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Reverse Topology and Translated Topology of Semi-Linear Topological Spaces *

Gabriela Apreutesei

ABSTRACT: On topological semi-linear spaces there are multiple ways to define distinct convergences starting
from the basic semi-linear topology, such as translated convergence, convergence in difference, reverse conver-
gence. Translated convergence comes from translated topology and it has many good properties. The aim of
this paper is to show that reverse convergence is also topological. New connection properties between these
convergences have also been obtained. We study this problem in general framework or using neighborhoods
of the origin which are totally bounded by nets. Finally they are examined in the case of semi-metrizable
semi-linear spaces. An important tool of our research is the concept of translated Cauchy net, through which
we study the “completeness” of topological semi-linear spaces.
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1. Introduction

In the study of many current mathematical problems the linear context has proven to be very re-
strictive. Thus, for some concrete requirements, various types of spaces with more general properties
have been introduced (for e.g., [2], [5], [6], [16], [21] etc.). Such an example is the semilinear space,
introduced by the author (also studied in [5], [6], [14] etc.) and topological semilinear space, together
with its translated topology ([2]-[5]).

Under certain conditions, the information of the translated topology leads to properties of the initial
semilinear topology.

The goal of this paper is to obtain a new topology on a topological semi-linear space L, complementary
to the translated topology, named reverse topology, and some of its properties.

In Section 1 we prepare the framework of the paper by introducing the notions of semilinear space,
semilinear topology, translated topology, and Cauchy nets in this context.

In Section 2 we build the reverse topology - a ”complementary topology” to the translated one.

Section 3 investigates totally bounded sets and compact sets in reverse topology. The metrizable case
through a semi-invariant metric with respect to translations is also studied.

Some significant examples are formulated in Section 4. We will focus on those types of sets that
are of interest in some areas of mathematics: intervals (Interval Analysis, integral of multifunctions
and convergence of algorithms), convex cones (Convex Analysis, optimization in linear normed spaces),
subspaces and hyperplanes (Functional Analysis, elements of best approximation).

Now consider a non-void set L endowed with two operations: sum and multiplication by real scalars.
The axioms from the definition of the linear space, excluding the existence of invertible element and the
distributivity with respect to sum of scalars, lead to the notion of semilinear space (s.s):
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Definition 1.1 ([}]) We say that the set L, endowed with sum and multiplication by real scalars:
"+7 : LxL—Land”-” : RxL — L

is a semi-linear space (s.s.) if the following axioms are verified:
S1)(x4+y)+z=x+y+2),Vo,y,z€ L;
S2) there exists an element 0 € L such that t +0=0+x =2, Vz € L;
S3)x+y=y + x,Vr,y e L;
S4) A(px) = (Ap)x , VA, p € R, Vo € L;
S5)1-x=x ,Vaxel;
S6)N(z+y)=dx+ Iy, VANER, Va,yeL;
S7)0-2=0,Vz e L.

Definition 1.2 If (L,+,") is a semilinear space, a semilinear subspace of L is a subset L1 C L such that
(L1,+,-) is a semilinear space, too.

Remark 1.1 [L; C L is a semilinear subspace if and only if Az € L; and 7 + x2 € L; for any
r,T1,To € L1, A € R.

Remark 1.2 For a s.s. (L,+,) we denote by L;, the set of invertible elements:
Lin = {r € L; 32’ € L such that. x + 2/ =0}
and by Lg;¢ the set of the elements with 0 difference
Lyf={z € Lyz—x=0}.

Obviously, L;, and Lg;s are semilinear subspaces of L and Lg;y C L;y,. They indicate how different
is L compared to a linear space. More exactly, L is linear space iff L;, = L (and in this case
Lin, = Lygiy).

Example 1.1 1) Consider (X, |-||) a linear normed space and

P(X),B(X),Cl(X),Th(X),Pb(X),K(X),F(X) and S (X)

the families of non-void subsets, bounded subsets, closed subsets, totally bounded subsets, closed and
bounded subsets, compact subsets, finite subsets and singletons of X, respectively.

Define A+ B={a+bac Abe B} and \- A= {)la;a € A}.

Then (P (X),+, ) isas.s. and B(X),Cl(X), Tb(X), Pb(X), K(X), F(X),S(X) are semilinear
subspaces.

2) If (L,+,-) is a s.s. and T is a non-void set then the family of functions (£, ®, e) is also s.s., where
L=A{f;f:T — L} is endowed by usual sum and multiplication by real scalars:

(fog)@®)=Fft)+g@), Nef)(t)=X-f(t) forallt €T, X eR.

Now let L be one of the families B(X),7Tb(X),Pb(X),K(X),F(X) or S(X) from the Example
1.1, 1).

Define M ={F;F : T — L, F is sn-bounded}, where the set-valued function F : T'— L is sn-bounded

iff there exists o € [0,+00) such that sup ||z]| < « for every t € T, where ||-|| : L — [0,400) is a
TEF(t)
function with the same properties as a norm.
Then (M, @, o) is a semilinear subspace of (£, ®, o).

Definition 1.3 ([4]) A topology o on a s.s. L is a semilinear topology iff the specific operations of sum
and multiplication by scalars are continuous in the product topologies. Then (L,o) is called semilinear

topological space (shortly, s.t.s.).

To give some examples of s.t.s., we recall the definitions of some well-known topologies on spaces of
sets. Important informations related to these hypertopologies and some applications can be found in [5],
[17)-[13], [15], [17]-[20], [22]-[24].
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Definition 1.4 1) Let (X,+,:) be a linear normed space and A € P (X). Denote
Se (A) = {z € X; there exists a € A such that ||z — a|| < e}.
The lower Hausdorff topology Ty is defined on P(X), where a basic neighbourhood of a set Ay € P(X)
By (Ag,e) ={A € P(X); Ao C S:(A)}, withe >0,
For the upper Hausdorff topology 77; on P(X) a basic neighbourhood of a set Ag € P(X) is:
B, (Ag,e) = {A € P(X); A C S:(Ag)}, with e > 0.

Hausdorff topology e on P(X) is the supremum of these two topologies defined above: Ty = T V 7';
This topology is also induced by the extended-valued semi-metric Hg (Pompeiu-Hausdorff semi-metric)

on P(X),
Hy(A, B) = max{e(A,B),e(B,A)}, (1.1)

where
e(A, B) = sup{d(a, B);a € A} (1.2)

1s the Hausdorff excess of A with respect to B.

2) If X is a linear topological space under the scalar field R, then the lower Vietoris topology T, on
P(X) is given by the following subbase:

Vi={AePX);ANV # &}, (1.3)

where V' is any open subset of X.

Example 1.2 1) If (X, ||-|) is a linear normed space and A is one of families defined in Example 1.1,
1), then (A, o) is a s.t.s., where o is 7; or ;.

2) If X is a linear topological space then (P(X),y/) is s.t.s.

3) Consider the space of set-valued functions from the Example 1.1, 2).

If F,G € M denote
|F' = G| = sup ( sup ||3?|> :
teT \zeF(t)—G(t)

Define B;(F,e) = {G € M; |[F — G| < e} U{F}.
For every F' € M the sets

Vi (F) = {V C M; there exists € > 0 such that By(F,e) C V}

form a fundamental system of neighborhoods for F' in a semilinear topology.

If L is a linear space and V (0) is a fundamental system of neighborhoods of the origin in a linear
topology ¢ on L, then for any « € L and V € V(0), the sets x + V form a fundamental system of
neighborhoods of . Many proofs of the properties of linear spaces is based on this observation.

But this fact is not valid in the case of s.s. because, generally, the elements x € L doesn’t admit a
symmetric, and so the translations are not necessarily invertible. However:

Definition 1.5 The family

Uy (x) ={U C L;3IV € V(0) such that U C x +V}

forms a fundamental system of neighbourhoods for x in other topology, named the translation of the
topology o (or the translated topology). We denote it by oy.

Remark 1.3 1) This new topology is the coarsest topology on L for which the translations are all
continuous (or, equivalent, all translations are continuous in the origin). It is generally different
from the initial topology ¢ on L and commonly it isn’t semilinear.

The advantage of the topology o, is that many of the properties of linear topologies can be adapted
to it: Tp-separation, metrizability, totally boundedness ( [2], [3]) etc.
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2) The net (x;),c; is convergent to = in the translated topology iff:
for every V € V (0) there exists iy € I such that z; € x + V for all i > iy.

Definition 1.6 ([/]) 1) We say that (x;),.; is called a translated Cauchy net iff:
YV € V(O) div € I such that Vi,j > iy = x; S + V.
2) (24);c; 15 convergent in difference to x iff:
YV €V (0) Jiy € I such that Vi > iy = z; —x € V.
3) A net (x;),o; has small autodifferences iff
for every V€ V (0) there exists iy € I with the property x; — x; € V for all i > iy .

4) We say that (v;),; is closed-translated iff:
i+ V =0+ V", forallVeV(0) and allieT .
where oy is the translated topology of o.

In [4] the author shows that, generally, there are no relations between the convergence of the nets
in translated topology and the corresponding Cauchy condition. In this approach, several types of
convergences and Cauchy conditions are defined on s.t.s. and are compared to each other.

To make the transition from convergence in difference to convergence in translated topology we need
"to get x from one member to another” in the relations from Remark 1.3, 2) and Definitions 1.6, 2).

There are several ways to substitute this property, for e.g. by using limits of nets or subnets from
Lgis (see Remark 1.4 below). Another "good” property for a nets is to have small autodifferences (see
Definition 1.6, 3) and Proposition 1.1 below).

Remark 1.4 If (L,0) is a s.t.s. and @ € Lg;y = {# € Lyx — 2 = 0} then the convergent nets in
difference to  coincide with nets convergent to x in translated topology. In fact, (2;);.; is convergent
in difference to x € Ly, if and only if (z;),.; is convergent in translation topology to ' (where 2’ is
the opposite element of x).

Proposition 1.1 Let (x;),.; be a net from a s.t.s. (L,o), which is convergent in translated topology to
x. If it is also convergent in difference to x, then (x;) ;er has small autodiferences.

Proof: Consider V (0) a fundamental system of o-neighbourhoods of the origin formed only by balanced
sets (i.e. V.= =V for all V € V(0)). We can find a neighbourhood V; € V (0) with V; + V3 C V and
an index iy € I such that the conditions from Remark 1.3, 2) and Definition 6, 1) are both satisfied:
r; —x €Vy and —x; € —x — V; for all i > iy. It results

v, —x; €x;—rx—ViCcVi+ViCV.

2. The construction of the reverse topology

Suppose that V (0) is a fundamental system of neighborhoods of the origin of a s.t.s. L. Because
the relations z € y + V and y € = + V are not equivalent not even for balanced sets V, we can define
neighborhoods of y through both relations. One of the conditions leads us to convergence in the translated
topology, the other to another notion, namely o-reverse convergence:

Definition 2.1 ([4], Definition 4.3.) A net (x;),c; from a s.t.s. L is called o-reverse convergent net
to x if:

for any V' € V (0) there exists iy € I such that @ € z; + V for all i > iy.

We present below some connections between reverse convergence of nets and those from Definitions
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Proposition 2.1 ([}, Proposition 4.4) Let (L,o) be a semilinear topological space. Suppose that 0 €
(L,o) has a fundamental system of neighbourhoods formed only by o-closed sets. If (x;),c; is a closed-

translated net which is also a translated Cauchy net and a convergent net in the translated topology (to
an element x), then it is o-reverse convergent (to x).

Remark 2.1 If (z;),.; C L is a Cauchy net translated and it contains a subnet (a%(k)) which is

keK
convergent in translated topology to z then (z;),.; is convergent in translated topology to x.

i€
Now we establish a link between convergence in translation topology, o-reverse convergence and small
autodifferences.

Proposition 2.2 Suppose o is the translated topology on a s.t.s. L. If a net (x;),c; C L with small
autodifferences is o-reverse convergent to x € Lyy, then (x;);c; is convergent in difference to x and it is
convergent in translated topology to x.

Proof: Let V(0) be a fundamental system of o-neighbourhoods of the origin. Without restricting the
generality we can work with a fundamental system of neighbourhoods of origin formed only by balanced
sets. For any V € V (0) there exists a V3 € V (0) such that V; +V; C V. We write the conditions from
Definition 1.6, 4) and Definition 2.1 using the neighbourhood V;. Then there exists iy, = iy € I such
that

r—xi€x;, —x; + VL CVi4+Vy CV, forall i > iy,

SO
r—x; €V, foralli>iy.

Let 2’ be the inverse of x.
Because V' is balanced set we obtain

ri=x;— (x+a')e—a' —V=x+V forall i > iy,
meaning that (z;);.; is convergent in translated topology to . O

We saw in Proposition 2.1 and Proposition 2.1 that an important connection between different types
of nets is the o-reverse convergence. So we will further investigate it. We show that this convergence is
a topological one, i.e. it is given by a topology on L.

So let (L,0) be a s.t.s. and let construct a ”complementary” topology on L, namely the o-reverse
topology on L.

Consider V, (0) a fundamental system of neighbourhoods of the origin for the topology o and for any
V eV, (0) we define

Vi(a) ={be L; such that a € b+ V'}. (2.1)

Denote by V. (a) the family of all subsets of L of the form V;. (a) given by relation (2.1). Now we take
Uy (a) ={U C L;3V; (a) € V, (a) such that V.. (a) CU}. (2.2)

Theorem 2.1 Suppose that (L, o) a s.t.s. The family U, (a) described by (2.2) and (2.1) forms a system
of neighbourhoods for a € L (and V, (a) is a fundamental system of neighbourhoods of a in the topology
given by U, (a)). The convergence of nets in the induced topology is even the o,-reverse convergence.

Proof: Obviously a € U (a). Also U (a) € U, (a) and W D U (a) imply W € U, (a).

For Us (a),Us (a) € U, (a) there exist V1 (a),Va (a) € V. (a) such that Vi (a) C Uy (a), where Vi, (a) =
{beL; acb+ W} with Wy, € V,(0),k = 1,2. Consider W3 € V, (0), where W3 C W3 N Ws. Denote
Vs(a) ={beL; acb+Ws}.If b € L satisfies a € b+ W3 then a € (b+Wi) N (b+ Wa) and thus
Vs (a) C Uy (a) N Uz (a) € Uy (a).
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Consider now U (a) € U, (a) with U(a) D {beL; acb+V}, V € V,(0). For V there exists V;
€ V, (0) such that V3 + V4 C V because o is a semilinear topology. We put W = {d € L; a € d+ V1 }
and then U (a) € U, (c) for every ¢ € W. Indeed, if ¢ € W, then a € ¢+ V;. We take Uj (¢) =
{deL; ced+Vi} andwehaveacd+Vi+ Vi Cd+V,sode{beL; acb+V} CU/ a).

Obviously, the convergence induced by o-reverse topology is that from Definition 2.1. ]

Definition 2.2 We call o-reverse topology (or, simple, the reverse topology, when topology o is fized)
the topology given by (2.2).

Let denote it by o,..

Remark 2.2 For any a € L, the set V,. () contains only elements which are sum between an element
from L and an element from a neighbourhood of the origin.
Particularly, if a = 0, for every V' € V, (0), the condition (2.1) becomes

V,(0)={beL0cb+V}, (2.3)

hence each b € V,. (0) is invertible. Thus V;. (0) C L.

But it is possible that L;, = {0}, so V;. (0) = {0} . This situation is rather restrictive. In this case, the
nets with limit O are only the constant nets. The reverse topology would thus seems close to the discrete
topology.

Fortunately, things are not exactly like that. If a # 0, the neighborhoods V;.(a) can be very different
and the convergent nets and sequences are of many types, as we will see in Section 4 dedicated to examples.
On the other hand, for example, if (X, ||-||) is a linear normed space and 7 is a semilinear hypertopology
on Pb(X), the subspace L, is not {0}, but the family S (X) of singletons of X. So V;. (0) C S (X).

In Section 4, we will show that the basic semilinear topology, the translated one, and the reverse one
are distinct two by two, but there are also convergent sequences in all three. Also in the Section 4 are
given some answers to the question ”What is this topology useful for?”.

3. Totally boundedness and compactness conditions

The notion of totally bounded set is usually presented on metric spaces, but also in linear topological
spaces (see, for e.g., [16] or [21]). Let define it in s.t.s.:

Definition 3.1 (/3]) A set M from a s.t.s. (L.o) is totally bounded if

YV e V(0)3z1, 22, ...,y € L such that M C U (x; + V).

We observe that this notion is essential connected by the translated topology o; because the sets
x; + V are neighbourhoods of x; in topology o;.

On linear topological spaces one can characterize the totally bounded sets by nets. Now we adapt on
s.t.s. this notion:

Definition 3.2 ([3]) A set M from a s.t.s. (L,o0) is totally bounded by nets iff any net from M contains
a translated Cauchy subnet.

The relationship between this two notions is given in the following theorem:

Theorem 3.1 ([3], Theorem 3.1) Let (L,o) be a s.t.s. and M C L . If M s totally bounded by nets
then M s totally bounded.

In the following we intend to define something similar for the reverse space:

Definition 3.3 A set M from a s.l.s. (L,0) is reverse totally bounded (or totally bounded in reverse
topology) if
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YV € V(0) 3aq, asg, ..., ap, € L such that M C |J V; (ax), where V. (ar) = {x € L;ax, € z + V} for
kt1

all k =1,n.

Remark 3.1 Consider the space (L, o,.). If we intend to define a notion of Cauchy net then we find
the same notion as in the case of the translated space (L,o:). So the notions of totally bounded
sets by nets coincide in (L, 0,.) and (L, 0y).

The link between this two types of totally boundedness and compactness is given by the following
theorem:

Theorem 3.2 Consider (L,0) a s.t.s. and M C (L,o).

1) If any sequence of M has a translated Cauchy subnet then M is reverse totally bounded.
Consequently, any set which is totally bounded by nets is also reverse totally bounded.
2) If M is o-compact then M is o,-totally bounded.

Proof: 1) Suppose by contrary that M isn’t reverse totally bounded. So there exists Vy € V (0) such
that M ¢ | V; (ag) for any finite set F' = {a1,as,...,an} C L, where V, (ax) = {x € L;ay € x + Vp}.
E+1

n
This implies the existence of an element zp € M such that zp ¢ |J V, (ar). So ar ¢ zp + Vj for all
k+1
k = 1,n or, equivalently,

Fn(xp+ Vo) =0 for any F € F, (3.1)

where F denote the family of non-void finite parts of L.

The family F can be ordered by the inclusion "C” and thus F is a directed set: for any Fy,Fy € F
there exists F3 = F; U Fy such that Fj, C F3, k= 1.2.

So we obtained a net (vr)pc» from M.

Now consider an arbitrary element zo € M and denote Fy = {x¢}.

From (3.1) we find 5, € M such that Fy N (zp, + Vo) = 2.

We put F1 = {zg,zp, }€ F and we find xp; € M such that Fy N (zp, + Vo) = 2.

Inductively we can construct a sequence (zr, ), oy C M such that F, N (zp, + Vo) = @ for all n € N,
where F,, = F,,_1 U {$Fn71}.
Or, equivalently,
xp, ¢ xp, + Vo foralln € Nand k =0,n — 1. (3.2)

Denote by F = {F,;n € N}. Obviously, F is a directed set (even a chain): F,, C Fy4.

But every sequence of M has a translated Cauchy subnets, so there exists a directed set J and an
application ¢ : J — F such that

a) ¢ (j1) = ¢ (j2) for all jija € J, j1 > jo;

b) for every n € N there exists j, € J with ¢ (jn) 2 Fy;

C) Ty(jy) € Ty(y) + Vo for all j > jo.

Because ¢(jo),0(j) € F then there exists Foy,Fn; € F such that #(jo) = Fny, ¢(j) = F,, and
Frn; 2 Fy,.

Hence

rr,, €Tr,, + Vo,

in contradiction with (3.2).
2) Consider V (0) a fundamental system of g-open neighbourhoods of the origin. If V'€ V (0) and
V. (z) is a o,-neighborhood of  then M C |J V. (z).
zeM
From (2.1) wecan write V;. () = U (y+V),soMC |J U (y+YV),wherey+V areo-open
yeV,.(x) zeM yeV,(x)
sets because the translations are o;-continuous.
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Because M is o-compact then there exists x1,xo, ...,z € M and yjl»,y]z, ...,y;”j € Vi (zy), j = Lk,

ko m; m;
such that M C U U (y/" +V). But U (y;"" +V) C V, (x;). Hence M is o,-totally bounded. O
j=11=1 =1

Remark 3.2 The sum preserve the totally boundedness by nets: if M is totally bounded by nets then
x + M is also totally bounded by nets.

Theorem 3.3 Let (L,0) be a semilinear topological space which has a fundamental system of neigh-
bourhoods formed only by translated totally bounded and o-closed sets. If every totally bounded set is also
o-closed, then any o-convergent net contains a subnet which is o¢-reverse convergent.

Proof: Let be V (0) a fundamental system of neighbourhoods as in hypothesis. Using Remark 3.2, z+V
is totally bounded, thus it is o4-closed. Thenz + V°' = z+V = 2+V" and every net is closed-translated.

Consider (7;),.; a net os-convergent to an z and V' an arbitrary neighbourhood of origin. Then
x; € v+ V for ¢ € I sufficiently large. Because x + V is totally bounded, there exists a subnet (x¢(j))j6]
which is translated Cauchy net. Because it is also o-convergent to x, then (from Proposition 2.1) it is
o¢-reverse convergent to x. d

Now we investigate the particular case of metrizable topological semilinear spaces.

Definition 3.4 A semi-metric p on a s.s., p : L x L — R, is called semi-invariant with respect to
translations iff:

pla+c,b+c) < p(a,d), for all a,b,c € L.

An example of a semi-metric with such property is the Pompeiu-Hausdorff semi-metric on Pb (X),
where (X, ]|-]]) is a linear normed space.
Denote by B, (x,¢) the p-ball of center € L and radius € > 0. A fundamental system of neighbour-

hoods of z in translated topology on L is given by (z + B, (0,¢))_ -

Theorem 3.4 Let (L,0) be a semilinear topological space such that its translation topology is metrizable
by a metric p semi-invariant with respect to translation. Then:

1. Any net os-reverse convergent to x is also convergent in the translated topology to x.

2. Suppose in addition that all balls B, (0,¢), € > 0, are o-compact. Then any net convergent to x in
translation topology is oi-reverse convergent to x.

Proof: 1. Let be an arbitrary ¢ > 0 and p a metric (semi-invariant with respect to translations) on
L which induces the topology o¢. If (2;),.; is os-reverse convergent to x then x = x; + y;c such that
p (Yie,0) < € for ¢ sufficiently large. Thus p (z;,2) = p (zi, ;i + yie) < p (0, y:c) < €.

2. Because all balls B, (0,¢), € > 0, are o-compact, they are also o-closed. Then

2+ B,(0,e) =x+B,(0,e) Cz+B,(0,¢)
for all x € L.

Let show that x + B, (0,5)@ C z+ B,(0,¢). Consider u € z+ B, (O,s)m and denote by u, €
x4+ B, (0,¢), n € N, a sequence such that u, % w. Then u, = = + yn, where y, € B, (0,¢). Because
every o-compact set is also o4-compact the ball B, (0,¢) is o¢-compact. Thus there exists a subsequence
(Yn,.), Which is -convergent to some y € B, (0,¢). Then w,, = x + yp, %% & + y since the translations
are oy-continuous. It results u =z +y, sou €  + B, (0, ¢).

The condition

z+ B, (0, g =z + B, (0, g) !

says that all nets from L are closed-translated nets. If (x;),.; is a oy-convergent net, it is also a translated
Cauchy net because the translated topology o; is given by a metric. Using Proposition 2.1, it follows
that (z;),c; is o4-reverse convergent to . O
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Remark 3.3 Suppose that the metric p is semi-invariant with respect to translation and complete. If
we work from the hypothesis of Theorem 3.3 then, using Remark 2.1, we deduce the same conclusion
like in Theorem 3.4.

4. Examples

The purpose of this Section is to show that the notion of limit in reverse topology admits enough
examples, even starting from a more restrictive topology such as the upper Hausdorff topology: for
(P (X),7;) we highlighted several classes of elements in P (X) which are the limits of some sequences
in the reverse topology. The examples may also be useful because the Hausdorff topology is one of the
most widely used topologies. We thus show that the reverse topology is a consistent notion. Where it
was possible, we have tried to formulate the examples in the most general way possible.

We will apply the notions of Sections 1 and 2 to sequences of sets.

Let (X, ||]|) be a linear normed space and P (X) is the family of non-void sets of X. Using Definition
4, 1) we find a fundamental system of neighborhoods of the origin in the reverse topology of 7';. First
we see that S.({0}) is the sphere of center O and radius € > 0 denoted by S (0,¢) = {x € X; ||z|| < ¢}.
We deduce that Bj; ({0},e) = {A € P(X); AC S(0,¢)}.

+
Hence A, (Ti)f A if and only if

Ve > 03n. € N 3P, C S(0,¢) such that A = A, + P, for any n > n.. (4.1)

So for the sequences of sets from P (X), the limits in the sense of reverse topology of upper Hausdorff
topology are those sets that can be decomposed into a sum as above, where P, are rest sets that are
“uniformly small”. Thus the sets A can be ”uniformly approximated” by the sets A,,.

Condition (4.1) is more easily verified if P,, contains few elements, for example when P, is a singleton.

In the sequel we intend to find classes of sets with this property. Denote
ot
RL (1) = {A € P(X);34,, € P(X) such that A4, (i)f A}.
All the singletons are in RL (T;_Ir):

Proposition 4.1 The singleton A = {a} satisfied (4.1) if and only if P, = {pn} with p, — 0 and
A, ={a—pn}.

Proof: Suppose A € §(X), let’s say A = {a}. Then A,, and P, have only one element, each. We fix an
arbitrary € > 0.
Obviously, the sequence A,, = {a — p,, } checks relation (4.1) for P, = {p,} € B}, ({0},¢).
Conversely, if A, = {a,} and P,, = {p,}, where |p,| < ¢ for n sufficiently large, then a,, + p, = a, so
an = a — Pn.- O

Also, all finite sets are in RL (7;7). We denote by card (M) the cardinality of the set M.
" , L2k (rh), .
Proposition 4.2 Suppose A € F (X), let’s say A = {a',a?,...,a*} and A, —>" A. The condition (4.1)

occurs if and only if
card (Ay) =k (4.2)

and
A, = {al — Pny @ = ppy —pn} , Pn = {pn}, where p,, = 0. (4.3)

Proof: First we prove that if (A,),cy, (Pn),eny C P (X) verify relation (4.1), then card (A,) = k for
any n > ne.

Suppose by contrary that there exists an increasing sequence (n;),cy C N such that card (A,,) # k.
Denote card (Ay,) = 7, let’s say Ay, = {al a? ...,a%l}.

ny? 'ng)
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1) If j <k —1 then card (Py,) > 2, let’s say P, O {pn,qn}, Where p,,q, < € for every n > n..

Using (4. 1) the distinct elements two by two

}” + Pn,sa m + Prys s a}, + pn, are in A. To make a choice we assume that al = ay, + pn, for

j=1k—-1.So anl — a* for every j =1,k — 1.

Now consider a’*1 € A. Then there exists m; € {1,2,...,5} such that an,’ € A,, and &’ = an, +¢n,.
Hence an, — a’*!, in contradiction with a,,’ — a™.

2)If j > k+1 then a}” +pnl,a%l + Dnys ...,a{n + pn, € A are distinct elements two by two for any
Dn; € Py,. So

card (A) = card (A, + Py,) > card{al, + pn,,a2, + Pn,s-.sad +pn,} = j > k = card (A), a contra-
diction.

Obviously, property (4.3) implies (4.1). Conversely, if A = A,, + P, for any n > n., card (4) =
card (Ayn) = k then card (P,) = 1. Suppose P, = {p,}, where p, — 0.

Possibly renumbering the elements of A we can assume that a* = a’, + p,, for all i = 1, k, so (4.3) take
place. O

Regarding the class of intervals, we have the following result:

Proposition 4.3 Any interval [o, 5] C R can be decomposed according to condition (4.1) either by
card (P,) € N*, or by card (P,) = c:

a) If card (P,) =1 then the decomposition (4.1) is unique:

[, B] = [ — pn, B — pn] + {pn}, where P, = {p,} C S(0;¢) for all n > n..

b) If card( ) = k then there exists pl, < p2 < ... < pk, such that

P —pn <5 (B— ) and [0, 8] = [a —py, B —p}] + Pn,

where P, —{pn,pi,. Pk} C S(0e) for alln > n..

¢) If card (P,) = c then there emsts DnsGn € S(0;¢), with p, < qn and ¢, — pp, < B — « for any
n > ne, such that [, B] = [& — pn, B — qn] + [Pn, @n]-

Proof: a) Obviously, for A = [, 8], P, = {pn} C S (0;¢) we find A,, = [@ — D, B — pn].
b) For P, = {pé,p%,..wpﬁ} C S(0;¢) we can suppose pl < p2 < ... < pk. We will look for the
decomposition (4.1) with A, = [ay,, B,]. We can write

k
v, 8] = U [an + Pl n + 1} - (44)
j=1

From (4.4) we deduce
o= Qy + p}w
B = B +pk, for all 7 = 1,k — 1. Giving to j all values from 1 to k — 1 and summing
Bn + 1l < an +pit,
the inequalities term by term we obtain pf — pl < % (8 — a) (condition that is possible because
pl, € S(0;¢)) and
[aa 6] = [a 7p}za ﬂ - p’]::LjI + {p}upgza 7p51}
¢) In the case card (P,) = ¢ we are looking for P, as an interval [p,,q,] C S (0;¢). If A, = [an, Bnl
then
Q= ap + Pn,
B = Bn + qn,
Bn + Gn < iy + o
Now we observe that card (P,) # No: suppose by contrary that P, = {p}z,pfl, e PR }, where
pL <p? <..<pk < .. and P, C S(0;¢). If A, = [an, B then a = a,, + pl and B, +p), < ay, + pit!
for all j € N*. We affirm that 5 ¢ [ay, 8,] + Pn: if there exists pl € P, such that 8 = §, + pI' then
Bn + Pt € [an, Bn] + P, but 8 < B, +piit, so B+ ptt ¢ [, B]. O

Remark 4.1 Proposition 4.3 can be easily generalized to intervals of the form [ae;, Be;], where «, 5 €
R, a < B and B = (e;);.; is an algebraic base in real linear normed space X.
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Proposition 4.4 a) Any convex cone is in RL (T;)
b) Every linear subspace of X is from RL (TE)
¢) All hyperplanes are from RL (TE)

Proof: Consider (A,),.y € RN (0,+00), A, — 0. For € > 0 we choose n. € N such that A, < ¢ for
every n > ne.

a) Let C' C X be a convex cone.

Then for every n > n. we put P, = {p € C;||p|| < \n} and A, = {a € C;||a|| > \,} U {0}. Observe
that P, C S (0;¢).

Consider z € C.

Ifxr=0thenx=0+4+0€ A, + P,.

Now we take z € C\ {0}. If ||z|| < A, then x = 0+xz € A, +P,. If ||z|| > A\, then x = z+0 € A, +P,.

Now consider y = a+p € A, + P,. Since C is a convex cone then y =a + p € C.

b) Let X, be a linear subspace of X.

If X, ={0} then A, = P, = {0}.

Suppose X, # {0} . For every n > n. we take P, = {p € X;; ||p|| < A} and 4, = {a € Xs; |la]| > A}

Let z be an element from X,.

If 2 = 0 then consider a € X\ {0} and b = 2. It results that a, = \,b € Ay, pr = —Apb € Py, s0

Mall
0=an+pn € Ay + P,.
If x # 0 and ||z|| < A, then we can choose a, = (1+ )‘n)x € A, pp = —7=x € P, because

[E] Izl

lanll = (14 fp) 2l > A, lpall = An and @ = @ + .

If 2 # 0 and ||| > A, then we can take pu = min{l—”’\T’”‘Vﬁ} >0,a, = (1—p)x € A,,
Pu = i € Py because anll = (1 - 1) ]l = An, [pall = 1 2l] < An and & = an + py.

Now consider a,, € A,,, pn € P,. Then a, +p, € X, because A,, P, C X, and X is a linear subspace
of X.

¢) If H is an arbitrary hyperplane from X then H can be write H = Hy+ h, where Hy is a hyperplane
which passes through the origin and h is an arbitrary element from H. From b) every hyperplane
which passes through the origin is in RL (TE) Hence Hy = A, + P,, where P, C S(0;¢). Then
H = (A, + h) + P, is the decomposition of H that verifies relation (4.1). O

Now we compare semi-linear convergence, translated and reverse convergences. Consider A,, A C
Pb(X) for any n € N.

Example 4.1 There exist sequences for which the 3 convergences coincide:
a) Let (X, ||||) be a linear normed space. According to Proposition 4.1 and (1.2), in the case of

() (i)

ot
singletons A,, = {a,}, A = {a}, the relations A, —" A, A, —" A, A,, =5 A are all equivalent with

II-1l
anp — a .

b) As we see in Proposition 11, a), if o, 8 € R, & < 8, pp, — 0 and A, = [a — pp, B — py] then (A,),, oy
is convergent at A = [«, 8] in (TE)T .

Also A, = [a — pn, B — pn] = [, B]+{—pn} and e (4,, A) = sup igg IIb — a]| < py, for all n sufficiently
beA, ¢

large, so A, — A in the sense of (TIJ_IF) , and TE7 respectively.

Example 4.2 There exist sequences which are convergent in the translated topology, but not in the
reverse topology:

In K (R) the sequence A,, = [ — p,, & + py] is convergent in (TE , to A= {a}, where p,, > 0, p, = 0,
because for any € > 0 there exist n. € N and M,, = [—pn,pn] C [—¢, €| such that A, = A+ M, for all
n > ne.

But (An)neN isn’t convergent in (TE)T: we suppose by contrary that there exists B € K (R) such that

Ve > 0 there exists n. € N such that B = A,, + P, and |p,| <e for any n > n., (4.5)
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where P, € B}; ({0} ,¢).

We fix € > 0, € < |a|. One observe that the sets B = {0}, B = {a} and B = {0,a} do not verify the
relation (4.1) for any P, € B}, ({0} ,¢).

Suppose now that there exists g € B, 5 # 0, «.

Choose € = | — a| /3 and adjust n. such that p, < e for all n > n..

If 8 > a then P, C [—¢,¢] and we obtain:

Ap+ P, Cla—pn,a+ppl+[—¢,e] Cla—26,a+ 2] = [@, %26} Since 8 > %26, (4.5) is not
occurred.

If B <athen A, + P, C o — 2,0 + 2¢| = [@, @} But g < @ and (4.5) is not verified.

Example 4.3 There exist sequences which are convergent in both the translated and reverse topology,
but the limits are different.

Consider I; = {:z: = (Tn)peny CR; 2 |z, < +oo} and (K (I2) ,7y/).
n=1

On the family P (I2) of non-void subsets of I, we use the topology 7, (see Definition 1.4, 2)); a
neighbourhood of 0 € Iy in 7y, is given by U = U; N...NU; , where U}, are open sets in [y such that
0 € Uy, k = 1,1 (so there exist r1,7q,...,r; > 0 such that S (0;r;) C Uy, for all k =1,1).

Let eq, e, ..., en, ... be the vectors of canonical base in lo. We take A = la, A, = I (e1,€2,...,e,) =
{Mer+ ...+ Aens A1, A € R} and B = {0} . Denote N* = N\ {0} . Then:

a4, ) 4,

We put P, = Z (ént1,€nt2,...) for all n € N and ny = 1. For all n > ny we have P, € U (because
0eP,)and A=A, + P,.

Another choice is P, = ls, ny = 1.

b)ButAﬂ(EQ‘A;

If Uy,..., Up are open sets with 0 € Uy N...NU,, U=U; N..NU, and M € U then M NUy # @,
for any k =1, p.

Suppose by contrary that A, (TLQ‘ A. So there exist ny € N and M,, € U such that A,, = A+ M,
for any n > ny. But A + M,, = ls, a contradiction.
Now we show that (4,) is convergent to B in (T‘;)t: for ny =1 and M,, = Z (e1,e3,...,e5) € U we
have A, = B+ M, for any n > ny.
(v)

Of course, A,, +~" B because {0} # T (e1,e2,...,en) +Z (€nt1, €nt2s-.-)-

c¢) It should be noted that A, ¢ A let (Uk)k:ﬁ, p € N* be an arbitrary non-empty open set from Iy
with ANUy # @ for all k = 1,p. Consider x, € Uy, and py, > 0 such that S (xy, pr) C Uy, for all k =1, p.
Here we denote by S (x, px) the sphere of center xy and radius pg.

If 2, = Afey + Msea + ...+ AEe, + ..., we choose y = A¥e; +Msea +...+ ke, € A,,. Then ||z — yill =

o0
> Ak ? < pr. for n sufficiently large, so A, NS (zk, pr) # @, ie.

[Angrensr + Anpensa + | =
m=n-+1

A, NU, # @.

Example 4.4 There exist sequences that are (Tg)r—convergent, but not (T;;) ,-convergent:

Let ¢ = (qn)pen- € l2 be a fixed sequence (i.e. S < +o0). Consider
n=1
A={z=(zn),en- i |Tn| < |gn| for all n € N*}, s0 A € I,
We write Cauchy condition for ¢: Ve > 0 Jk. € N such that 3. |g,|> < ¢ for all k > k..

n=~k
Let e, = (0,0,...,0,1,0,...0), kK € N*, be the vectors of canonical base in ls and Ax = Z (e, €2, ..., €x) N
A P, =1 (6k+1, €k42, ) N A.

(72),

a) Then A, =" A:
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Show that A = Ay + Py, where P, C S (0;¢) for all k > k.:
e BEvery x = (7,),cn- € A can be written x = (z1e1 + x2e2 + ... 0pex) + (Tpy1€k41 + Thi2€py2 +...) €
A+ Py for all k > k. (because 3. |zo° < S |gul® < o).
n=k+1 n=k+1
o If y = (yn)n21 € Ay and 2 = (2n),en- € Pr, Yt = 0 for VI > 1 and 21 = 25 = ..z = 0, then

= 2 = 2
y=vyie1 + ...+ yger and z = zpp1€k41 + Zkt2€kt2 + ..o, where > |zp]T < >0 an]” <e.
n=k+1 n=k+1
Hence z =y + 2 =y1e1 + ... + yrex + 2x+1€k+1 + 2kt2€k42 + ... € A.
b) We argue that (Ag),cy- s not (77),-convergent.

n

-
Suppose, by contrary, that there exists B € P (X) such that Ay <i)t B.
We can write:

Ve > 03k, € N*IM}, C S (0;¢) such that Ay = B + M, for all k > k.. (4.6)

We fix e > 0 and k& > k..
From (4.6) it results that any b € B can be written in canonical baseﬂqe b="bie1+bses+...+brep —
m’,g“ekﬂ — m’,z+26k+2 + ..., where b; is an arbitrary scalar in R, Vj = 1, k, and (mf) S (0;¢) (ie.

S mi[* <)

leN* C

Applied now (4.6) for k + 1 it results that any b € B can be written in canonical base like b =
k+1 k+1 . . .
bier + bgea + ... + breg + bpy1€k41 — My [ o€kt2 — My s€k43 + ..., Where b; is an arbitrary scalar in R,
Vji=1k+1, and (mf“)leN* C S(0;¢)
We observe that the two writings of the elements of B are contradictory: for example e checks the

o0
second writing, but does not check the first because it should m}, ; = —1, but in this case Y |mf|2 > 1.
=1

The contradiction proves the (TIJ_IF) ,~divergence of the sequence (Ag);,cy--

Thus, through these examples, we showed that, generally, the reverse topology and the translate
topology are not comparable.
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