k’g = 1, ’7:0.1.

we display the energy evolution in both natural scale (Fig. 4) and semi-log scale (Fig. 5). It is evident
that the discrete energy approaches zero, demonstrating that exponential energy decay is observed when
the condition in (5.10) is met.

Discrete energy
T

The discrete logarithm of energy

&
log(&f)

0 5 10 15 20
time t, time ¢,
Figure 4: Natural scale behavior of &£;. Figure 5: Semi-log scale behavior of &}'.

In Fig. 8, the evolution over time of both the displacement of the solid elastic material (Fig. 6) and
the volume fraction (Fig. 7) at several points is presented. Additionally, in Fig. 11, both the temperature
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difference (Fig. 7) and the microtemperature (Fig. 9) are shown at different time instants. As expected,
all physical quantities converge to zero over time and space.

006 u for {Tlxed z ¢ for fixed x
0.6 ‘
=09
0.03 =07
=05
0.02 o H 7
0.01
0.2 H
o~ 0
5 -
= s
T 001 g °?
S
0.02
0.2
-0.03 -
004 | 1 o4
-0.05 : ‘ ‘
0 5 10 15 20 0.6 : ‘ ‘
) 0 5 10 15 20

Figure 6: The displacement of the solid elastic ma-

torial 1. Figure 7: The volume fraction .

Figure 8: The displacement of the solid elastic material and the volume fraction over time for various
fixed values of z.

6 for fixed t 14 %1073 w for fixed ¢

0.06

t=13

6(tn, )
w(ty,x)

Figure 9: The temperature difference 6. Figure 10: The microtemperature w.

Figure 11: The temperature difference and the microtemperature over space for various fixed values of ¢.

The numerical schemes were implemented using MATLAB on an Intel Core i5-6006U CPU @ 2.00
GHz.
Conclusion

In this study, we performed a numerical analysis of a one-dimensional problem involving the Timo-
shenko system with microtemperature effects and no thermal conductivity. We began by deriving the
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variational form of the linear system using integration by parts and introduced a fully discrete approxi-
mation through the classical finite element method with linear elements and the backward Euler scheme.
We established the discrete stability of the approximations and provided an a priori error analysis. After
implementing the algorithm in MATLAB, we conducted numerical simulations. In the first example, we
demonstrated the linear convergence of the approximations. In the second example, we illustrated the
theoretical exponential energy decay by analyzing the discrete energy curve, showing that the solution
converges to zero over time and space.
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