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Reverse Topology and Translated Topology of Semi-Linear Topological Spaces ∗

Gabriela Apreutesei

abstract: On topological semi-linear spaces there are multiple ways to define distinct convergences starting
from the basic semi-linear topology, such as translated convergence, convergence in difference, reverse conver-
gence. Translated convergence comes from translated topology and it has many good properties. The aim of
this paper is to show that reverse convergence is also topological. New connection properties between these
convergences have also been obtained. We study this problem in general framework or using neighborhoods
of the origin which are totally bounded by nets. Finally they are examined in the case of semi-metrizable
semi-linear spaces. An important tool of our research is the concept of translated Cauchy net, through which
we study the “completeness” of topological semi-linear spaces.
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1. Introduction

In the study of many current mathematical problems the linear context has proven to be very re-
strictive. Thus, for some concrete requirements, various types of spaces with more general properties
have been introduced (for e.g., [2], [5], [6], [16], [21] etc.). Such an example is the semilinear space,
introduced by the author (also studied in [5], [6], [14] etc.) and topological semilinear space, together
with its translated topology ( [2]- [5]).

Under certain conditions, the information of the translated topology leads to properties of the initial
semilinear topology.

The goal of this paper is to obtain a new topology on a topological semi-linear space L, complementary
to the translated topology, named reverse topology, and some of its properties.

In Section 1 we prepare the framework of the paper by introducing the notions of semilinear space,
semilinear topology, translated topology, and Cauchy nets in this context.

In Section 2 we build the reverse topology - a ”complementary topology” to the translated one.
Section 3 investigates totally bounded sets and compact sets in reverse topology. The metrizable case

through a semi-invariant metric with respect to translations is also studied.
Some significant examples are formulated in Section 4. We will focus on those types of sets that

are of interest in some areas of mathematics: intervals (Interval Analysis, integral of multifunctions
and convergence of algorithms), convex cones (Convex Analysis, optimization in linear normed spaces),
subspaces and hyperplanes (Functional Analysis, elements of best approximation).

Now consider a non-void set L endowed with two operations: sum and multiplication by real scalars.
The axioms from the definition of the linear space, excluding the existence of invertible element and the
distributivity with respect to sum of scalars, lead to the notion of semilinear space (s.s):
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Definition 1.1 ( [4]) We say that the set L, endowed with sum and multiplication by real scalars:

” + ” : L× L → L and ” · ” : R× L → L

is a semi-linear space (s.s.) if the following axioms are verified:
S1) (x+ y) + z = x+ (y + z) , ∀x, y, z ∈ L;
S2) there exists an element 0 ∈ L such that x+ 0 = 0 + x = x, ∀x ∈ L;
S3) x+ y = y + x , ∀x, y ∈ L;
S4) λ (µx) = (λµ)x , ∀λ, µ ∈ R, ∀x ∈ L;
S5) 1 · x = x , ∀ x ∈ L;
S6) λ (x+ y) = λx+ λy, ∀λ ∈ R, ∀ x, y ∈ L;
S7) 0 · x = 0, ∀x ∈ L.

Definition 1.2 If (L,+, ·) is a semilinear space, a semilinear subspace of L is a subset L1 ⊂ L such that
(L1,+, ·) is a semilinear space, too.

Remark 1.1 L1 ⊂ L is a semilinear subspace if and only if λx ∈ L1 and x1 + x2 ∈ L1 for any
x, x1, x2 ∈ L1, λ ∈ R.

Remark 1.2 For a s.s. (L,+, ·) we denote by Lin the set of invertible elements:

Lin = {x ∈ L; ∃x′ ∈ L such that. x+ x′ = 0}

and by Ldif the set of the elements with 0 difference

Ldif = {x ∈ L;x− x = 0} .

Obviously, Lin and Ldif are semilinear subspaces of L and Ldif ⊂ Lin. They indicate how different
is L compared to a linear space. More exactly, L is linear space iff Lin = L (and in this case
Lin = Ldif ).

Example 1.1 1) Consider (X, ∥·∥) a linear normed space and
P (X) ,B (X) , Cl (X) , T b (X) ,Pb (X) ,K (X) ,F (X) and S (X)
the families of non-void subsets, bounded subsets, closed subsets, totally bounded subsets, closed and

bounded subsets, compact subsets, finite subsets and singletons of X, respectively.
Define A+B = {a+ b; a ∈ A, b ∈ B} and λ ·A = {λa; a ∈ A}.
Then (P (X) ,+, ·) is a s.s. and B (X) , Cl (X) , T b (X) , Pb (X) , K (X) , F (X) , S (X) are semilinear

subspaces.
2) If (L,+, ·) is a s.s. and T is a non-void set then the family of functions (L,⊕, •) is also s.s., where

L = {f ; f : T → L} is endowed by usual sum and multiplication by real scalars:
(f ⊕ g) (t) = f (t) + g (t), (λ • f) (t) = λ · f (t) for all t ∈ T , λ ∈ R.
Now let L be one of the families B (X) , T b (X) ,Pb (X) ,K (X) ,F (X) or S (X) from the Example

1.1, 1).
Define M = {F ;F : T → L,F is sn-bounded}, where the set-valued function F : T → L is sn-bounded

iff there exists α ∈ [0,+∞) such that sup
x∈F (t)

∥x∥ ≤ α for every t ∈ T , where ∥·∥ : L → [0,+∞) is a

function with the same properties as a norm.
Then (M,⊕, •) is a semilinear subspace of (L,⊕, •).

Definition 1.3 ( [4]) A topology σ on a s.s. L is a semilinear topology iff the specific operations of sum
and multiplication by scalars are continuous in the product topologies. Then (L, σ) is called semilinear

topological space (shortly, s.t.s.).

To give some examples of s.t.s., we recall the definitions of some well-known topologies on spaces of
sets. Important informations related to these hypertopologies and some applications can be found in [5],
[17]- [13], [15], [17]- [20], [22]- [24].
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Definition 1.4 1) Let (X,+, ·) be a linear normed space and A ∈ P (X). Denote
Sε (A) = {x ∈ X; there exists a ∈ A such that ∥x− a∥ < ε}.

The lower Hausdorff topology τ−H is defined on P(X), where a basic neighbourhood of a set A0 ∈ P(X)
is:

B−
H (A0, ε) = {A ∈ P(X); A0 ⊆ Sε(A)}, with ε > 0,

For the upper Hausdorff topology τ+H on P(X) a basic neighbourhood of a set A0 ∈ P(X) is:
B+

H (A0, ε) = {A ∈ P(X); A ⊆ Sε(A0)}, with ε > 0.

Hausdorff topology τH on P(X) is the supremum of these two topologies defined above: τH = τ−H ∨ τ+H
This topology is also induced by the extended-valued semi-metric Hd (Pompeiu-Hausdorff semi-metric)

on P(X),
Hd(A,B) = max{e(A,B), e(B,A)}, (1.1)

where
e(A,B) = sup{d(a,B); a ∈ A} (1.2)

is the Hausdorff excess of A with respect to B.

2) If X is a linear topological space under the scalar field R, then the lower Vietoris topology τ−V on
P(X) is given by the following subbase:

V − = {A ∈ P(X);A ∩ V ̸= ∅}, (1.3)

where V is any open subset of X.

Example 1.2 1) If (X, ∥·∥) is a linear normed space and A is one of families defined in Example 1.1,
1), then (A, σ) is a s.t.s., where σ is τ−H or τ+H .

2) If X is a linear topological space then
(
P(X), τ−V

)
is s.t.s.

3) Consider the space of set-valued functions from the Example 1.1, 2).
If F,G ∈ M denote

∥F −G∥ = sup
t∈T

(
sup

x∈F (t)−G(t)

∥x∥

)
.

Define B1(F, ε) = {G ∈ M; ∥F −G∥ < ε} ∪ {F}.
For every F ∈ M the sets

V1 (F ) = {V ⊆ M; there exists ε > 0 such that B1(F, ε) ⊆ V }

form a fundamental system of neighborhoods for F in a semilinear topology.

If L is a linear space and V (0) is a fundamental system of neighborhoods of the origin in a linear
topology σ on L, then for any x ∈ L and V ∈ V (0) , the sets x + V form a fundamental system of
neighborhoods of x. Many proofs of the properties of linear spaces is based on this observation.

But this fact is not valid in the case of s.s. because, generally, the elements x ∈ L doesn’t admit a
symmetric, and so the translations are not necessarily invertible. However:

Definition 1.5 The family
Ut (x) = {U ⊂ L; ∃V ∈ V (0) such that U ⊂ x+ V }
forms a fundamental system of neighbourhoods for x in other topology, named the translation of the

topology σ (or the translated topology). We denote it by σt.

Remark 1.3 1) This new topology is the coarsest topology on L for which the translations are all
continuous (or, equivalent, all translations are continuous in the origin). It is generally different
from the initial topology σ on L and commonly it isn’t semilinear.

The advantage of the topology σt is that many of the properties of linear topologies can be adapted
to it: T1-separation, metrizability, totally boundedness ( [2], [3]) etc.



4 G. Apreutesei

2) The net (xi)i∈I is convergent to x in the translated topology iff:

for every V ∈ V (0) there exists iV ∈ I such that xi ∈ x+ V for all i ≥ iV .

Definition 1.6 ( [4]) 1) We say that (xi)i∈I is called a translated Cauchy net iff:
∀V ∈ V (0) ∃iV ∈ I such that ∀i, j ≥ iV =⇒ xi ∈ xj + V.
2) (xi)i∈I is convergent in difference to x iff:
∀V ∈ V (0) ∃iV ∈ I such that ∀i ≥ iV =⇒ xi − x ∈ V.
3) A net (xi)i∈I has small autodifferences iff
for every V ∈ V (0) there exists iV ∈ I with the property xi − xi ∈ V for all i ≥ iV .

4) We say that (xi)i∈I is closed-translated iff:

xi + V
σt

= xi + V
σ
, for all V ∈ V (0) and all i ∈ I .

where σt is the translated topology of σ.

In [4] the author shows that, generally, there are no relations between the convergence of the nets
in translated topology and the corresponding Cauchy condition. In this approach, several types of
convergences and Cauchy conditions are defined on s.t.s. and are compared to each other.

To make the transition from convergence in difference to convergence in translated topology we need
”to get x from one member to another” in the relations from Remark 1.3, 2) and Definitions 1.6, 2).

There are several ways to substitute this property, for e.g. by using limits of nets or subnets from
Ldif (see Remark 1.4 below). Another ”good” property for a nets is to have small autodifferences (see
Definition 1.6, 3) and Proposition 1.1 below).

Remark 1.4 If (L, σ) is a s.t.s. and x ∈ Ldif = {x ∈ L;x− x = 0} then the convergent nets in
difference to x coincide with nets convergent to x in translated topology. In fact, (xi)i∈I is convergent
in difference to x ∈ Lin if and only if (xi)i∈I is convergent in translation topology to x′ (where x′ is
the opposite element of x).

Proposition 1.1 Let (xi)i∈I be a net from a s.t.s. (L, σ), which is convergent in translated topology to
x. If it is also convergent in difference to x, then (xi) i∈I has small autodiferences.

Proof: Consider V (0) a fundamental system of σ-neighbourhoods of the origin formed only by balanced
sets (i.e. V = −V for all V ∈ V (0)). We can find a neighbourhood V1 ∈ V (0) with V1 + V1 ⊂ V and
an index iV ∈ I such that the conditions from Remark 1.3, 2) and Definition 6, 1) are both satisfied:
xi − x ∈ V1 and −xi ∈ −x− V1 for all i ≥ iV . It results

xi − xi ∈ xi − x− V1 ⊂ V1 + V1 ⊂ V.

2

2. The construction of the reverse topology

Suppose that V (0) is a fundamental system of neighborhoods of the origin of a s.t.s. L. Because
the relations x ∈ y + V and y ∈ x + V are not equivalent not even for balanced sets V, we can define
neighborhoods of y through both relations. One of the conditions leads us to convergence in the translated
topology, the other to another notion, namely σ-reverse convergence:

Definition 2.1 ( [4], Definition 4.3.) A net (xi)i∈I from a s.t.s. L is called σ-reverse convergent net
to x if:

for any V ∈ V (0) there exists iV ∈ I such that x ∈ xi + V for all i ≥ iV .

We present below some connections between reverse convergence of nets and those from Definitions
6:
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Proposition 2.1 ( [4], Proposition 4.4) Let (L, σ) be a semilinear topological space. Suppose that 0 ∈
(L, σ) has a fundamental system of neighbourhoods formed only by σ-closed sets. If (xi)i∈I is a closed-

translated net which is also a translated Cauchy net and a convergent net in the translated topology (to
an element x), then it is σ-reverse convergent (to x).

Remark 2.1 If (xi)i∈I ⊂ L is a Cauchy net translated and it contains a subnet
(
xϕ(k)

)
k∈K

which is

convergent in translated topology to x then (xi)i∈I is convergent in translated topology to x.

Now we establish a link between convergence in translation topology, σ-reverse convergence and small
autodifferences.

Proposition 2.2 Suppose σt is the translated topology on a s.t.s. L. If a net (xi)i∈I ⊂ L with small
autodifferences is σ-reverse convergent to x ∈ Lin then (xi)i∈I is convergent in difference to x and it is
convergent in translated topology to x.

Proof: Let V (0) be a fundamental system of σ-neighbourhoods of the origin. Without restricting the
generality we can work with a fundamental system of neighbourhoods of origin formed only by balanced
sets. For any V ∈ V (0) there exists a V1 ∈ V (0) such that V1 + V1 ⊂ V . We write the conditions from
Definition 1.6, 4) and Definition 2.1 using the neighbourhood V1. Then there exists iV1

= iV ∈ I such
that

x− xi ∈ xi − xi + V1 ⊂ V1 + V1 ⊂ V, for all i ≥ iV ,

so
x− xi ∈ V , for all i ≥ iV .

Let x′ be the inverse of x.
Because V is balanced set we obtain

xi = xi − (x+ x′) ∈ −x′ − V = x+ V for all i ≥ iV ,

meaning that (xi)i∈I is convergent in translated topology to x. 2

We saw in Proposition 2.1 and Proposition 2.1 that an important connection between different types
of nets is the σ-reverse convergence. So we will further investigate it. We show that this convergence is
a topological one, i.e. it is given by a topology on L.

So let (L, σ) be a s.t.s. and let construct a ”complementary” topology on L, namely the σ-reverse
topology on L.

Consider Vσ (0) a fundamental system of neighbourhoods of the origin for the topology σ and for any
V ∈ Vσ (0) we define

Vr (a) = {b ∈ L; such that a ∈ b+ V } . (2.1)

Denote by Vr (a) the family of all subsets of L of the form Vr (a) given by relation (2.1). Now we take

Ur (a) = {U ⊂ L; ∃Vr (a) ∈ Vr (a) such that Vr (a) ⊂ U} . (2.2)

Theorem 2.1 Suppose that (L, σ) a s.t.s. The family Ur (a) described by (2.2) and (2.1) forms a system
of neighbourhoods for a ∈ L (and Vr (a) is a fundamental system of neighbourhoods of a in the topology
given by Ur (a)). The convergence of nets in the induced topology is even the σt-reverse convergence.

Proof: Obviously a ∈ U (a). Also U (a) ∈ Ur (a) and W ⊃ U (a) imply W ∈ Ur (a).
For U1 (a),U2 (a) ∈ Ur (a) there exist V1 (a),V2 (a) ∈ Vr (a) such that Vk (a) ⊂ Uk (a), where Vk (a) =

{b ∈ L; a ∈ b+Wk} with Wk ∈ Vσ (0) , k = 1, 2. Consider W3 ∈ Vσ (0), where W3 ⊂ W1 ∩W2. Denote
V3 (a) = {b ∈ L; a ∈ b+W3} . If b ∈ L satisfies a ∈ b + W3 then a ∈ (b+W1) ∩ (b+W2) and thus
V3 (a) ⊂ U1 (a) ∩ U2 (a) ∈ Ur (a).
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Consider now U (a) ∈ Ur (a) with U (a) ⊃ {b ∈ L; a ∈ b+ V }, V ∈ Vσ (0). For V there exists V1

∈ Vσ (0) such that V1 + V1 ⊂ V because σ is a semilinear topology. We put W = {d ∈ L; a ∈ d+ V1}
and then U (a) ∈ Ur (c) for every c ∈ W . Indeed, if c ∈ W, then a ∈ c + V1. We take U1 (c) =
{d ∈ L; c ∈ d+ V1} and we have a ∈ d+ V1 + V1 ⊂ d+ V , so d ∈ {b ∈ L; a ∈ b+ V } ⊂ U (a).

Obviously, the convergence induced by σ-reverse topology is that from Definition 2.1. 2

Definition 2.2 We call σ-reverse topology (or, simple, the reverse topology, when topology σ is fixed)
the topology given by (2.2).

Let denote it by σr.

Remark 2.2 For any a ∈ L, the set Vr (a) contains only elements which are sum between an element
from L and an element from a neighbourhood of the origin.
Particularly, if a = 0, for every V ∈ Vσ (0) , the condition (2.1) becomes

Vr (0) = {b ∈ L; 0 ∈ b+ V } , (2.3)

hence each b ∈ Vr (0) is invertible. Thus Vr (0) ⊂ Lin.
But it is possible that Lin = {0}, so Vr (0) = {0} . This situation is rather restrictive. In this case, the

nets with limit 0 are only the constant nets. The reverse topology would thus seems close to the discrete
topology.

Fortunately, things are not exactly like that. If a ̸= 0, the neighborhoods Vr(a) can be very different
and the convergent nets and sequences are of many types, as we will see in Section 4 dedicated to examples.
On the other hand, for example, if (X, ∥·∥) is a linear normed space and τ is a semilinear hypertopology
on Pb (X), the subspace Lin is not {0}, but the family S (X) of singletons of X. So Vr (0) ⊂ S (X).

In Section 4, we will show that the basic semilinear topology, the translated one, and the reverse one
are distinct two by two, but there are also convergent sequences in all three. Also in the Section 4 are
given some answers to the question ”What is this topology useful for?”.

3. Totally boundedness and compactness conditions

The notion of totally bounded set is usually presented on metric spaces, but also in linear topological
spaces (see, for e.g., [16] or [21]). Let define it in s.t.s.:

Definition 3.1 ( [3]) A set M from a s.t.s. (L.σ) is totally bounded if

∀V ∈ V (0)∃x1, x2, ..., xn ∈ L such that M ⊂ ∪n
i=1 (xi + V ) .

We observe that this notion is essential connected by the translated topology σt because the sets
xi + V are neighbourhoods of xi in topology σt.

On linear topological spaces one can characterize the totally bounded sets by nets. Now we adapt on
s.t.s. this notion:

Definition 3.2 ( [3]) A set M from a s.t.s. (L, σ) is totally bounded by nets iff any net from M contains
a translated Cauchy subnet.

The relationship between this two notions is given in the following theorem:

Theorem 3.1 ( [3], Theorem 3.1) Let (L, σ) be a s.t.s. and M ⊂ L . If M is totally bounded by nets
then M is totally bounded.

In the following we intend to define something similar for the reverse space:

Definition 3.3 A set M from a s.l.s. (L, σ) is reverse totally bounded (or totally bounded in reverse
topology) if
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∀V ∈ V (0) ∃a1, a2, ..., an ∈ L such that M ⊆
n⋃

k+1

Vr (ak), where Vr (ak) = {x ∈ L; ak ∈ x+ V } for

all k = 1, n.

Remark 3.1 Consider the space (L, σr) . If we intend to define a notion of Cauchy net then we find
the same notion as in the case of the translated space (L, σt). So the notions of totally bounded
sets by nets coincide in (L, σr) and (L, σt).
The link between this two types of totally boundedness and compactness is given by the following

theorem:

Theorem 3.2 Consider (L, σ) a s.t.s. and M ⊆ (L, σ).

1) If any sequence of M has a translated Cauchy subnet then M is reverse totally bounded.
Consequently, any set which is totally bounded by nets is also reverse totally bounded.
2) If M is σ-compact then M is σr-totally bounded.

Proof: 1) Suppose by contrary that M isn’t reverse totally bounded. So there exists V0 ∈ V (0) such

that M ⊈
n⋃

k+1

Vr (ak) for any finite set F = {a1,a2, ..., an} ⊂ L, where Vr (ak) = {x ∈ L; ak ∈ x+ V0}.

This implies the existence of an element xF ∈ M such that xF /∈
n⋃

k+1

Vr (ak). So ak /∈ xF + V0 for all

k = 1, n or, equivalently,

F ∩ (xF + V0) = ∅ for any F ∈ F , (3.1)

where F denote the family of non-void finite parts of L.
The family F can be ordered by the inclusion ”⊆” and thus F is a directed set: for any F1,F2 ∈ F

there exists F3 = F1 ∪ F2 such that Fk ⊆ F3, k = 1.2.
So we obtained a net (xF )F∈F from M .
Now consider an arbitrary element x0 ∈ M and denote F0 = {x0}.
From (3.1) we find xF0

∈ M such that F0 ∩ (xF0
+ V0) = ∅.

We put F1 = {x0, xF0}∈ F and we find xF1 ∈ M such that F1 ∩ (xF1 + V0) = ∅.

Inductively we can construct a sequence (xFn)n∈N ⊂ M such that Fn ∩ (xFn + V0) = ∅ for all n ∈ N,
where Fn = Fn−1 ∪

{
xFn−1

}
.

Or, equivalently,

xFk
/∈ xFn

+ V0 for all n ∈ N and k = 0, n− 1. (3.2)

Denote by F̃ = {Fn;n ∈ N}. Obviously, F̃ is a directed set (even a chain): Fn ⊂ Fn+1.
But every sequence of M has a translated Cauchy subnets, so there exists a directed set J and an

application ϕ : J → F̃ such that
a) ϕ (j1) ≥ ϕ (j2) for all j1j2 ∈ J , j1 ≥ j2;
b) for every n ∈ N there exists jn ∈ J with ϕ (jn) ⊇ Fn;
c) xϕ(j0) ∈ xϕ(j) + V0 for all j ≥ j0.

Because ϕ(j0),ϕ(j) ∈ F̃ then there exists Fn0 ,Fnj ∈ F̃ such that ϕ(j0) = Fn0 , ϕ(j) = Fnj and
Fnj ⊇ Fn0 .

Hence

xFn0
∈ xFnj

+ V0,

in contradiction with (3.2).
2) Consider V (0) a fundamental system of σ-open neighbourhoods of the origin. If V ∈ V (0) and

Vr (x) is a σr-neighborhood of x then M ⊆
⋃

x∈M

Vr (x) .

From (2.1) we can write Vr (x) =
⋃

y∈Vr(x)

(y + V ), so M ⊆
⋃

x∈M

⋃
y∈Vr(x)

(y + V ), where y+V are σ-open

sets because the translations are σt-continuous.
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Because M is σ-compact then there exists x1, x2, ..., xk ∈ M and y1j , y
2
j , ..., y

mj

j ∈ Vr (xj), j = 1, k,

such that M ⊆
k⋃

j=1

mj⋃
l=1

(yml

l + V ). But
mj⋃
l=1

(yml

l + V ) ⊆ Vr (xj). Hence M is σr-totally bounded. 2

Remark 3.2 The sum preserve the totally boundedness by nets: if M is totally bounded by nets then
x+M is also totally bounded by nets.

Theorem 3.3 Let (L, σ) be a semilinear topological space which has a fundamental system of neigh-
bourhoods formed only by translated totally bounded and σ-closed sets. If every totally bounded set is also
σt-closed, then any σt-convergent net contains a subnet which is σt-reverse convergent.

Proof: Let be V (0) a fundamental system of neighbourhoods as in hypothesis. Using Remark 3.2, x+V

is totally bounded, thus it is σt-closed. Then x+ V
σt

= x+V = x+V
σ
and every net is closed-translated.

Consider (xi)i∈I a net σt-convergent to an x and V an arbitrary neighbourhood of origin. Then

xi ∈ x+V for i ∈ I sufficiently large. Because x+V is totally bounded, there exists a subnet
(
xϕ(j)

)
j∈J

which is translated Cauchy net. Because it is also σt-convergent to x, then (from Proposition 2.1) it is
σt-reverse convergent to x. 2

Now we investigate the particular case of metrizable topological semilinear spaces.

Definition 3.4 A semi-metric ρ on a s.s., ρ : L × L → R, is called semi-invariant with respect to
translations iff:

ρ(a+ c, b+ c) ≤ ρ(a, b), for all a, b, c ∈ L.

An example of a semi-metric with such property is the Pompeiu-Hausdorff semi-metric on Pb (X),
where (X, ∥·∥) is a linear normed space.

Denote by Bρ (x, ε) the ρ-ball of center x ∈ L and radius ε > 0. A fundamental system of neighbour-
hoods of x in translated topology on L is given by (x+Bρ (0, ε))ε>0.

Theorem 3.4 Let (L, σ) be a semilinear topological space such that its translation topology is metrizable
by a metric ρ semi-invariant with respect to translation. Then:

1. Any net σt-reverse convergent to x is also convergent in the translated topology to x.
2. Suppose in addition that all balls Bρ (0, ε), ε > 0, are σ-compact. Then any net convergent to x in

translation topology is σt-reverse convergent to x.

Proof: 1. Let be an arbitrary ε > 0 and ρ a metric (semi-invariant with respect to translations) on
L which induces the topology σt. If (xi)i∈I is σt-reverse convergent to x then x = xi + yiε such that
ρ (yiε, 0) < ε for i sufficiently large. Thus ρ (xi, x) = ρ (xi, xi + yiε) ≤ ρ (0, yiε) < ε.

2. Because all balls Bρ (0, ε), ε > 0, are σ-compact, they are also σ-closed. Then

x+Bρ (0, ε)
σ
= x+Bρ (0, ε) ⊂ x+Bρ (0, ε)

σt

for all x ∈ L.
Let show that x+Bρ (0, ε)

σt ⊂ x + Bρ (0, ε). Consider u ∈ x+Bρ (0, ε)
σt

and denote by un ∈
x + Bρ (0, ε), n ∈ N, a sequence such that un

σt→ u. Then un = x + yn, where yn ∈ Bρ (0, ε). Because
every σ-compact set is also σt-compact the ball Bρ (0, ε) is σt-compact. Thus there exists a subsequence

(ynk
)k which is σt-convergent to some y ∈ Bρ (0, ε). Then unk

= x+ ynk

σt→ x+ y since the translations
are σt-continuous. It results u = x+ y, so u ∈ x+Bρ (0, ε).

The condition
x+Bρ (0, ε)

σ
= x+Bρ (0, ε)

σt

says that all nets from L are closed-translated nets. If (xi)i∈I is a σt-convergent net, it is also a translated
Cauchy net because the translated topology σt is given by a metric. Using Proposition 2.1, it follows
that (xi)i∈I is σt-reverse convergent to x. 2
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Remark 3.3 Suppose that the metric ρ is semi-invariant with respect to translation and complete. If
we work from the hypothesis of Theorem 3.3 then, using Remark 2.1, we deduce the same conclusion
like in Theorem 3.4.

4. Examples

The purpose of this Section is to show that the notion of limit in reverse topology admits enough
examples, even starting from a more restrictive topology such as the upper Hausdorff topology: for(
P (X) , τ+H

)
we highlighted several classes of elements in P (X) which are the limits of some sequences

in the reverse topology. The examples may also be useful because the Hausdorff topology is one of the
most widely used topologies. We thus show that the reverse topology is a consistent notion. Where it
was possible, we have tried to formulate the examples in the most general way possible.

We will apply the notions of Sections 1 and 2 to sequences of sets.
Let (X, ∥·∥) be a linear normed space and P (X) is the family of non-void sets of X. Using Definition

4, 1) we find a fundamental system of neighborhoods of the origin in the reverse topology of τ+H . First
we see that Sε({0}) is the sphere of center O and radius ε > 0 denoted by S (0, ε) = {x ∈ X; ∥x∥ < ε}.
We deduce that B+

H ({0} , ε) = {A ∈ P(X); A ⊆ S (0, ε)}.

Hence An

(τ+
H)r−→ A if and only if

∀ε > 0∃nε ∈ N ∃Pn ⊆ S (0, ε) such that A = An + Pn for any n ≥ nε. (4.1)

So for the sequences of sets from P (X), the limits in the sense of reverse topology of upper Hausdorff
topology are those sets that can be decomposed into a sum as above, where Pn are rest sets that are
”uniformly small”. Thus the sets A can be ”uniformly approximated” by the sets An.

Condition (4.1) is more easily verified if Pn contains few elements, for example when Pn is a singleton.

In the sequel we intend to find classes of sets with this property. Denote

RL
(
τ+H
)
=

{
A ∈ P(X); ∃An ∈ P(X) such that An

(τ+
H)r−→ A

}
.

All the singletons are in RL
(
τ+H
)
:

Proposition 4.1 The singleton A = {a} satisfied (4.1) if and only if Pn = {pn} with pn → 0 and
An = {a− pn}.

Proof: Suppose A ∈ S (X), let’s say A = {a}. Then An and Pn have only one element, each. We fix an
arbitrary ε > 0.

Obviously, the sequence An = {a− pn} checks relation (4.1) for Pn = {pn} ∈ B+
H ({0} , ε).

Conversely, if An = {an} and Pn = {pn}, where |pn| < ε for n sufficiently large, then an + pn = a, so
an = a− pn. 2

Also, all finite sets are in RL
(
τ+H
)
. We denote by card (M) the cardinality of the set M .

Proposition 4.2 Suppose A ∈ F (X), let’s say A =
{
a1, a2, ..., ak

}
and An

(τ+
H)r−→ A. The condition (4.1)

occurs if and only if
card (An) = k (4.2)

and
An =

{
a1 − pn, a

2 − pn, ..., a
k − pn

}
, Pn = {pn} , where pn → 0. (4.3)

Proof: First we prove that if (An)n∈N , (Pn)n∈N ⊂ P (X) verify relation (4.1), then card (An) = k for
any n ≥ nε.

Suppose by contrary that there exists an increasing sequence (nl)l∈N ⊂ N such that card (Anl
) ̸= k.

Denote card (Anl
) = j, let’s say Anl

=
{
a1nl

, a2nl
, ..., ajnl

}
.
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1) If j ≤ k − 1 then card (Pnl
) ≥ 2, let’s say Pn ⊇ {pn, qn}, where pn, qn < ε for every n ≥ nε.

Using (4.1), the distinct elements two by two
a1nl

+ pnl
, a2nl

+ pnl
, ..., ajnl

+ pnl
are in A. To make a choice we assume that ai = ainl

+ pnl
for

j = 1, k − 1. So ainl
→ ai for every j = 1, k − 1.

Now consider aj+1 ∈ A. Then there exists mj ∈ {1, 2, ..., j} such that a
mj
nl ∈ Anl

and aj+1 = a
mj
nl +qnl

.
Hence a

mj
nl → aj+1, in contradiction with a

mj
nl → amj .

2) If j ≥ k + 1 then a1nl
+ pnl

, a2nl
+ pnl

, ..., ajnl
+ pnl

∈ A are distinct elements two by two for any
pnl

∈ Pnl
. So

card (A) = card (Anl
+ Pnl

) ≥ card
{
a1nl

+ pnl
, a2nl

+ pnl
, ..., ajnl

+ pnl

}
= j > k = card (A), a contra-

diction.
Obviously, property (4.3) implies (4.1) . Conversely, if A = An + Pn for any n ≥ nε, card (A) =

card (An) = k then card (Pn) = 1. Suppose Pn = {pn}, where pn → 0.
Possibly renumbering the elements of A we can assume that ai = ain+ pn for all i = 1, k, so (4.3) take

place. 2

Regarding the class of intervals, we have the following result:

Proposition 4.3 Any interval [α, β] ⊂ R can be decomposed according to condition (4.1) either by
card (Pn) ∈ N∗, or by card (Pn) = c:

a) If card (Pn) = 1 then the decomposition (4.1) is unique:
[α, β] = [α− pn, β − pn] + {pn}, where Pn = {pn} ⊂ S (0; ε) for all n ≥ nε.
b) If card (Pn) = k then there exists p1n < p2n < ... < pkn, such that
pkn − p1n ≤ k−1

k (β − α) and [α, β] =
[
α− p1n, β − pkn

]
+ Pn,

where Pn =
{
p1n, p

2
n, ..., p

k
n

}
⊂ S (0; ε) for all n ≥ nε.

c) If card (Pn) = c then there exists pn, qn ∈ S (0; ε), with pn < qn and qn − pn < β − α for any
n ≥ nε, such that [α, β] = [α− pn, β − qn] + [pn, qn].

Proof: a) Obviously, for A = [α, β], Pn = {pn} ⊂ S (0; ε) we find An = [α− pn, β − pn].
b) For Pn =

{
p1n, p

2
n, ..., p

k
n

}
⊂ S (0; ε) we can suppose p1n < p2n < ... < pkn. We will look for the

decomposition (4.1) with An = [αn, βn]. We can write

[α, β] =

k⋃
j=1

[
αn + pjn, αn + pjn

]
. (4.4)

From (4.4) we deduce α = αn + p1n,
β = βn + pkn,

βn + pjn ≤ αn + pj+1
n ,

for all j = 1, k − 1. Giving to j all values from 1 to k − 1 and summing

the inequalities term by term we obtain pkn − p1n ≤ k−1
k (β − α) (condition that is possible because

pjn ∈ S (0; ε)) and
[α, β] =

[
α− p1n, β − pkn

]
+
{
p1n, p

2
n, ..., p

k
n

}
.

c) In the case card (Pn) = c we are looking for Pn as an interval [pn, qn] ⊂ S (0; ε). If An = [αn, βn]
then α = αn + pn,

β = βn + qn,
βn + qn ≤ αn + pn.

Now we observe that card (Pn) ̸= ℵ0: suppose by contrary that Pn =
{
p1n, p

2
n, ..., p

k
n, ...

}
, where

p1n < p2n < ... < pkn < ... and Pn ⊂ S (0; ε). If An = [αn, βn] then α = αn + p1n and βn + pjn ≤ αn + pj+1
n

for all j ∈ N∗. We affirm that β /∈ [αn, βn] + Pn: if there exists pmn ∈ Pn such that β = βn + pmn then
βn + pm+1

n ∈ [αn, βn] + Pn, but β < βn + pm+1
n , so βn + pm+1

n /∈ [α, β]. 2

Remark 4.1 Proposition 4.3 can be easily generalized to intervals of the form [αei, βei], where α, β ∈
R, α < β and B = (ei)i∈I is an algebraic base in real linear normed space X.
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Proposition 4.4 a) Any convex cone is in RL
(
τ+H
)
.

b) Every linear subspace of X is from RL
(
τ+H
)
.

c) All hyperplanes are from RL
(
τ+H
)
.

Proof: Consider (λn)n∈N ⊂ R ∩ (0,+∞), λn → 0. For ε > 0 we choose nε ∈ N such that λn < ε for
every n ≥ nε.

a) Let C ⊂ X be a convex cone.
Then for every n ≥ nε we put Pn = {p ∈ C; ∥p∥ ≤ λn} and An = {a ∈ C; ∥a∥ > λn} ∪ {0}. Observe

that Pn ⊂ S (0; ε) .
Consider x ∈ C.
If x = 0 then x = 0 + 0 ∈ An + Pn.
Now we take x ∈ C\ {0}. If ∥x∥ ≤ λn then x = 0+x ∈ An+Pn. If ∥x∥ > λn then x = x+0 ∈ An+Pn.
Now consider y = a+ p ∈ An + Pn. Since C is a convex cone then y = a+ p ∈ C.
b) Let Xs be a linear subspace of X.
If Xs = {0} then An = Pn = {0} .
SupposeXs ̸= {0} . For every n ≥ nε we take Pn = {p ∈ Xs; ∥p∥ ≤ λn} and An = {a ∈ Xs; ∥a∥ ≥ λn}.
Let x be an element from Xs.
If x = 0 then consider a ∈ Xs\ {0} and b = a

∥a∥ . It results that an = λnb ∈ An, pn = −λnb ∈ Pn, so

0 = an + pn ∈ An + Pn.

If x ̸= 0 and ∥x∥ < λn then we can choose an =
(
1 + λn

∥x∥

)
x ∈ An, pn = − λn

∥x∥x ∈ Pn because

∥an∥ =
(
1 + λn

∥x∥

)
∥x∥ > λn, ∥pn∥ = λn and x = an + pn.

If x ̸= 0 and ∥x∥ ≥ λn then we can take µ = min
{
1− λn

∥x∥ ,
λn

∥x∥

}
> 0, an = (1− µ)x ∈ An,

pn = µx ∈ Pn because ∥an∥ = (1− µ) ∥x∥ ≥ λn, ∥pn∥ = µ ∥x∥ ≤ λn and x = an + pn.
Now consider an ∈ An, pn ∈ Pn. Then an+pn ∈ Xs because An, Pn ⊂ Xs and Xs is a linear subspace

of X.
c) If H is an arbitrary hyperplane from X then H can be write H = H0+h, where H0 is a hyperplane

which passes through the origin and h is an arbitrary element from H. From b) every hyperplane
which passes through the origin is in RL

(
τ+H
)
. Hence H0 = An + Pn, where Pn ⊂ S (0; ε). Then

H = (An + h) + Pn is the decomposition of H that verifies relation (4.1). 2

Now we compare semi-linear convergence, translated and reverse convergences. Consider An, A ⊂
Pb (X) for any n ∈ N.

Example 4.1 There exist sequences for which the 3 convergences coincide:
a) Let (X, ∥·∥) be a linear normed space. According to Proposition 4.1 and (1.2), in the case of

singletons An = {an}, A = {a}, the relations An

(τ+
H)t−→ A, An

(τ+
H)r−→ A, An

τ+
H−→ A are all equivalent with

an
∥·∥−→ a .

b) As we see in Proposition 11, a), if α, β ∈ R, α < β, pn → 0 and An = [α− pn, β − pn] then (An)n∈N
is convergent at A = [α, β] in

(
τ+H
)
r
.

Also An = [α− pn, β − pn] = [α, β]+{−pn} and e (An, A) = sup
b∈An

inf
a∈A

∥b− a∥ ≤ pn for all n sufficiently

large, so An → A in the sense of
(
τ+H
)
t
and τ+H , respectively.

Example 4.2 There exist sequences which are convergent in the translated topology, but not in the
reverse topology:

In K (R) the sequence An = [α− pn, α+ pn] is convergent in
(
τ+H
)
t
to A = {α}, where pn > 0, pn → 0,

because for any ε > 0 there exist nε ∈ N and Mn = [−pn, pn] ⊂ [−ε, ε] such that An = A +Mn, for all
n ≥ nε.

But (An)n∈N isn’t convergent in
(
τ+H
)
r
: we suppose by contrary that there exists B ∈ K (R) such that

∀ε > 0 there exists nε ∈ N such that B = An + Pn and |pn| < ε for any n ≥ nε, (4.5)
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where Pn ∈ B+
H ({0} , ε).

We fix ε > 0, ε < |α|. One observe that the sets B = {0}, B = {α} and B = {0, α} do not verify the
relation (4.1) for any Pn ∈ B+

H ({0} , ε).
Suppose now that there exists β ∈ B, β ̸= 0, α.
Choose ε = |β − α| /3 and adjust nε such that pn < ε for all n ≥ nε.
If β > α then Pn ⊆ [−ε, ε] and we obtain:

An+Pn ⊆ [α− pn, α+ pn]+ [−ε, ε] ⊆ [α− 2ε, α+ 2ε] =
[
5α−2β

3 , α+2β
3

]
. Since β > α+2β

3 , (4.5) is not

occurred.
If β < α then An + Pn ⊆ [α− 2ε, α+ 2ε] =

[
2α+β

3 , 5α−2β
3

]
. But β < 2α+β

3 and (4.5) is not verified.

Example 4.3 There exist sequences which are convergent in both the translated and reverse topology,
but the limits are different.

Consider l2 =

{
x = (xn)n∈N ⊂ R;

∞∑
n=1

|xn|2 < +∞
}

and
(
K (l2) , τ

−
V

)
.

On the family P (l2) of non-void subsets of l2 we use the topology τ−V (see Definition 1.4, 2)); a
neighbourhood of 0 ∈ l2 in τ−V is given by U = U−

1 ∩ ... ∩ U−
l , where Uk are open sets in l2 such that

0 ∈ Uk, k = 1, l (so there exist r1, r2, ..., rl > 0 such that S (0; rk) ⊆ Uk for all k = 1, l).
Let e1, e2, ..., en, ... be the vectors of canonical base in l2. We take A = l2, An = I (e1, e2, ..., en) =

{λ1e1 + ...+ λnen;λ1, .., λn ∈ R} and B = {0} . Denote N∗ = N\ {0} . Then:

a) An

(τ−
V )r→ A:

We put Pn = I (en+1, en+2, ...) for all n ∈ N and nU = 1. For all n ≥ nU we have Pn ∈ U (because
0 ∈ Pn.) and A = An + Pn.

Another choice is Pn = l2, nU = 1.

b) But An

(τ−
V )t↛ A:

If U1,..., Up are open sets with 0 ∈ U1 ∩ ... ∩ Up, U = U−
1 ∩ ... ∩ U−

p and M ∈ U then M ∩ Uk ̸= ∅,

for any k = 1, p.

Suppose by contrary that An

(τ−
V )t→ A. So there exist nU ∈ N and Mn ∈ U such that An = A +Mn

for any n ≥ nU . But A+Mn = l2, a contradiction.
Now we show that (An) is convergent to B in

(
τ−V
)
t
: for nU = 1 and Mn = I (e1, e2, ..., en) ∈ U we

have An = B +Mn for any n ≥ nU .

Of course, An

(τ−
V )r↛ B because {0} ̸= I (e1, e2, ..., en) + I (en+1, en+2, ...).

c) It should be noted that An
τ−
V→ A: let (Uk)k=1,p, p ∈ N∗ be an arbitrary non-empty open set from l2

with A ∩ Uk ̸= ∅ for all k = 1, p. Consider xk ∈ Uk and ρk > 0 such that S (xk, ρk) ⊂ Uk for all k = 1, p.
Here we denote by S (xk, ρk) the sphere of center xk and radius ρk.

If xk = λk
1e1+λk

2e2+ ...+λk
nen+ ..., we choose yk = λk

1e1+λk
2e2+ ...+λk

nen ∈ An. Then ∥xk − yk∥ =∥∥λk
n+1en+1 + λk

n+2en+2 + ...
∥∥ =

∞∑
m=n+1

∣∣λk
m

∣∣2 < ρk for n sufficiently large, so An ∩ S (xk, ρk) ̸= ∅, i.e.

An ∩ Uk ̸= ∅.

Example 4.4 There exist sequences that are
(
τ+H
)
r
-convergent, but not

(
τ+H
)
t
-convergent:

Let q = (qn)n∈N∗ ∈ l2 be a fixed sequence (i.e.
∞∑

n=1
|qn|2 < +∞). Consider

A =
{
x = (xn)n∈N∗ ; |xn| ≤ |qn| for all n ∈ N∗}, so A ∈ l2.

We write Cauchy condition for q: ∀ε > 0 ∃kε ∈ N such that
∞∑

n=k

|qn|2 < ε for all k ≥ kε.

Let ek = (0, 0, ..., 0, 1, 0, ...0), k ∈ N∗, be the vectors of canonical base in l2 and Ak = I (e1, e2, ..., ek)∩
A, Pk = I (ek+1, ek+2, ...) ∩A.

a) Then Ak

(τ+
H)r→ A:
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Show that A = Ak + Pk, where Pk ⊂ S (0; ε) for all k ≥ kε:
• Every x = (xn)n∈N∗ ∈ A can be written x = (x1e1 + x2e2 + ...xkek)+(xk+1ek+1 + xk+2ek+2 + ...) ∈

Ak + Pk for all k ≥ kε (because
∞∑

n=k+1

|xn|2 ≤
∞∑

n=k+1

|qn|2 < ε).

• If y = (yn)n≥1 ∈ Ak and z = (zn)n∈N∗ ∈ Pk, yk+l = 0 for ∀l ≥ 1 and z1 = z2 = ..zk = 0, then

y = y1e1 + ...+ ykek and z = zk+1ek+1 + zk+2ek+2 + ...., where
∞∑

n=k+1

|zn|2 ≤
∞∑

n=k+1

|qn|2 < ε.

Hence x = y + z = y1e1 + ...+ ykek + zk+1ek+1 + zk+2ek+2 + ... ∈ A.
b) We argue that (Ak)k∈N∗ is not

(
τ+H
)
t
-convergent.

Suppose, by contrary, that there exists B ∈ P (X) such that Ak

(τ+
H)t→ B.

We can write:

∀ε > 0∃kε ∈ N∗∃Mk ⊂ S (0; ε) such that Ak = B +Mk for all k ≥ kε. (4.6)

We fix ε > 0 and k ≥ kε.
From (4.6) it results that any b ∈ B can be written in canonical base like b = b1e1+ b2e2+ ...+ bkek −

mk
k+1ek+1 −mk

k+2ek+2 + ..., where bj is an arbitrary scalar in R, ∀j = 1, k, and
(
mk

l

)
l∈N∗ ⊂ S (0; ε) (i.e.

∞∑
l=1

∣∣mk
l

∣∣2 < ε).

Applied now (4.6) for k + 1 it results that any b ∈ B can be written in canonical base like b =
b1e1 + b2e2 + ... + bkek + bk+1ek+1 − mk+1

k+2ek+2 − mk+1
k+3ek+3 + ..., where bj is an arbitrary scalar in R,

∀j = 1, k + 1, and
(
mk+1

l

)
l∈N∗ ⊂ S (0; ε)

We observe that the two writings of the elements of B are contradictory: for example ek+1 checks the

second writing, but does not check the first because it should mk
k+1 = −1, but in this case

∞∑
l=1

∣∣mk
l

∣∣2 ≥ 1.

The contradiction proves the
(
τ+H
)
t
-divergence of the sequence (Ak)k∈N∗ .

Thus, through these examples, we showed that, generally, the reverse topology and the translate
topology are not comparable.
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