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abstract: In this paper, we introduce unrestricted Mersenne and Mersenne-Lucas Hybrid Octonions and
Sedenions sequences and establish recurrence relations, generating functions, and Binet formulas for the pre-
ceding sequences. Also verified the above sequences through some widely acknowledged identities and furthered
a few relationships among them
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1. Introduction

In hypercomplex number, Octonions have eight dimensions, which is twice the number of dimensions
of quaternions, of which they are an extension. They are neither commutative nor associative. The
Sedenions form a 16-dimensional non-commutative and non-associative algebra over the real numbers
which are obtained by applying the Cayley-Dickson construction to the Octonions.

Marin Mersenne, a French mathematician, initially introduced a number of the type Mn “ 2n ´ 1,
where n is an integer, in 1644. Various investigations have been carried out on the Mersenne sequences.
Mersenne-Lucas sequences are defined as MLn “ 2n ` 1, n ě 2, with ML0 “ 2,ML1 “ 3. In [1,2], the
Mersenne Lucas sequences, including its generating functions and Binet formulas were discussed.

The hybrid number [3,4], which comprises real, complex, dual, and hyperbolic numbers, was intro-
duced by Ozdemir in 2018. It is of the form H “ z0 ` z1i ` z2ε ` z3h, where z0, z1, z2, z3PR and i, ε, h
are operators such that i2 “ ´1, ε2 “ 0, h2 “ 1, ih “ ´hi “ i ` ε.

Many studies have been conducted on various Octonions [5,6] and Sedenions [7,8,9] sequences. We
present unconstrained Mersenne and Mersenne-Lucas Hybrid Octonions and Sedenions sequences in this
study, as well as recurrence relations, generating functions, and Binet formulas for the preceding se-
quences. The above sequences are additionally validated using several widely recognized identities, and
a few correlations between them were also shown.

2. Unconstrained Mersenne and Mersenne-Lucas Hybrid Octonions

Definition 2.1 For any integers p, q, υ and non-negative integer n, unrestricted Mersenne and Mersenne-
Lucas hybrid Octonions are defined by

(i) }Mn

pp,q,υq

“ }Mn ` i­Mn`p ` ε­Mn`q ` h­Mn`υ

(ii) ~MLn

pp,q,υq

“ ~MLn ` i ­MLn`p ` ε ­MLn`q ` h ­MLn`υ

where i, ε, h are hybrid units.
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Theorem 2.1 Unrestricted Mersenne and Mersenne-Lucas Hybrid Octonions satisfy the recurrence re-
lations:

i) }Mn

pp,q,υq

“ 3­Mn´1

pp,q,υq

´ 2­Mn´2

pp,q,υq

ii) ~MLn

pp,q,υq

“ 3 ­MLn´1

pp,q,υq

´ 2 ­MLn´2

pp,q,υq

Proof:
i) For n “ 2, we have

}M2
pp,q,υq

“ 3}M1
pp,q,υq

´ 2}M0
pp,q,υq

“ 3p}M1 ` i ­M1`p ` ε­M1`q ` h ­M1`υq ´ 2p}M0 ` i ­M0`p ` ε­M0`q ` h ­M0`υq

“ 3rpM1e0 ` M2e1 ` M3e2 ` M4e3 ` M5e4 ` M6e5 ` M7e6 ` M8e7q

`ipM1`pe0 ` M2`pe1 ` M3`pe2 ` M4`pe3 ` M5`pe4 ` M6`pe5

`M7`pe6 ` M8`pe7q ` εpM1`qe0 ` M2`qe1 ` M3`qe2 ` M4`qe3

`M5`qe4 ` M6`qe5 ` M7`qe6 ` M8`qe7q ` hpM1`υe0 ` M2`υe1

`M3`υe2 ` M4`υe3 ` M5`υe4 ` M6`υe5 ` M7`υe6 ` M8`υe7qs

´2rpM0e0 ` M1e1 ` M2e2 ` M3e3 ` M4e4 ` M5e5 ` M6e6 ` M7e7q

`ipM0`pe0 ` M1`pe1 ` M2`pe2 ` M3`pe3 ` M4`pe4 ` M5`pe5

`M6`pe6 ` M7`pe7q ` εpM0`qe0 ` M1`qe1 ` M2`qe2 ` M3`qe3

`M4`qe4 ` M5`qe5 ` M6`qe6 ` M7`qe7q ` hpM0`υe0 ` M1`υe1

`M2`υe2 ` M3`υe3 ` M4`υe4 ` M5`υe5 ` M6`υe6 ` M7`υe7qs

“ e0p3M1 ´ 2M0q ` e1p3M2 ´ 2M1q ` e2p3M3 ´ 2M2q ` e3p3M4 ´ 2M3q

`e4p3M5 ´ 2M4q ` e5p3M6 ´ 2M5q ` e6p3M7 ´ 2M6q ` e7p3M8 ´ 2M7q

`ipe0p3M1`p ´ 2M0`pq ` e1p3M2`p ´ 2M1`pq ` e2p3M3`p ´ 2M2`pq

`e3p3M4`p ´ 2M3`pq ` e4p3M5`p ´ 2M4`pq ` e5p3M6`p ´ 2M5`pq

`e6p3M7`p ´ 2M6`pq ` e7p3M8`p ´ 2M7`pqq ` εpe0p3M1`q ´ 2M0`qq

`e1p3M2`q ´ 2M1`qq ` e2p3M3`q ´ 2M2`qq ` e3p3M4`q ´ 2M3`qq

`e4p3M5`q ´ 2M4`qq ` e5p3M6`q ´ 2M5`qq ` e6p3M7`q ´ 2M6`qq

`e7p3M8`q ´ 2M7`qqq ` hpe0p3M1`υ ´ 2M0`υq ` e1p3M2`υ ´ 2M1`υq

`e2p3M3`υ ´ 2M2`υq ` e3p3M4`υ ´ 2M3`υq ` e4p3M5`υ ´ 2M4`υq

`e5p3M6`υ ´ 2M5`υq ` e6p3M7`υ ´ 2M6`υq ` e7p3M8`υ ´ 2M7`υqq

“ e0M2 ` e1M3 ` e2M4 ` e3M5 ` e4M6 ` e5M7 ` e6M8 ` e7M9

`ipe0M2`p ` e1M3`p ` e2M4`p ` e3M5`p ` e4M6`p ` e5M7`p

`e6M8`p ` e7M9`pq ` εpe0M2`q ` e1M3`q ` e2M4`q ` e3M5`q

`e4M6`q ` e5M7`q ` e6M8`q ` e7M9`qq ` hpe0M2`υ ` e1M3`υ

`e2M4`υ ` e3M5`υ ` e4M6`υ ` e5M7`υ ` e6M8`υ ` e7M9`υq

“ }M2 ` i ­M2`p ` ε­M2`q ` h ­M2`υ

By using the definition 2.1 (i), we have

}Mn
pp,q,υq

“}Mn ` i ­Mn`p ` ε ­Mn`q ` h ­Mn`υ

“Mne0 ` Mn`1e1 ` Mn`2e2 ` Mn`3e3 ` Mn`4e4 ` Mn`5e5 ` Mn`6e6

` Mn`7e7 ` ipMn`pe0 ` Mn`p`1e1 ` Mn`p`2e2 ` Mn`p`3e3 ` Mn`p`4e4

` Mn`p`5e5 ` Mn`p`6e6 ` Mn`p`7e7q ` εpMn`qe0 ` Mn`q`1e1

` Mn`q`2e2 ` Mn`q`3e3 ` Mn`q`4e4 ` Mn`q`5e5 ` Mn`q`6e6

` Mn`q`7e7q ` hpMn`υe0 ` Mn`υ`1e1 ` Mn`υ`2e2 ` Mn`υ`3e3

` Mn`υ`4e4 ` Mn`υ`5e5 ` Mn`υ`6e6 ` Mn`υ`7e7q

“p3Mn´1 ´ 2Mn´2qe0 ` p3Mn ´ 2Mn´1qe1 ` p3Mn`1 ´ 2Mnqe2

` p3Mn`2 ´ 2Mn`1qe3 ` p3Mn`3 ´ 2Mn`2qe4 ` p3Mn`4 ´ 2Mn`3qe5

` p3Mn`5 ´ 2Mn`4qe6 ` p3Mn`6 ´ 2Mn`5qe7 ` ipp3Mn`p´1 ´ 2Mn`p´2qe0

` p3Mn`p ´ 2Mn`p´1qe1 ` p3Mn`p`1 ´ 2Mn`pqe2

` p3Mn`p`2 ´ 2Mn`p`1qe3 ` p3Mn`p`3 ´ 2Mn`p`2qe4

` p3Mn`p`4 ´ 2Mn`p`3qe5 ` p3Mn`p`5 ´ 2Mn`p`4qe6

` p3Mn`p`6 ´ 2Mn`p`5qe7q ` εpp3Mn`q´1 ´ 2Mn`q´2qe0



Unrestricted Mersenne and Mersenne-Lucas Hybrid Octonions and Sedenions 3

` p3Mn`q ´ 2Mn`q´1qe1 ` p3Mn`q`1 ´ 2Mn`qqe2 ` p3Mn`q`2 ´ 2Mn`q`1qe3

` p3Mn`q`3 ´ 2Mn`q`2qe4 ` p3Mn`q`4 ´ 2Mn`q`3qe5

` p3Mn`q`5 ´ 2Mn`q`4qe6 ` p3Mn`q`6 ´ 2Mn`q`5qe7q

` hpp3Mn`υ´1 ´ 2Mn`υ´2qe0 ` p3Mn`υ ´ 2Mn`υ´1qe1

` p3Mn`υ`1 ´ 2Mn`υqe2 ` p3Mn`υ`2 ´ 2Mn`υ`1qe3

` p3Mn`υ`3 ´ 2Mn`υ`2qe4 ` p3Mn`υ`4 ´ 2Mn`υ`3qe5

` p3Mn`υ`5 ´ 2Mn`υ`4qe6 ` p3Mn`υ`6 ´ 2Mn`υ`5qe7q

“3pMn´1e0 ` Mne1 ` Mn`1e2 ` Mn`2e3 ` Mn`3e4 ` Mn`4e5 ` Mn`5e6

` Mn`6e7 ` ipMn`p´1e0 ` Mn`pe1 ` Mn`p`1e2 ` Mn`p`2e3 ` Mn`p`3e4

` Mn`p`4e5 ` Mn`p`5e6 ` Mn`p`6e7q ` εpMn`q´1e0 ` Mn`qe1 ` Mn`q`1e2

` Mn`q`2e3 ` Mn`q`3e4 ` Mn`q`4e5 ` Mn`q`5e6 ` Mn`q`6e7q

` hpMn`υ´1e0 ` Mn`υe1 ` Mn`υ`1e2 ` Mn`υ`2e3 ` Mn`υ`3e4 ` Mn`υ`4e5

` Mn`υ`5e6 ` Mn`υ`6e7qq ´ 2pMn´2e0 ` Mn´1e1 ` Mne2 ` Mn`1e3

` Mn`2e4 ` Mn`3e5 ` Mn`4e6 ` Mn`5e7 ` ipMn`p´2e0 ` Mn`p´1e1

` Mn`pe2 ` Mn`p`1e3 ` Mn`p`2e4 ` Mn`p`3e5 ` Mn`p`4e6 ` Mn`p`5e7q

` εpMn`q´2e0 ` Mn`q´1e1 ` Mn`qe2 ` Mn`q`1e3 ` Mn`q`2e4 ` Mn`q`3e5

` Mn`q`4e6 ` Mn`q`5e7q ` hpMn`υ´2e0 ` Mn`υ´1e1 ` Mn`υe2 ` Mn`υ`1e3

` Mn`υ`2e4 ` Mn`υ`3e5 ` Mn`υ`4e6 ` Mn`υ`5e7qq

“3p ­Mn´1 ` i ­Mn`p´1 ` ε ­Mn`q´1 ` h ­Mn`υ´1q ´ 2p ­Mn´2 ` i ­Mn`p´2

` ε ­Mn`q´2 ` h ­Mn`υ´2q

“3 ­Mn´1
pp,q,υq

´ 2 ­Mn´2
pp,q,υq

ii) For n “ 2, we have

­ML2
pp,q,υq

“ 3­ML1
pp,q,υq

´ 2­ML0
pp,q,υq

“ 3p­ML1 ` i ­ML1`p ` ε ­ML1`q ` h ­ML1`υq

´2p­ML0 ` i ­ML0`p ` ε ­ML0`q ` h ­ML0`υq

“ ­ML2 ` i ­ML2`p ` ε ­ML2`q ` h ­ML2`υ

By using the definition 2.1 (ii), we have

­MLn
pp,q,υq

“ ­MLn ` i ­MLn`p ` ε ­MLn`q ` h ­MLn`υ

“ MLne0 ` MLn`1e1 ` MLn`2e2 ` MLn`3e3 ` MLn`4e4 ` MLn`5e5

`MLn`6e6 ` MLn`7e7 ` ipMLn`pe0 ` MLn`p`1e1 ` MLn`p`2e2

`MLn`p`3e3 ` MLn`p`4e4 ` MLn`p`5e5 ` MLn`p`6e6

`MLn`p`7e7q ` εpMLn`qe0 ` MLn`q`1e1 ` MLn`q`2e2

`MLn`q`3e3 ` MLn`q`4e4 ` MLn`q`5e5 ` MLn`q`6e6

`MLn`q`7e7q ` hpMLn`υe0 ` MLn`υ`1e1 ` MLn`υ`2e2

`MLn`υ`3e3 ` MLn`υ`4e4 ` MLn`υ`5e5 ` MLn`υ`6e6

`MLn`υ`7e7q

“ 3p ­MLn´1 ` i ­MLn`p´1 ` ε ­MLn`q´1 ` h ­MLn`υ´1q

´2p ­MLn´2 ` i ­MLn`p´2 ` ε ­MLn`q´2 ` h ­MLn`υ´2q

­MLn
pp,q,υq

“ 3 ­MLn´1
pp,q,υq

´ 2 ­MLn´2
pp,q,υq

l

Theorem 2.2 The Binet formula for }Mn

pp,q,υq

and ~MLn

pp,q,υq

are given by

i) }Mn

pp,q,υq

“ 2nqaa
˚ ´ qbb

˚

ii) ~MLn

pp,q,υq

“ 2nqaa
˚ ` qbb

˚
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where a˚ “ 1 ` 2pi ` 2qε ` 2υh, b˚ “ 1 ` i ` ε ` h and

qa “

7
ÿ

s“0

2ses, qb “

7
ÿ

s“0

es

Proof:

i) }Mn

pp,q,υq

“ }Mn ` i­Mn`p ` ε­Mn`q ` h­Mn`υ

“ 2nqa ´ qb `

´

2n`p
qa ´ qb

¯

i `

´

2n`q
qa ´ qb

¯

ε `

´

2n`υ
qa ´ qb

¯

h

“ 2nqa p1 ` 2pi ` 2qε ` 2υhq ´ qb p1 ` i ` ε ` hq

}Mn

pp,q,υq

“ 2nqaa
˚ ´ qbb

˚

where a˚ “ 1 ` 2pi ` 2qε ` 2υh and b˚ “ 1 ` i ` ε ` h

ii) ~MLn

pp,q,υq

“ ~MLn ` ­MLn`pi ` ­MLn`qε ` ­MLn`υh

“ 2nqa ` qb `

´

2n`p
qa ` qb

¯

i `

´

2n`q
qa ` qb

¯

ε `

´

2n`υ
qa ` qb

¯

h

“ 2nqa p1 ` 2pi ` 2qε ` 2υhq ` qb p1 ` i ` ε ` hq

~MLn

pp, q,υq

“ 2nqaa
˚ ` qbb

˚

where a˚ “ 1 ` 2pi ` 2qε ` 2υh and b˚ “ 1 ` i ` ε ` h. l

Theorem 2.3 The generating functions for }Mn

pp,q,υ q

and ~MLn

pp,q,υ q

are given by

i) qf pxq “
|M

pp,q,υq

0 `

´

|M
pp,q,υq

1 ´3 |M
pp,q,υq

0

¯

x

1´3x`2x2

ii) qg pxq “
~ML

pp,q,υq

0 `

´

~ML
pp,q,υq

1 ´3~ML
pp,q,υq

0

¯

x

1´3x`2x2

Proof:
i) Let us define

qf pxq “

8
ÿ

n“0

|M pp,q,υq
n xn

qf pxq “ |M
pp,q,υq

0 ` x|M
pp,q,υq

1 `

8
ÿ

n“2

|M pp,q,υq
n xn

Multiply this equation by ´3x and 2x2, we obtain

´3 qf pxqx “ ´3x|M
pp,q,υq

0 ´ 3
8
ÿ

n“2

|M
pp,q,υq

n´1 xn

2 qf pxqx2 “ 2
8
ÿ

n“2

|M
pp,q,υq

n´2 xn

Adding the above three equations, we get

`

1 ´ 3x ` 2x2
˘

qf pxq “ |M
pp,q,υq

0 ` x
´

|M
pp,q,υq

1 ´ 3|M
pp,q,υq

0

¯

`

8
ÿ

n“2

”

|M pp,q,υq
n ´ 3|M

pp,q,υq

n´1 ` 2|M
pp,q,υq

n´2

ı

xn

qf pxq “

|M
pp,q,υq

0 `

´

|M
pp,q,υq

1 ´ 3|M
pp,q,υq

0

¯

x

1 ´ 3x ` 2x2
.
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ii) In a similar way, we obtain qg pxq “
~ML

pp,q,υq

0 `

´

~ML
pp,q,υq

1 ´3~ML
pp,q,υq

0

¯

x

1´3x`2x2 . l

Theorem 2.4

i) The exponential generating function for }Mn

pp,q,υq

is given by

8
ÿ

k“0

|M
pp,q,υq
n lk

k!
“

8
ÿ

k“0

p2
k

qaa
˚ ´ qbb

˚q
lk

k!

“

8
ÿ

k“0

p2lq
k

k!
qaa

˚ ´

8
ÿ

k“0

lk

k!
qbb

˚

8
ÿ

k“0

|M
pp,q,υq
n lk

k!
“ qaa

˚e2l ´ qbb
˚el

ii) The exponential generating function for ~MLn

pp,q,υq

is given by

8
ÿ

k“0

}ML
pp,q,υq

n lk

k!
“

8
ÿ

k“0

p2
k

qaa
˚ ` qbb

˚q
lk

k!

“

8
ÿ

k“0

p2lq
k

k!
qaa

˚ `

8
ÿ

k“0

lk

k!
qbb

˚

8
ÿ

k“0

}ML
pp,q,υq

n lk

k!
“ qaa

˚e2l ` qbb
˚el

Theorem 2.5 (Vajda Identity) For any integers m,n, k, p, q, υ, we have

i) |M
pp,q,υq

m`n
|M

pp,q,υq

m`k ´ |M
pp,q,υq
m

|M
pp,q,υq

m`n`k “ 2mMn

´

2kqbb
˚

qaa
˚ ´ qaa

˚
qbb

˚

¯

ii) }ML
pp,q,υq

m`n
}ML

pp,q,υq

m`k ´ }ML
pp,q,υq

m
}ML

pp,q,υq

m`n`k “ 2mMn

´

qaa
˚

qbb
˚ ´ 2kqbb

˚
qaa

˚

¯

Proof:

i) |M
pp,q,υq

m`n
|M

pp,q,υq

m`k ´ |M
pp,q,υq
m

|M
pp,q,υq

m`n`k

“

´

2m`n
qaa

˚ ´ qbb
˚

¯ ´

2m`k
qaa

˚ ´ qbb
˚

¯

´p2mqaa
˚ ´ qbb

˚qp2m`n`k
qaa

˚ ´ qbb
˚q

“ 2m`k
qbb

˚
qaa

˚ p2n ´ 1q ´ 2mqaa
˚

qbb
˚p2n ´ 1q

“ 2mMn

´

2kqbb
˚

qaa
˚ ´ qaa

˚
qbb

˚
¯

ii) }ML
pp,q,υq

m`n
}ML

pp,q,υq

m`k ´ }ML
pp,q,υq

m
}ML

pp,q,υq

m`n`k

“

´

2m`n
qaa

˚ ` qbb
˚

¯ ´

2m`k
qaa

˚ ` qbb
˚

¯

´p2mqaa
˚ ` qbb

˚qp2m`n`k
qaa

˚ ` qbb
˚q

“ 2m`k
qbb

˚
qaa

˚ p1 ´ 2nq ` 2mqaa
˚

qbb
˚p2n ´ 1q

“ 2mMn

´

qaa
˚

qbb
˚ ´ 2kqbb

˚
qaa

˚
¯
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If we substitute k Ñ ´n in the Vajda identities, we obtain the Catalan’s identities. l

Theorem 2.6 (Catalan’s identity) For any integers m,n, p, q, υ, we have

i) |M
pp,q,υq

m`n
|M

pp,q,υq

m´n ´

”

|M
pp,q,υq
m

ı2

“ 2m´nMn

´

qbb
˚

qaa
˚ ´ 2nqaa

˚
qbb

˚

¯

ii) }ML
pp,q,υq

m`n
}ML

pp,q,υq

m´n ´

„

}ML
pp,q,υq

m

ȷ2

“ 2m´nMn

´

2nqaa
˚

qbb
˚ ´ qbb

˚
qaa

˚

¯

If we substitute n Ñ 1 in Catalan’s identities, we get Cassini’s identities.

Theorem 2.7 (Cassini’s identity) For any integers m, p, q, υ, we have

i) |M
pp,q,υq

m`1
|M

pp,q,υq

m´1 ´

”

|M
pp,q,υq
m

ı2

“ 2m´1
´

qbb
˚

qaa
˚ ´ 2qaa

˚
qbb

˚

¯

ii) }ML
pp,q,υq

m`1
}ML

pp,q,υq

m´1 ´

„

}ML
pp,q,υq

m

ȷ2

“ 2m´1
´

2qaa
˚

qbb
˚ ´ qbb

˚
qaa

˚

¯

Theorem 2.8 (d’Ocagne’s identity) For any integers m,n, p, q, υ, we have

i) |M
pp,q,υq
m

|M
pp,q,υq

n`1 ´ |M
pp,q,υq

m`1
|M

pp,q,υq
n “ 2mqaa

˚
qbb

˚ ´ 2
n

qbb
˚

qaa
˚

ii) }ML
pp,q,υq

m
}ML

pp,q,υq

n`1 ´ }ML
pp,q,υq

m`1
}ML

pp,q,υq

n “ 2nqbb
˚

qaa
˚ ´ 2mqaa

˚
qbb

˚

Proof:

i) |M
pp,q,υq
m

|M
pp,q,υq

n`1 ´ |M
pp,q,υq

m`1
|M

pp,q,υq
n

“

´

2mqaa
˚ ´ qbb

˚
¯ ´

2n`1
qaa

˚ ´ qbb
˚

¯

´p2m`1
qaa

˚ ´ qbb
˚qp2nqaa

˚ ´ qbb
˚q

“ 2nqbb
˚

qaa
˚ p1 ´ 2q ´ 2mqaa

˚
qbb

˚p1 ´ 2q

“ 2mqaa
˚

qbb
˚ ´ 2

n
qbb

˚
qaa

˚

ii) }ML
pp,q,υq

m
}ML

pp,q,υq

n`1 ´ }ML
pp,q,υq

m`1
}ML

pp,q,υq

n

“

´

2mqaa
˚ ` qbb

˚
¯ ´

2n`1
qaa

˚ ` qbb
˚

¯

´p2m`1
qaa

˚ ` qbb
˚qp2nqaa

˚ ` qbb
˚q

“ 2nqbb
˚

qaa
˚ p2 ´ 1q ´ 2mqaa

˚
qbb

˚p2 ´ 1q

“ 2nqbb
˚

qaa
˚ ´ 2mqaa

˚
qbb

˚ l

Theorem 2.9 (Honsberger Identity) For any integers m, n, p, q, υ, we have

i) |M
pp,q,υq

m´1
|M

pp,q,υq
n ` |M

pp,q,υq
m

|M
pp,q,υq

n`1

“ 2m`n´1pqaa
˚q

2
ML2 ´ 2nqbb

˚
qaa

˚ML1 ´ 2m´1
qaa

˚
qbb

˚ML1 ` 2
´

qbb
˚

¯2

ii) }ML
pp,q,υq

m´1
}ML

pp,q,υq

n ` }ML
pp,q,υq

m
}ML

pp,q,υq

n`1

“ 2m`n´1pqaa
˚q

2
ML2 ` 2nqbb

˚
qaa

˚ML1 ` 2m´1
qaa

˚
qbb

˚ML1 ` 2
´

qbb
˚

¯2
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Proof:

i) |M
pp,q,υq

m´1
|M

pp,q,υq
n ` |M

pp,q,υq
m

|M
pp,q,υq

n`1

“

´

2m´1
qaa

˚ ´ qbb
˚

¯ ´

2nqaa
˚ ´ qbb

˚
¯

` p2mqaa
˚ ´ qbb

˚qp2n`1
qaa

˚ ´ qbb
˚q

“ 2m`n´1pqaa
˚q

2 `

22 ` 1
˘

´ 2nqbb
˚

qaa
˚ p2 ` 1q

´2m´1
qaa

˚
qbb

˚ p2 ` 1q ` 2
´

qbb
˚

¯2

“ 2m`n´1pqaa
˚q

2
ML2 ´ 2nqbb

˚
qaa

˚ML1 ´ 2m´1
qaa

˚
qbb

˚ML1 ` 2
´

qbb
˚

¯2

ii) }ML
pp,q,υq

m´1
}ML

pp,q,υq

n ` }ML
pp,q,υq

m
}ML

pp,q,υq

n`1

“

´

2m´1
qaa

˚ ` qbb
˚

¯ ´

2nqaa
˚ ` qbb

˚
¯

` p2mqaa
˚ ` qbb

˚qp2n`1
qaa

˚ ` qbb
˚q

“ 2m`n´1pqaa
˚q

2 `

22 ` 1
˘

` 2nqbb
˚

qaa
˚ p2 ` 1q

`2m´1
qaa

˚
qbb

˚ p2 ` 1q ` 2
´

qbb
˚

¯2

“ 2m`n´1pqaa
˚q

2
ML2 ` 2nqbb

˚
qaa

˚ML1 ` 2m´1
qaa

˚
qbb

˚ML1 ` 2
´

qbb
˚

¯2

l

Theorem 2.10 For any integers n, p, q, υ, we have

i) |M
pp,q,υq
n

}ML
pp,q,υq

n “ 22npqaa
˚q

2
` 2n

´

qaa
˚

qbb
˚ ´ qbb

˚
qaa

˚

¯

´

´

qbb
˚

¯2

ii) |M
pp,q,υq
n ` }ML

pp,q,υq

n “ 2n`1
qaa

˚

iii) |M
pp,q,υq
n ´ }ML

pp,q,υq

n “ ´2qbb
˚

Proof:

i) |M
pp,q,υq
n

}ML
pp,q,υq

n

“

´

2nqaa
˚ ´ qbb

˚
¯ ´

2nqaa
˚ ` qbb

˚
¯

“ 22npqaa
˚q

2
` 2n

´

qaa
˚

qbb
˚ ´ qbb

˚
qaa

˚
¯

´

´

qbb
˚

¯2

ii) |M
pp,q,υq
n ` }ML

pp,q,υq

n

“

´

2nqaa
˚ ´ qbb

˚
¯

`

´

2nqaa
˚ ` qbb

˚
¯

“ 2n`1
qaa

˚

iii) |M
pp,q,υq
n ´ }ML

pp,q,υq

n

“

´

2nqaa
˚ ´ qbb

˚
¯

´

´

2nqaa
˚ ` qbb

˚
¯

“ ´2qbb
˚
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l

Theorem 2.11 For any integers n, p, q, υ, we have

i) |M
pp,q,υq

n`1 ` |M
pp,q,υq
n “ 3 p2nq qaa

˚ ´ 2qbb
˚

ii) }ML
pp,q,υq

n`1 ` }ML
pp,q,υq

n “ 3 p2nq qaa
˚ ` 2qbb

˚

Proof:

i) |M
pp,q,υq

n`1 ` |M
pp,q,υq
n

“

´

2n`1
qaa

˚ ´ qbb
˚

¯

`

´

2nqaa
˚ ´ qbb

˚
¯

“ 3 p2nq qaa
˚ ´ 2qbb

˚

ii) }ML
pp,q,υq

n`1 ` }ML
pp,q,υq

n

“

´

2n`1
qaa

˚ ` qbb
˚

¯

`

´

2nqaa
˚ ` qbb

˚
¯

“ 3 p2nq qaa
˚ ` 2qbb

˚

l

Theorem 2.12 For any integers n, p, q, υ, we have

i)
”

|M
pp,q,υq
n

ı2

`

”

|M
pp,q,υq

n`1

ı2

`

”

|M
pp,q,υq

n`2

ı2

“ 21
`

22n
˘

pqaa
˚q

2
` 3

´

qbb
˚

¯2

´ 7p2nqpqbb
˚

qaa
˚ ` qaa

˚
qbb

˚q

ii)

„

}ML
pp,q,υq

n`1

ȷ2

´

„

}ML
pp,q,υq

n

ȷ2

“ 22npqaa
˚q

2
M2 ` 2npqaa

˚
qbb

˚ ` qbb
˚

qaa
˚q

Proof:

i)

”

|M pp,q,υq
n

ı2

“ 22npqaa
˚q

2
´ 2nqbb

˚
qaa

˚ ´ 2nqaa
˚

qbb
˚ `

´

qbb
˚

¯2

”

|M
pp,q,υq

n`1

ı2

“ 22n`2pqaa
˚q

2
´ 2n`1

qbb
˚

qaa
˚ ´ 2n`1

qaa
˚

qbb
˚ `

´

qbb
˚

¯2

”

|M
pp,q,υq

n`2

ı2

“ 22n`4pqaa
˚q

2
´ 2n`2

qbb
˚

qaa
˚ ´ 2n`2

qaa
˚

qbb
˚ `

´

qbb
˚

¯2

”

|M
pp,q,υq
n

ı2

`

”

|M
pp,q,υq

n`1

ı2

`

”

|M
pp,q,υq

n`2

ı2

“ 22npqaa
˚q

2
p1 ` 22 ` 24q ´ 2nqbb

˚
qaa

˚p1 ` 2 ` 22q

´2nqaa
˚

qbb
˚p1 ` 2 ` 22q ` 3

´

qbb
˚

¯2

“ 21
`

22n
˘

pqaa
˚q

2
` 3

´

qbb
˚

¯2

´ 7p2nqpqbb
˚

qaa
˚ ` qaa

˚
qbb

˚q
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ii)

„

}ML
pp,q,υq

n

ȷ2

“ 22npqaa
˚q

2
` 2nqbb

˚
qaa

˚ ` 2nqaa
˚

qbb
˚ `

´

qbb
˚

¯2

„

}ML
pp,q,υq

n`1

ȷ2

“ 22n`2pqaa
˚q

2
` 2n`1

qbb
˚

qaa
˚ ` 2n`1

qaa
˚

qbb
˚ `

´

qbb
˚

¯2

„

}ML
pp,q,υq

n`1

ȷ2

´

„

}ML
pp,q,υq

n

ȷ2

“ 22npqaa
˚q

2
p22 ´ 1q ` 2nqbb

˚
qaa

˚p2 ´ 1q ` 2nqaa
˚

qbb
˚p2 ´ 1q

“ 22npqaa
˚q

2
M2 ` 2npqaa

˚
qbb

˚ ` qbb
˚

qaa
˚q

l

3. Unconstrained Mersenne and Mersenne-Lucas Hybrid Sedenions

Definition 3.1 For any integers p, q, υ and non-negative integer n, unrestricted Mersenne and Mersenne-
Lucas Hybrid Sedenions are defined by

i) yMn

pp,q,υq

“ yMn ` iM̂n`p ` εM̂n`q ` hM̂n`υ

ii) zMLn

pp,q,υq

“ zMLn ` iyMLn`p ` εyMLn`q ` hyMLn`υ

where i, ε, h are hybrid units.

Theorem 3.1 Unrestricted Mersenne and Mersenne-Lucas Hybrid Sedenions satisfy the recurrence re-
lations:

i) yMn

pp,q,υq

“ 3M̂
pp,q,υq

n´1 ´ 2M̂
pp,q,υq

n´2

ii) zMLn

pp,q,υq

“ 3yML
pp,q,υq

n´1 ´ 2yML
pp,q,υq

n´2

Proof:
i) For n “ 2, we have

xM2

pp,q,υq

“ 3 xM1

pp,q,υq

´ 2 xM0

pp,q,υq

“ 3
´

xM1 ` i{M1`p ` ε{M1`q ` h{M1`υ

¯

´2
´

xM0 ` i{M0`p ` ε{M0`q ` h{M0`υ

¯

“ xM2 ` i{M2`p ` ε{M2`q ` h{M2`υ

By using the definition 3.1 (i), we have

yMn

pp,q,υq

“ yMn ` i{Mn`p ` ε{Mn`q ` h{Mn`υ

“ 3{Mn´1 ´ 2{Mn´2 ` i
´

3 {Mn`p´1 ´ 2 {Mn`p´2

¯

`εp3 {Mn`q´1 ´ 2 {Mn`q´2q ` h
´

3 {Mn`υ´1 ´ 2 {Mn`υ´2

¯

“ 3
´

{Mn´1 ` i {Mn`p´1 ` ε {Mn`q´1 ` h {Mn`υ´1

¯

´2
´

{Mn´2 ` i {Mn`p´2 ` ε {Mn`q´2 ` h {Mn`υ´2

¯

yMn

pp,q,υq

“ 3{Mn´1

pp,q,υq

´ 2{Mn´2

pp,q,υq
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ii) For n “ 2, we have

zML2

pp,q,υq

“ 3zML1

pp,q,υq

´ 2zML0

pp,q,υq

“ 3
´

zML1 ` i {ML1`p ` ε {ML1`q ` h {ML1`υ

¯

´2
´

zML0 ` i {ML0`p ` ε {ML0`q ` h {ML0`υ

¯

“ zML2 ` i {ML2`p ` ε {ML2`q ` h {ML2`υ

By using the definition 3.1 (ii), we have

zMLn

pp,q,υq

“ zMLn ` i {MLn`p ` ε {MLn`q ` h {MLn`υ

“ 3 {MLn´1 ´ 2 {MLn´2 ` i
´

3 {MLn`p´1 ´ 2 {MLn`p´2

¯

`εp3 {MLn`q´1 ´ 2 {MLn`q´2q ` h
´

3 {MLn`υ´1 ´ 2 {MLn`υ´2

¯

“ 3
´

{MLn´1 ` i {MLn`p´1 ` ε {MLn`q´1 ` h {MLn`υ´1

¯

´2
´

{MLn´2 ` i {MLn`p´2 ` ε {MLn`q´2 ` h {MLn`υ´2

¯

zMLn

pp,q,υq

“ 3 {MLn´1

pp,q,υq

´ 2 {MLn´2

pp,q,υq

l

Theorem 3.2 The Binet formula for yMn

pp,q,υq

and zMLn

pp,q,υq

are given by

i) yMn

pp,q,υq

“ 2npaa
˚ ´ pbb

˚

ii) zMLn

pp,q,υq

“ 2npaa
˚ ` pbb

˚

where a˚ “ 1 ` 2pi ` 2qε ` 2υh, b˚ “ 1 ` i ` ε ` h and

pa “

15
ÿ

s“0

2ses, pb “

15
ÿ

s“0

es

Proof:

i)

yMn

pp,q,υq

“ yMn ` i{Mn`p ` ε{Mn`q ` h{Mn`υ

“ 2npa ´ pb `

´

2n`p
pa ´ pb

¯

i `

´

2n`q
pa ´ pb

¯

ε `

´

2n`υ
pa ´ pb

¯

h

“ 2npa p1 ` 2pi ` 2qε ` 2υhq ´ pb p1 ` i ` ε ` hq

yMn

pp,q,υ q

“ 2npaa
˚ ´ pbb

˚

where a˚ “ 1 ` 2pi ` 2qε ` 2υh and b˚ “ 1 ` i ` ε ` h

ii)

zMLn

pp,q,υq

“ zMLn ` {MLn`pi ` {MLn`qε ` {MLn`υh

“ 2npa ` pb `

´

2n`p
pa ` pb

¯

i `

´

2n`q
pa ` pb

¯

ε `

´

2n`υ
pa ` pb

¯

h

“ 2npa p1 ` 2pi ` 2qε ` 2υhq ` pb p1 ` i ` ε ` hq

zMLn

pp, q,υq

“ 2npaa
˚ ` pbb

˚

where a˚ “ 1 ` 2pi ` 2qε ` 2υh and b˚ “ 1 ` i ` ε ` h.
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l

Theorem 3.3 The generating functions for yMn

pp,q,υq

and zMLn

pp,q,υq

are given by

i) f̂ pxq “
M̂

pp,q,υq

0 `

´

M̂
pp,q,υq

1 ´3M̂
pp,q,υq

0

¯

x

1´3x`2x2

ii) ĝ pxq “
zML

pp,q,υq

0 `

´

zML
pp,q,υq

1 ´3zML
pp,q,υq

0

¯

x

1´3x`2x2

Proof:
i) Let us define

f̂ pxq “

8
ÿ

n“0

M̂ pp,q,υq
n xn

f̂ pxq “ M̂
pp,q,υq

0 ` xM̂
pp,q,υq

1 `

8
ÿ

n“2

M̂ pp,q,υq
n xn

Multiplying this equation by ´3x and 2x2, we obtain

´3f̂ pxqx “ ´3xM̂
pp,q,υq

0 ´ 3
8
ÿ

n“2

M̂
pp,q,υq

n´1 xn

2f̂ pxqx2 “ 2
8
ÿ

n“2

M̂
pp,q,υq

n´2 xn

Adding the above three equations, we get

`

1 ´ 3x ` 2x2
˘

f̂ pxq “ M̂
pp,q,υq

0 ` x
´

M̂
pp,q,υq

1 ´ 3M̂
pp,q,υq

0

¯

`

8
ÿ

n“2

”

M̂ pp,q,υq
n ´ 3M̂

pp,q,υq

n´1 ` 2M̂
pp,q,υq

n´2

ı

xn

f̂ pxq “
M̂

pp,q,υq

0 `

´

M̂
pp,q,υq

1 ´ 3M̂
pp,q,υq

0

¯

x

1 ´ 3x ` 2x2
.

ii) In a similar way, we obtain ĝ pxq “
zML

pp,q,υq

0 `

´

zML
pp,q,υq

1 ´3zML
pp,q,υq

0

¯

x

1´3x`2x2 . l

Theorem 3.4

i) The exponential generating function for yMn

pp,q,υq

is given by

8
ÿ

k“0

M̂
pp,q,υq
n lk

k!
“

8
ÿ

k“0

p2
k

paa
˚ ´ pbb

˚q
lk

k!

“

8
ÿ

k“0

p2lq
k

k!
paa

˚ ´

8
ÿ

k“0

lk

k!
pbb

˚

8
ÿ

k“0

M̂
pp,q,υq
n lk

k!
“ paa

˚e2l ´ pbb
˚el
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ii) The exponential generating function for zMLn

pp,q,υ q

is given by

8
ÿ

k“0

yML
pp,q,υq

n lk

k!
“

8
ÿ

k“0

p2
k

paa
˚ ` pbb

˚q
lk

k!

“

8
ÿ

k“0

p2lq
k

k!
paa

˚ `

8
ÿ

k“0

lk

k!
pbb

˚

8
ÿ

k“0

yML
pp,q,υq

n lk

k!
“ paa

˚e2l ` pbb
˚el

Theorem 3.5 (Vajda Identity) For any integers m,n, k, p, q, υ, we have

i) M̂
pp,q,υq

m`n M̂
pp,q,υq

m`k ´ M̂
pp,q,υq
m M̂

pp,q,υq

m`n`k “ 2mMn

´

2kpbb
˚

paa
˚ ´ paa

˚
pbb

˚

¯

ii) yML
pp,q,υq

m`n
yML

pp,q,υq

m`k ´ yML
pp,q,υq

m
yML

pp,q,υq

m`n`k “ 2mMn

´

paa
˚

pbb
˚ ´ 2kpbb

˚
paa

˚

¯

Proof:

i) M̂
pp,q,υq

m`n M̂
pp,q,υq

m`k ´ M̂
pp,q,υq
m M̂

pp,q,υq

m`n`k

“

´

2m`n
paa

˚ ´ pbb
˚

¯ ´

2m`k
paa

˚ ´ pbb
˚

¯

´p2mpaa
˚ ´ pbb

˚qp2m`n`k
paa

˚ ´ pbb
˚q

“ 2m`k
pbb

˚
paa

˚ p2n ´ 1q ´ 2mpaa
˚

pbb
˚p2n ´ 1q

“ 2mMn

´

2kpbb
˚

paa
˚ ´ paa

˚
pbb

˚
¯

ii) yML
pp,q,υq

m`n
yML

pp,q,υq

m`k ´ yML
pp,q,υq

m
yML

pp,q,υq

m`n`k

“

´

2m`n
paa

˚ ` pbb
˚

¯ ´

2m`k
paa

˚ ` pbb
˚

¯

´p2mpaa
˚ ` pbb

˚qp2m`n`k
paa

˚ ` pbb
˚

“ 2m`k
pbb

˚
paa

˚ p1 ´ 2nq ` 2mpaa
˚

pbb
˚p2n ´ 1q

“ 2mMn

´

paa
˚

pbb
˚ ´ 2kpbb

˚
paa

˚
¯

If we substitute k Ñ ´n in the Vajda identities, we obtain the Catalan’s identities. l

Theorem 3.6 (Catalan’s identity) For any integers m,n, p, q, υ, we have

i) M̂
pp,q,υq

m`n M̂
pp,q,υq

m´n ´

”

M̂
pp,q,υq
m

ı2

“ 2m´nMn

´

pbb
˚

paa
˚ ´ 2npaa

˚
pbb

˚

¯

ii) yML
pp,q,υq

m`n
yML

pp,q,υq

m´n ´

„

yML
pp,q,υq

m

ȷ2

“ 2m´nMn

´

2npaa
˚

pbb
˚ ´ pbb

˚
paa

˚

¯

If we substitute n Ñ 1 in Catalan’s identities, we get Cassini’s identities.

Theorem 3.7 (Cassini’s identity) For any integers m, p, q, υ, we have

i) M̂
pp,q,υq

m`1 M̂
pp,q,υq

m´1 ´

”

M̂
pp,q,υq
m

ı2

“ 2m´1
´

pbb
˚

paa
˚ ´ 2paa

˚
pbb

˚

¯
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ii) yML
pp,q,υq

m`1
yML

pp,q,υq

m´1 ´

„

yML
pp,q,υq

m

ȷ2

“ 2m´1
´

2paa
˚

pbb
˚ ´ pbb

˚
paa

˚

¯

Theorem 3.8 (d’Ocagne’s identity) For any integers m,n, p, q, υ, we have

i) M̂
pp,q,υq
m M̂

pp,q,υq

n`1 ´ M̂
pp,q,υq

m`1 M̂
pp,q,υq
n “ 2mpaa

˚
pbb

˚ ´ 2
n

pbb
˚

paa
˚

ii) yML
pp,q,υq

m
yML

pp,q,υq

n`1 ´ yML
pp,q,υq

m`1
yML

pp,q,υq

n “ 2npbb
˚

paa
˚ ´ 2mpaa

˚
pbb

˚

Proof:

i) M̂
pp,q,υq
m M̂

pp,q,υq

n`1 ´ M̂
pp,q,υq

m`1 M̂
pp,q,υq
n

“

´

2mpaa
˚ ´ pbb

˚
¯ ´

2n`1
paa

˚ ´ pbb
˚

¯

´p2m`1
paa

˚ ´ pbb
˚qp2npaa

˚ ´ pbb
˚q

“ 2npbb
˚

paa
˚ p1 ´ 2q ´ 2mpaa

˚
pbb

˚p1 ´ 2q

“ 2mpaa
˚

pbb
˚ ´ 2

n
pbb

˚
paa

˚

ii) yML
pp,q,υq

m
yML

pp,q,υq

n`1 ´ yML
pp,q,υq

m`1
yML

pp,q,υq

n

“

´

2mpaa
˚ ` pbb

˚
¯ ´

2n`1
paa

˚ ` pbb
˚

¯

´p2m`1
paa

˚ ` pbb
˚qp2npaa

˚ ` pbb
˚

“ 2npbb
˚

paa
˚ p2 ´ 1q ´ 2mpaa

˚
pbb

˚p2 ´ 1q

“ 2npbb
˚

paa
˚ ´ 2mpaa

˚
pbb

˚

l

Theorem 3.9 (Honsberger Identity) For any integers m,n, p, q, υ, we have

i) M̂
pp,q,υq

m´1 M̂
pp,q,υq
n ` M̂

pp,q,υq
m M̂

pp,q,υq

n`1

“ 2m`n´1ppaa
˚q

2
ML2 ´ 2npbb

˚
paa

˚ML1 ´ 2m´1
paa

˚
pbb

˚ML1 ` 2
´

pbb
˚

¯2

ii) yML
pp,q,υq

m´1
yML

pp,q,υq

n ` yML
pp,q,υq

m
yML

pp,q,υq

n`1

“ 2m`n´1ppaa
˚q

2
ML2 ` 2npbb

˚
paa

˚ML1 ` 2m´1
paa

˚
pbb

˚ML1 ` 2
´

pbb
˚

¯2

Proof:

i) M̂
pp,q,υq

m´1 M̂
pp,q,υq
n ` M̂

pp,q,υq
m M̂

pp,q,υq

n`1

“

´

2m´1
paa

˚ ´ pbb
˚

¯ ´

2npaa
˚ ´ pbb

˚
¯

` p2mpaa
˚ ´ pbb

˚qp2n`1
paa

˚ ´ pbb
˚

“ 2m`n´1ppaa
˚q

2 `

22 ` 1
˘

´ 2npbb
˚

paa
˚ p2 ` 1q ´ 2m´1

paa
˚

pbb
˚ p2 ` 1q ` 2

´

pbb
˚

¯2

“ 2m`n´1ppaa
˚q

2
ML2 ´ 2npbb

˚
paa

˚ML1 ´ 2m´1
paa

˚
pbb

˚ML1 ` 2
´

pbb
˚

¯2
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ii) yML
pp,q,υq

m´1
yML

pp,q,υq

n ` yML
pp,q,υq

m
yML

pp,q,υq

n`1

“

´

2m´1
paa

˚ ` pbb
˚

¯ ´

2npaa
˚ ` pbb

˚
¯

` p2mpaa
˚ ` pbb

˚qp2n`1
paa

˚ ` pbb
˚

“ 2m`n´1ppaa
˚q

2 `

22 ` 1
˘

` 2npbb
˚

paa
˚ p2 ` 1q ` 2m´1

paa
˚

pbb
˚ p2 ` 1q ` 2

´

pbb
˚

¯2

“ 2m`n´1ppaa
˚q

2
ML2 ` 2npbb

˚
paa

˚ML1 ` 2m´1
paa

˚
pbb

˚ML1 ` 2
´

pbb
˚

¯2

l

Theorem 3.10 For any integers n, p, q, υ, we have

i) M̂
pp,q,υq
n

yML
pp,q,υq

n “ 22nppaa
˚q

2
` 2n

´

paa
˚

pbb
˚ ´ pbb

˚
paa

˚

¯

´

´

pbb
˚

¯2

ii) M̂
pp,q,υq
n ` yML

pp,q,υq

n “ 2n`1
paa

˚

iii) M̂
pp,q,υq
n ´ yML

pp,q,υq

n “ ´2pbb
˚

Proof:

i)

M̂ pp,q,υq
n

yML
pp,q,υq

n “

´

2npaa
˚ ´ pbb

˚
¯ ´

2npaa
˚ ` pbb

˚
¯

“ 22nppaa
˚q

2
` 2n

´

paa
˚

pbb
˚ ´ pbb

˚
paa

˚
¯

´

´

pbb
˚

¯2

ii)

M̂ pp,q,υq
n ` yML

pp,q,υq

n “

´

2npaa
˚ ´ pbb

˚
¯

`

´

2npaa
˚ ` pbb

˚
¯

“ 2n`1
paa

˚

iii)

M̂ pp,q,υq
n ´ yML

pp,q,υq

n “

´

2npaa
˚ ´ pbb

˚
¯

´

´

2npaa
˚ ` pbb

˚
¯

“ ´2pbb
˚

l

Theorem 3.11 For any integers n, p, q, υ, we have

i) M̂
pp,q,υq

n`1 ` M̂
pp,q,υq
n “ 3 p2nq paa

˚ ´ 2pbb
˚

ii) yML
pp,q,υq

n`1 ` yML
pp,q,υq

n “ 3 p2nq paa
˚ ` 2pbb

˚

Proof:

i)

M̂
pp,q,υq

n`1 ` M̂ pp,q,υq
n “

´

2n`1
paa

˚ ´ pbb
˚

¯

`

´

2npaa
˚ ´ pbb

˚
¯

“ 3 p2nq paa
˚ ´ 2pbb

˚
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ii)

yML
pp,q,υq

n`1 ` yML
pp,q,υq

n “

´

2n`1
paa

˚ ` pbb
˚

¯

`

´

2npaa
˚ ` pbb

˚
¯

“ 3 p2nq paa
˚ ` 2pbb

˚

l

Theorem 3.12 For any integers n, p, q, υ, we have

i)
”

M̂
pp,q,υq
n

ı2

`

”

M̂
pp,q,υq

n`1

ı2

`

”

M̂
pp,q,υq

n`2

ı2

“ 21
`

22n
˘

ppaa
˚q

2
` 3

´

pbb
˚

¯2

´ 7p2nqppbb
˚

paa
˚ ` paa

˚
pbb

˚q

ii)

„

yML
pp,q,υq

n`1

ȷ2

´

„

yML
pp,q,υq

n

ȷ2

“ 22nppaa
˚q

2
M2 ` 2nppaa

˚
pbb

˚ ` pbb
˚

paa
˚q

Proof:

i)

”

M̂ pp,q,υq
n

ı2

“ 22nppaa
˚q

2
´ 2npbb

˚
paa

˚ ´ 2npaa
˚

pbb
˚ `

´

pbb
˚

¯2

”

M̂
pp,q,υq

n`1

ı2

“ 22n`2ppaa
˚q

2
´ 2n`1

pbb
˚

paa
˚ ´ 2n`1

paa
˚

pbb
˚ `

´

pbb
˚

¯2

”

M̂
pp,q,υq

n`2

ı2

“ 22n`4ppaa
˚q

2
´ 2n`2

pbb
˚

paa
˚ ´ 2n`2

paa
˚

pbb
˚ `

´

pbb
˚

¯2

”

M̂
pp,q,υq
n

ı2

`

”

M̂
pp,q,υq

n`1

ı2

`

”

M̂
pp,q,υq

n`2

ı2

“ 22nppaa
˚q

2
p1 ` 22 ` 24q ´ 2npbb

˚
paa

˚p1 ` 2 ` 22q

´2npaa
˚

pbb
˚p1 ` 2 ` 22q ` 3

´

pbb
˚

¯2

“ 21
`

22n
˘

ppaa
˚q

2
` 3

´

pbb
˚

¯2

´ 7p2nqppbb
˚

paa
˚ ` paa

˚
pbb

˚q

ii)

„

yML
pp,q,υq

n

ȷ2

“ 22nppaa
˚q

2
` 2npbb

˚
paa

˚ ` 2npaa
˚

pbb
˚ `

´

pbb
˚

¯2

„

yML
pp,q,υq

n`1

ȷ2

“ 22n`2ppaa
˚q

2
` 2n`1

pbb
˚

paa
˚ ` 2n`1

paa
˚

pbb
˚ `

´

pbb
˚

¯2

„

yML
pp,q,υq

n`1

ȷ2

´

„

yML
pp,q,υq

n

ȷ2

“ 22nppaa
˚q

2
p22 ´ 1q ` 2npbb

˚
paa

˚p2 ´ 1q ` 2npaa
˚

pbb
˚p2 ´ 1q

“ 22nppaa
˚q

2
M2 ` 2nppaa

˚
pbb

˚ ` pbb
˚

paa
˚q

l
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4. Conclusion

An infinite number of terms of the unrestricted Mersenne and Mersenne-Lucas hybrid Octonions and
Sedenions sequences are found. Also verified the above sequences through some well known identities.
One can generate various number patterns whose characteristics satisfying unrestricted hybrid sequences.

References

1. Malini Devi, B. and Devibala, S., A View on the Mersenne and Mersenne-Lucas Numbers, GIS Science Journal 8(8),
784-789, (2021).

2. Malini Devi, B. and Devibala, S., Some Sums Formulae for Products of terms of Mersenne and Mersenne-Lucas
Numbers, Adalya Journal 10(8), 74-79, (2021).

3. Ozdemir, M., Introduction to Hybrid Numbers, Adv. Appl. Clifford Algebras 28(11), (2018).

4. Kuruza, F. and Dagdevirenb, A., Pell and Pell-Lucas hybrid quaternions, Filomat 37(25), 8425-8434, (2023).

5. Kumari, M., Prasad, K. and Mahato, H., On k-Mersenne and k-Mersenne-Lucas Octonions, arXiv preprint
arXiv:2207.12243, (2022).

6. Irmak, N. and Acıkel, A., More Identities for Fibonacci and Lucas Octonions, Mathematical Sciences and Applications
E-Notes 8(2), 48-53, (2020).

7. Malini Devi, B. and Devibala, S., On Mersenne And Mersenne-Lucas Sedenions, Advances and Applications in Math-
ematical Sciences 21(1), 383-392, (2021).

8. Ozimamoglu, H., On Leonardo Sedenions, Afrika Matematika 34(26), (2023).

9. Catarino, P. and Srivastava, H. M., k-Pell, K-Pell-Lucas and modified k-Pell Sedenions, Asian-European Journal of
Mathematics 12(2), (2019).

D. Maheswari

Research Scholar, School of Mathematics, Madurai Kamaraj University, Madurai-625021

Tamil Nadu, India.

https: // orcid. org/ 0009-0007-6575-5008

E-mail address: matmahes@gmail.com

and

S. Devibala

Associate Professor, Department of Mathematics,

Sri Meenakshi Government Arts College for Women(A),

Affiliated to Madurai Kamaraj University, Madurai-625 002, Tamil Nadu, India.

https: // orcid. org/ 0000-0003-1110-0587

E-mail address: devibalasubburaman@gmail.com

and

M. A. Gopalan

Professor, Department of Mathematics, Shrimati Indira Gandhi College,

Affiliated to Bharathidasan University,Tiruchirappalli-620002,

Tamil Nadu, India.

https: // orcid. org/ 0000-0003-1307-2348

E-mail address: mayilgopalan@gmail.com

https://orcid.org/0009-0007-6575-5008
https://orcid.org/0000-0003-1110-0587
https://orcid.org/0000-0003-1307-2348

	Introduction
	Unconstrained Mersenne and Mersenne-Lucas Hybrid Octonions
	Unconstrained Mersenne and Mersenne-Lucas Hybrid Sedenions
	Conclusion

