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Unrestricted Mersenne and Mersenne-Lucas Hybrid Octonions and Sedenions
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ABSTRACT: In this paper, we introduce unrestricted Mersenne and Mersenne-Lucas Hybrid Octonions and
Sedenions sequences and establish recurrence relations, generating functions, and Binet formulas for the pre-
ceding sequences. Also verified the above sequences through some widely acknowledged identities and furthered
a few relationships among them
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1. Introduction

In hypercomplex number, Octonions have eight dimensions, which is twice the number of dimensions
of quaternions, of which they are an extension. They are neither commutative nor associative. The
Sedenions form a 16-dimensional non-commutative and non-associative algebra over the real numbers
which are obtained by applying the Cayley-Dickson construction to the Octonions.

Marin Mersenne, a French mathematician, initially introduced a number of the type M,, = 2" — 1,
where n is an integer, in 1644. Various investigations have been carried out on the Mersenne sequences.
Mersenne-Lucas sequences are defined as ML, = 2" + 1,n > 2, with MLy = 2, ML, = 3. In [1,2], the
Mersenne Lucas sequences, including its generating functions and Binet formulas were discussed.

The hybrid number [3,4], which comprises real, complex, dual, and hyperbolic numbers, was intro-
duced by Ozdemir in 2018. It is of the form H = zg + 21 + 226 + 23h, where 2g, 21, 22, 23€R and i,e, h
are operators such that i = —1,e2 = 0,h? = 1,ih = —hi = i + €.

Many studies have been conducted on various Octonions [5,6] and Sedenions [7,8,9] sequences. We
present unconstrained Mersenne and Mersenne-Lucas Hybrid Octonions and Sedenions sequences in this
study, as well as recurrence relations, generating functions, and Binet formulas for the preceding se-
quences. The above sequences are additionally validated using several widely recognized identities, and
a few correlations between them were also shown.

2. Unconstrained Mersenne and Mersenne-Lucas Hybrid Octonions

Definition 2.1 For any integers p, q, v and non-negative integer n, unrestricted Mersenne and Mersenne-
Lucas hybrid Octonions are defined by

(i) 3, " Z BT, + idey + Mg + hMey
(ii) ML,"""" = ML, + iMEpsyp + eMInsy + hMEnse

where i,e,h are hybrid units.
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Theorem 2.1 Unrestricted Mersenne and Mersenne-Lucas Hybrid Octonions satisfy the recurrence re-
lations:
~(p,q,v) — (P,3,v) — (P,3,v)

i) M, = 3M,_, — oM, _,

P,q,v) (p,q,v) (p,q,v)

i) ML, = 3MT 4 ML,

Proof:
i) For n = 2, we have

]\W-E(pyq,v) _ 3]\\/1/1(%(17”)*2]\\/16(1)7%”)

3(My + iMi1p + eMitq + hMi1y) — 2(Mo + iMotp + eMotq + hMo 1)

= 3[(Mieg + Mae1 + M3zez + Myes3 + Mses + Mges + Mreg + Mger)
-‘ri(MH_peo + Mayper + Mz ypes + Myypes + Msipeq + Mgipes
+Mrypes + Msyper) + e(Mitqeo + Mayger + Msyqez + Myiqes
+Ms4qe4 + Meyges + Mriges + Mgyger) + h(Mitveo + Mayver
+M3zipe2 + Myypes + Msypeq + Meives + Mryves + Mgyver)]
—2[(Moep + Mie1 + Maea + Mses + Myeq + Mses + Mgeg + Mrer)
+i(Motpeo + Mi4per + Maoypes + M3ypes + Majypes + Msipes
+Meypes + Mryper) + e(Mosqeo + Miyger + Maiges + M3y qes
+Myyqes + Msyges + Meiqes + Mryqer) + h(Moyveo + Miver
+Maoyve2 + M3yypes + Myyyeq + Msipes + Meyves + Mryyper)]

= eo(3M;y — 2Mp) + e1(3Ma — 2My) + ea(3Ms — 2Ms) + es(3My — 2Ms)
+84(3M5 — 2M4) + 85(3M6 — 2M5) + 86(3M7 — 2M6) + 87(3M8 — 2M7)
+i(eo(8M14p — 2Mo+p) + e1(3Ma4p — 2Mi4p) + e2(3M3z1p — 2Mayp)
+e3(38Myyp — 2M3zp) + ea(3Ms4p — 2Map) + e5(3Mep — 2Ms51p)
+e6(3Mr74p —2Me4p) + e7(BMsp — 2M74p)) + e(e0(83M14q — 2Mo+q)
+61(3M2+q — 2M1+q) + 62(3M3+q — 2M2+q) + 63(3M4+q — 2M3+q)
Tea(BMs1q — 2Mayq) + es(BMe1q — 2Ms1q) + e6(3M71q — 2Mo1q)
+€7(3Mg+q — 2M7+q)) + h(€0(3M1+U — 2M0+U) +e1 (3M2+U — 2M1+U)
+62(3M3+U — 2M2+U) + 63(3M4+U — 2M3+U) + 64(3M5+U — 2M4+U)
+e5(3Me+v — 2Ms40) + €6(3M740 — 2Me40) + €7(3Mgrv — 2M74y))

= eoMz +e1Ms + eaMy + esMs + ea Mg + es M7 + e¢ Ms + e7 My
+i(eoMatp + e1Msyp + eaMayp + e3Msyp + eaMeyp + es M7y
+eeMsip +erMoyp) + c(eoMaiq +e1M3yq + e2Myyg + e3Ms,4
+esMeyq +esMriq+ esMgyq + erMoig) + h(eoMayy + e1 M3y
+eaMyty + e3Msyy + eaMety + es My + e6 Mgy + 67M9+U)

= My +iMayy +eMayg + hMay,

By using the definition 2.1 (i), we have

B 3T 4 by + ey + hiTors

=Mneo + Mpy1€e1 + Mpy2e2 + Mpize3 + Mpyaeq + Mpyses + Mpiees
+ Myirer +i(Mpypeo + Mpyprier + Mpypioez + Mpypi3es + Myipraeq
+ Mytpyses + Mniproees + Mutpprrer) + e(Mpygeo + Mntgt+1€1
+ Mnyq+2e2 + Mnig3es + Mnygraes + Mpygises + Mnigtees
+ Mn+q+7e7) + h(Mn+er + Mpto+1e1 + Mptot2e2 + Mpto43€3
+ Mptov+aes + Mptoises + Mptot+6€6 + Mn+v+7e7)
=(3Mp_1 — 2Mp_2)eo + (3Mp — 2Mp_1)e1 + (3Mn 41 — 2My)ea
+ (BMpt2 —2Mni1)es + (8Mpy3 — 2Mpy2)es + (3Mp14 — 2Mn3)es
+ (3Mn+5 — 2Mn+4)66 + (3Mn+6 — 2Mn+5)67 + i((3Mn+p,1 — 2Mn+p,2)80
(3Mn+p - 2Mn+p71)el + (3Mn+p+1 - 2Mn+p)e2
(BMptpt2 —2Mpipr1)es + (B3Mpypt3 —2Mpypi2)es
(BMpyptra —2Mpypi3)es + (BMpyprs — 2Mpipira)es
(

+
+
+
+ (3Mntp+6 — 2Mnipts)er) + e((3Mniq—1 — 2Mnyq—2)eo
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+ (3Mn4q — 2Mntq-1)er + (3Mnyq+1 — 2Mniqg)ez + (3Mnyq+2 — 2Mniq+1)es
+ (BMnyq43 — 2Mnygr2)ea + (BMpyqra — 2Mniqi3)es
+ BMnyq+5 — 2Mnygra)es + (3Mnyqre — 2Mnyq15)er)
F R((3Mnsv—1 — 2Mnso—2)e0 + (3Mnso — 2Mpiv_1)er
+ (BMptvt1 — 2Mntv)ez + BMptovt2 — 2Mptot1)es
+ (BMntv+3 — 2Mntov12)es + (3Mntovta — 2Mniv43)es
+ (BMnyvi5 —2Mnivia)es + (BMnyvie — 2Mpyoys)er)

=3(Mn—1€0 + Myne1 + My t1e2 + Mpyoe3 + My y3eq + Mpyaes + Mpyses
+ Mpyeer +i(Mnyp—1€0 + Mpyper + Mpiprie2 + Mpipr2es + Mniprseq
+ Myipyaes + Muipyses + Myipreer) + e(Mpyg—1€0 + Mniger + Mpiq+1€2
+ Mptqt2es + Mnyq+3ea + Mpigraes + Mpigise6 + Mnyqr6e7)
+ h(Mptv—1€0 + Mniver + Mpyorie2 + Mpypot2e3 + Mppoyzes + Myiopaes
+ Mptvtsee + Mpivteer)) — 2(My—2e0 + Mp—1e1 + Mpea + Mpy1e3
+ Myt2eq + Mnises + Mpyaes + Mniser +i(Mpyp—2e0 + Mpip—1€1
+ Mpype2 + Mpipries + Myipi2es + Myipyses + Myipraes + Muipiser)
+e(Mnyq—260 + Mpig—1e1 + Mpyqe2 + Mpigr1es + Muygi2es + Mpyqi3es
+ Mnigraes + Mnigyser) + h(Mpiv—2e0 + Mpyov—1€1 + Mpyvez + Mpyor1e3
+ Mytvi2es + Mpioyr3es + Mpyotaes + Mpyoiser))

=3(Mp_1 + iMpip—1 + eMntqo1 + hMpyo—1) — 2(Mp—s + iMpip—o
+eMpig2+hMyio_2)

=3m (pqv) 2m(p7q,v)
ii) For n = 2, we have
m(p,q,v) _ 3ML/1(:D,q,v) _ 2ML/0(p’q’U)

= 3(MLy +iML1yp +eML1tq + hML11y)
—2(MLo + iMLosp + eMLoyq + hMLo 1)
= MLy +iMLyyp+eMLaotq+hMLgyy

By using the definition 2.1 (ii), we have

ML, P = MLy +iMInsp +eMInrq + hMInso

= MLpeo+ MLypi1e1 + MLypyo2ex + MLyi3e3 + MLypyaeqs + MLy ises
+MLnyges + MLy irer +i(MLnypeo + MLpipiier + MLpipsoes
+MLnypises + MLy piaes + MLnypises + MLnsprees
+MLytpirer) + e(MLntgeo + MLnygiie1r + MLnigi2e2
+MLptqt3e3 + MLnygraes + MLpygises + MLy grees
+MLptgt7er) + h(MLpiveo + MLpyoiirer + MLptyyo2es
+MLyptoy3e3 + MLpyyiaes + MLpyyises + MLngoi6es
+M Ly yvi7€7)

= 3(MLp_y +iMLptp-1+eMLyyq 1 +hMLyiy_1)
—2(MLy—2+iMILpip-2+eMLptq—o+hMLyio—2)

J‘\/[—L/n(p,q,v) _ 3M\L—7:1(p,q7v) _ 2M\L—7:2(p,q7v)
. ~—(p,q,v) —— (p,q,v) .
Theorem 2.2 The Binet formula for M, and ML, are given by
i) 0,707 = angar — Hb*
D,q,V)

ii) ML, """ = onga* + Bb*
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where a* =1+ 2Pi 4+ 2% +2¥h, b* =1+i+ec+ h and
7 g 7
é=22$es, Ib=ZeS
5=0 s=0

Proof:

D) 35,7 = L, 4 idny + eMyrg + hMnrs

— x—-D+ (2”+P5 _ UB) i+ (2"+qa - HB) e+ (2’””5 - UB) h

= 2"a(1+2Pi+2%+2"h)—b(1+i+ec+h)
~—(p,q,v)

M, 2"%a* — bb*

where a* =1+ 2P + 2% +2%hand b¥* =1+i+e+h

—— (p,g,v)

ii) ML, — MLy + MLy yi+ MLy, ge + ML, h
= 2"5+Db+ (2"*% + llvo) i+ (2”*‘15 + UB) €+ (2”*“5 + UB) h
= 2"R(1+2Pi+2% +2°h) +b(1+i+e+h)
ML," " = a4 Db
where a* =1+ 2Pi + 2%+ 2hand b* =1+ i+ e+ h.

—(p,q,v ) —— (p,q,v )

Theorem 2.3 The generating functions for M, and ML, are given by
e M(zxq,u)Jr MPav) _g P,
i) f(z)=— (1—1314-212 - )
N m‘ﬁ'“u MLP ) L),
i) g(x) = - ( 17;x+2x2 - )
Proof:
i) Let us define
~ w ~
Fo) = 3 Fpean
n=0
~ ~ ~ w ~
f (ZII) _ MéP#L’U) + le(P#LU) + Z MT(Lp,q,U)xn
n=2
Multiply this equation by —3x and 22, we obtain
~ x ~
=3f(x)z = 3 MPIY) _ 3 Z Mnf{’v)x”
n=2
2f (x)z? = 2 Z M4 Vgn
n=2
Adding the above three equations, we get
(1— 32 + 22?) f(@ _ Mép,q,v) g (M/l(p,q,v) _ SMép,q,v))
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B o o ]T/[/Lép,q,v)Jr(m(lz),mv)igmép,q,v))w
ii) In a similar way, we obtain § (z) = T 507357

Theorem 2.4

i) The exponential generating function for m(pwqu) is given by

©  3r(p.qv) 1k 0 k
My l ke s N
k=0 k=0
0 k 0 gk
21 "~
= %aa* - 2 P
k=0 k=0 """
©  r(Pgv) ik
My l - ~
}: =T = Ha*e? — bb*é
k!
i1) WwemwmmmdmmmﬁMgﬁdenﬁrﬁﬂZ@%wismwnby
0 v(p’q’v) k o0 k
ML, ! kx % * !
> B B S a4 B
k=0 k=0
0 k D gk
21 N
= > Qaa* + >, bb*
k=0 k=0 """
~—— (p,q;v)
i MLnk' lk = 3 * 2l+[b1b* l

Theorem 2.5 (Vajda Identity) For any integers m,n,k,p,q,v, we have
i) M (p,q,v) (P q,v) M(P’Q’U)M(P,q, v) — 9™ M, (Zkﬁl)lb*ﬁa* _ 5&*“\5%*)

m+n m+k m+n+k

m+n m+k m m+n+

i) LT L g e e —omay, (éa*nBua* - 2ku6b*a§a*)
Proof:

T pa) T7pae) _ §man) JRea)
D) M5 My " = My ™ M

<2m+néa* _ I\k/)lb*) (2m+kﬁa* _ E)Ib*)

—(2m5a* — IBIb*)(QernJrk Iblb*)

2P ph*Ra* (27 — 1) — 2"Ha*bb* (2" — 1)
= 2™, (2kﬂolb*aa - aa*uotb*)

®,q,v) ~= (p,q;v) ~ (9,q,v) ~= (p,q;v)

i) MLy MLy ir — MLy " MLy ooy
(2m+ a* + Uolb*) (2m+k5a* + uBuo*)
—(2™Fa* + bb*) (2™ Ea* 4 bb*)
2 FRph*Ra* (1 — 27) + 2MHa*bb* (2" — 1)
— 2™, (aa*u?ﬂb* - 2ku6uo*aa*)
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If we substitute £ — —n in the Vajda identities, we obtain the Catalan’s identities.

Theorem 2.6 (Catalan’s identity) For any integers m,n,p,q,v, we have
~ ~ ~ 2 ~ ~
i) NP0 jiea) [M,(,f’q’“)] = om=n)f, (bb*aa* - 2”5,3,*&)&)*)

(p,q,v) ~= (p,q,v)

2
i) ML ML [ML(M’ )] = omnpp, (2naa*u?>tb* - %b*ﬁa*)

m+n m—n
If we substitute n — 1 in Catalan’s identities, we get Cassini’s identities.

Theorem 2.7 (Cassini’s identity) For any integers m,p,q,v, we have
i) M pq U)M(pq v) []\\/_7,(,’5’(1’“)]2 =2m-1 (1\6&)*3{1&1* — 25&*%&)*)

(p,q,v)

2
i) LYY LY [ML(”’ )] = gm-1 (25a*u61b* fﬂzv)Ib*éa*)

Theorem 2.8 (d’Ocagne’s identity) For any integers m,n,p,q,v, we have
Z) Mr(r{)’q’v)]\\jr(ﬁf%v) _ Mr(ffiv)Mr(zpﬂw) _ 2’”5&*&3&)* _ 2"[6&)*5&*
~(p,qv) == (p,q,v) =~ (p,q,v) = (p,q,v)

i) ML, "ML, " = ML, ML,"" = onbb*aa* — 2m#a*bb*

Proof:

i) ngq,v)M/r(Lﬁili,v) o M,Sffiv)Mﬁp’q’v)

(2maa* - uBuo*) (2”“ Uoﬂ:)*)
— 2"bb*Ha* (1 —9)— 2mz§a*ﬂolb*(1 ~9)
2m3a*bb* — 2" bb*Ha*

i) ML(qu)ML;pfl )—MLisflv)ML(pq v)

= <2méa + Ilvoﬂo*) (2"“:5& + UBUO*)

— (2™ 5a* + bb*)(2"8a* + bb*)
= 2"hb*Ha* (2— 1) — 2"Ha*bb*(2 — 1)
= 2"bb*Ha* — 2mHa*bb*

Theorem 2.9 (Honsberger Identity) For any integers m, n, p,q,v, we have

i) BE®40 FEPa) 4 REP) Fao)
— gm+n— 1(5 *) MLy — anb* >i<‘z\4L1 _gm-— 1 *Iblb*MLl n 2<bb*>

(P,a,v) ~=(p,qv)  ~ (p,a,v) ~= (P,qv)

i) MLy, ML, " + MLy, " ML,

2
= 9m =L (52" M Ly + 2"bb*Ea* MLy + 27 '5a*bb* ML, + 2<Uoﬂo*)
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Proof:
i) MPGO NP 4 N M)
- (2’"*15&1* - uBuO*) (2”éa* - uBuo*) +(2™Fa* — bb*)(2" 5a* — bb*)
2 =1(5a%)? (22 4+ 1) — 2"bb*Aa* (2 + 1)
—om15a*bb* (24 1) + 2(%%*)2

o - - 2
— 2"l (a*) MLy - 2"Bb*aa* MLy - 2" Hatbb* ML, + 2(bb¥)

~— (p,q,v) ~ (P,q,v) ~—(p,q,v) ~= (P,q,v)

i) ML, ", ML, " +ML,, " ML,
- (Zm_léa* + uBIb*) (2"5&1* + uBuo*) + (2™Fa* + bb*)(2" 1 Ea* + bb*)
21 (H5a*)? (22 + 1) + 2"bb*Ha* (2 + 1)
215 hb* (24 1) + 2(05&3*)2

5 - . N2
= 27 (5a*) MLy + 2°bb*Ea* MLy + 27 ' Ha*bb* ML, + 2(ﬂovo*)

Theorem 2.10 For any integers n,p, q,v, we have

_ —_— - - - 2
i) BT NPT Z 920 (5052 4 on (éa*lbﬂo* - uolb*aa*) - (bﬂo*)
i) FTP) 4 LT gnetigax
iii) M) — LY — _ofpr

Proof:

i) My(bp,q,v)m;p’q’“)

— (27a* — Bb*) (270" + Bb*)
22" (3a*)® + 2" (éa*ﬂglb* - U?)ﬂo*éa*) - (ﬂ?)lb*)z

~— (p,q,v)

i) M"Y + ML,

= (Q"éa* — IBUO*) + (2"5:@ + E)Ib*)

— 2n+1éa*

i) Arwa) _ e

= (2"5&* — UBUO*) — (2"a§a + UBUO*)
— —2bb*



8 D. MAHESWARI, S. DEVIBALA AND M. A. GOPALAN

Theorem 2.11 For any integers n,p,q,v, we have

i) MY 4 MPY) = 3(27) ma* — 2bb*

~— (p,q;v)  ~=(p,qv)

i) ML, + ML = 3(2") #a* + 2bb*

Proof:
W04 ¢ i
(2n+1v * Hf)Ib*) (nv * bb*>
= 3(2")#a* — 2bb*
i) ML;iql, ML(p,qw)
(2”+1ﬁa + UB&)*) + (2”5&1 + &vﬂb*)

= 3(2")3a* + 2bb*

Theorem 2.12 For any integers n,p,q,v, we have
g [es] + [ [Weg ]
— 21 (22" (a*)? + 3(%%*)2 — 7(2")(bb*3a* + Aa*bb*)
2 2
ii) [MLf;ql’ )] _ [J\TLS’Q’“)] — 22 (%a%)2 My + 2" (Ra*Db* + bb*ia®)

Proof:

- - - - 2
[Mép,qm)] 22n(5a*)2 — 2"bb*3a* — 2"3a*bb* + (blb*)
[M@,q,v)r = 22 H2(xa*)? _ onHIfh*Ea* — 2"t At bb* + (UBﬂo*)2
n+1 -
— 2 ?
[MT(L;lg,v)] _ 22n+4(a ) 2n+21bb*v ® _ gnt2x *Iblb*-F (UDUZ)*)
- 2 — 2 ~ 2
[My(Lp,qw)] I [Mézri,v)] n [Mr(bzig,v)]

= 22(H@a%)?(1 4 2% 4 2%) — 2"Bb*Ea* (1 + 2 + 22)
~ - 2
Ha*bb*(1+ 2+ 22) + 3(UoIb*>

= 21(2*") (3a*)” + ?)(U?)lb*)2 — 7(2")(bb*5a* + a*bb*)
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ii)

~— (p,q,v) 2 ~ - - 2
[MLn’ ' ] = 22"(éa*)2 + 2"bb*aa* + 2"3a*bb* + (uouo*)
— (p,q,v) 2 ~ - o 2
[MLn o ] = 22+2(xa*)? 4 2" HIEb*Ea* 4 2" 1At hb* + (Uolb*)

= 227(Fa*)?(22 — 1) + 2"bb*5a*(2 — 1) + 2"5a*bb*(2 — 1)
227 (Ka*)” M, + 2" (Ra*bb* + bb*Ha*)

3. Unconstrained Mersenne and Mersenne-Lucas Hybrid Sedenions

Definition 3.1 For any integers p, q,v and non-negative integer n, unrestricted Mersenne and Mersenne-
Lucas Hybrid Sedenions are defined by

i) L, Z L+ iMypyp + eMpsq + hMp g
()  —— — —
ii) ML, — MLy, + iMLypsp+eMLypsq+hMLpyo

where i, €, h are hybrid units.

Theorem 3.1 Unrestricted Mersenne and Mersenne-Lucas Hybrid Sedenions satisfy the recurrence re-

lations:
) 3" = 3Mép_’%v> 2N
ii) ML, """ = 3aL " —onrn Y
Proof:
i) For n = 2, we have
AN 7 LU PN AT

- 3(]\/4\1 +iM1+p+sm+hm)
—2(%+im+sm+hm)
— My +iMayy + eMayg + hMay,

By using the definition 3.1 (i), we have

—(p,q;v)
n

= My +iMyyp +eMyiq+hM, i,
— Myt~ 20+ (3Mpy1 — 2Mory o)

+€(3M7+q\—1 - 2M:—i:—2) +h (3M/n’+7—1 - 2Mn+’u—2)

= 3 (J\Z: +iMpyp 1 +eMpiq 1 + thlQ

-2 (m + ’iMn+p—2 + 5M7—&:—2 + hMrH—U—Q)

—(p,q,v) —— (p,q,v) ——(p,q,v)

Mn = 3Mn—l - 2Mn—2
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ii) For n = 2, we have

m(:&qﬂ)) _ 3]@ (p,q,v) B Qm(nmv)
= 3 (J\TL\l +iMLy oy +eMLyyq + hM/L;U)
) (J\?fo +iMLgyy, +eMLoyq + h]\/_f/Lo\+v)

— WLy +iMLysy+ eMLary + WM Lo,

By using the definition 3.1 (ii), we have

ML = ML, +iMInsy + eMInsg + hMInre
— 3MLy 1 —2MLy 5+ (3M Lyt —2MLusy )
+e(3MLpsg1 — 2MLnyg-o) + h (3an'+\u,1 - QanTU,z)
= 3(MLyo +iM Lyt +eMLyyqo1 + AM Ly )

—9 (mQ +iM Ly +eMIpiqs+ hMm_2>

m(p,qﬁv) _ 3ml(p,q,v) B sz(p’q,v)
. —(p.q,v) —— (p,q,v) .
Theorem 3.2 The Binet formula for M, and ML, are given by
i) 3,777 = angar — Db
ii) ML, """ = onaa* + Bb*
where a* =1+ 2Pi + 2% +2Yh, b* =1+i+ e+ h and
15 15
a= 22868, b= Zeg
s=0 s=0
Proof:
i)
—(p,q,v) — — —
Mn = Mn + ZMn+p + EMn+q + th+v
— 2"a-b+ (27a-b)i+ (2"a-b)e+ (2a-b)h
— 2"A(1+ 2P +29%e+2"h) —b(1+i+e+h)
AL SN

ii)

where a* =1+ 2P + 2% +2%hand b¥* =1+i+e+h

—— (p,q,v)

ML, = MLy + MLy i+ MLy g6 + MLy i,h
= 2na+u6+(2n+Pa+u6)¢+(2n+qa+uB)s+(zn+va+u6)h
— 2"A(1+2P+2%+2"h) +b(1+i+e+h)
ML, 9raad 4+ Db
where a* =1+ 2P1 + 2% + 2hand b* =1+ ¢+ + h.
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. . —(p,q,v) —— (p,q,v) .
Theorem 3.3 The generating functions for M, and ML, are given by
} R 1\;[ézmlwv)+ Ml(p,q,v)i?)Mépwq,v) x
i) f(z) = <173$+2z2 )
7 (Pa.v) | (7 (P.av) a7y (p.av)
o ML, +(MLS —3ML, x
it) §(z) = ( 1—3z+222 )
Proof:
i) Let us define
~ w ~
fa) = ) arpavan
n=0
A~ ~ ~ w ~
f (IE) _ Mépvq{U) + le(I%(LU) + Z MT(Lp,q,U)xn
n=2

Multiplying this equation by —3z and 22, we obtain

e}
=3f(x)x = —?)xMép’q’v) -3 Z Mgﬁ({’v)x”
n=2
R 0
2f (x)z? = 2 Z Mépgv)x"
n=2

Adding the above three equations, we get
(-8r+2?) fe) = WP 4o (NP - syre)
m ~ ~ ~
+ 3 [irpa) —3nr®e) 4 onrg) | an
n=2

Mép,qw) + (Ml(p,q,v) _ 3Mép,q,v)) x
G 1— 3z + 242

B o o m(()p,q,v)+(mgp,q,v)_3m(()p,q,v))w
ii) In a similar way, we obtain g (z) = 505327 .

Theorem 3.4

i) The exponential generating function for ]\/{[\n(pquv is given by

0 2or(P.qv) 1k 0 k
My l Ea s N
k=0 k=0
0 2] k 0 lk/\
= ) Qaa* — Y, bb*
k=0 : k=0 """

0 MT(prq,v)lk

k=0

11
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—— (p,q,v )

it) The exponential generating function for ML is given by
— (p,q, 'U) o0 k
ML I* PN
ET = Y @ 1 B
k=0 k=0
o0 k D0 gk
(21) ALk "0 g
= Z o aa + 2 —!lbﬂo
k=0 k=0
o0 (p qv“)l N
2 = aa*e? + bb*e

Theorem 3.5 (Vajda Identity) For any integers m,n, k,p,q,v, we have

i) 1 (p,q,v M(p,q’v) M(p,qw)M(p,q, v) — 9™ M, (Zkﬁc\)ﬂo*ﬁa* _ ﬁa*ﬂgb*)

m+n m+k m+n+k

it) MLyt MLyt MLy MLy = 27 M, (8a*Bb* — 2°Db*aar

m+n m m-+n+

Proof:

(P,q,v0) yor(psa,v) or(Pa:0) 1 or(pag,v)
)wa-&-qn MwZL)Jqu _M"fq Mnwaqnka

(2m+n Ib[b*) (2m+kéa* o [Bb*)
(2maa . bﬂo*)(2m+"+kﬁa* _ I/t\)lb*)
2P pb*aa* (27 — 1) — 2mAa*bb* (2" — 1)
— 92m, (kaﬂo*ﬁa* - aa*u?ﬂb*>

(P,a,v) == (p,q;v)  —=(p,q,v) — (P,q,V)
m+n MLm+k ML MLm+n+k

ii) ML
<2m+"a§a + U?)Uo*) (2m+kﬁa + U?)Uo*)
—(2™aa* + bb*)(2™ " Faa* 4 bb*
2™ +Ebb*aa* (1 — 27) + 2maa*bb* (2" — 1)
2™ M, (ﬁa*ﬂgﬂo* — 2’“%%*;&&*)

If we substitute k — —n in the Vajda identities, we obtain the Catalan’s identities.

Theorem 3.6 (Catalan’s identity) For any integers m,n,p,q,v, we have

~ ~ ~ 2 ~ ~
i) N N — [ e |” = omenag, (bb*aa* - 2maa*bb* )

2
ii) ML i [ML(M’ )] — omn), (2naa*1b1b* bb*aa *)
If we substitute n — 1 in Catalan’s identities, we get Cassini’s identities.

Theorem 3.7 (Cassini’s identity) For any integers m,p,q,v, we have

A 2 ~ ~
i) JA M(P o v) [M,%?’q’v)] — gm-1 (lbb*ﬁa* _ 25&*&)&)*)

m+1
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(p,q,v)

2
ii) MLV s [ML(”’ )] = gm-1 (2aa*u81b* fﬂ?)b*éa*)

Theorem 3.8 (d’Ocagne’s identity) For any integers m,n,p,q,v, we have

i) NPy )Mr(frfv) Mr(,ffiv)Mr(zp%U) — 9maa*bb* — 2 bb*aa*

ii) ML Y ALY — onbbraar — 2maarbb

Proof:

i) Mégq,v)My(ﬂi(i,v) - My(ffl,v)Mép%U)

(2maa* — uBIb*) (2”“ Uoﬂo*)
7(2m+1 bb*)( u:)[b*)

= 2"bb*aa* (1-2) — 2maa*1btb*(1 —2)
2m3a*bb* — 2" bb*aa*

IV VO OS5 Aot V0 A

(2mﬁa +EA)UO*) (2”“:3& +U?)Uo*)
—(2™+14a* + bb*)(2"aa* + bb*
2"bb*aa* (2 — 1) — 2™aa*bb*(2 — 1)
— 2"bb*aa* — 2"Aa*bb*

Theorem 3.9 (Honsberger Identity) For any integers m,n,p,q,v, we have
i) MBS Vo) 4 N N

2
= 2741 (@a*)? ML, — 2"Bb*Aa* MLy — 2" 'aa*bb* ML, +2(bb*)

ii) MLfS qlv)ML( )+ML(pq”)MLfff1’”)

2
= 9m L3 ®) 2N Ly + 2"Bb*Aa* ML, + 2~ 1aa*uouo*ML1+2(uouo*)

Proof:

i) Mgfiv)MT(prq,v) M(p q, U)M(p q,v)

n+1

(2mflaa* - UBIb*) (2naa* - uBuo*) + (2™Aa* — Bb*)(2"aa* — bb*

~ ~ ~ 2
= omtnl(aa®)? (22 4+ 1) — 2"bb*Aa* (2 + 1) — 2™ !Aa*bb* (2+ 1) + Q(UoIb*>

~ ~ ~ 2
om+n=1(32*V2 N[ L, — 2°bb*aa* ML, — 2™ 'aa*bb* ML, + 2(1bﬂo*)

13
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i) ML: qlv)ML(p ,q5V n ML(p NRY )MLELerqlv)

(27” aa +UoIb*> (2naa +U?)ﬂo*) + (2™aa* + bb*) (2" 'aa* + bb*

R ~ 2
mn=1(Ha%)? (2% + 1) +2"bb*aa* (24 1) + 2™ 'aa*bb* (2+1)+2(1b1b*>

om+n=l(32*V2 N Ly + 2°bb*8a* ML, + 2™ 'aa*bb* ML, + 2(1buo*)

Theorem 3.10 For any integers n,p, q,v, we have

~ —— (p,q,v R o~ ~ R ~ 2
i) NP TP Z 920 (agr)? 1 on (aa*uob* - Ibuo*aa*) - (Ibﬂo*)

i) MFer) +ML(pq ) gntiggs

(pqv)

iii) M — ML, —2bb*
Proof:
i)
Niwao) L (2°aa* - Bb*) (2°aa* + bb*)
= 2(@a*)’ + 2" (aa*u?)uo* - ﬂBlb*aa*) — (IBﬂo*)2
i)
M(ww) + ML(p ) (2”5@,* — IBUO*) + (2"51&1 + IkA)lb*>
= 2"t1ga*
iii)
Niwaw) _ R (gn;aa* —Bb*) - (2"aa +u31b*>
= —2bb*

Theorem 3.11 For any integers n,p, q,v, we have
i) MRtV 4 Pt — 3(2m) Aa* — 2bb*

ii) ML ¢ ALY 3(2m) Aa* + 2Bb*

Proof:

M 4 e = (2iaat — Bb?) + (28a0 — Bv)
= 3(2")Aa* — 2bb*
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ii)

ML Y - (2”+1aa* + %uo*) + (2"aa* + Elb*)

= 3(2")aa* + 2bb*

Theorem 3.12 For any integers n,p,q,v, we have
p a.)]? (o)) (p.av)]?
Z) + Mn+1 Mn+2

~ 2 ~ ~
= 21 (2%") (aa*)* + 3(Ib1b*) — 7(2")(bb*aa* + Aa*bb*)

2 2
ii) [ Ly )] - [MLEf”q’ )] — 92n(3a%)?M, + 2 (3a*Db* + Db*aa*)

Proof:

2

~ R N2
|2 ] 2" (@a*)? — 2"bb*aa* — 2"aa*bb* + (Bb*)
2 ~ ~ 2
[ME4V] = 22 @a*)? - 2 bt aat — 27 aatbb + (Bb¥)
2 ~ ~ 2
(085 = 2rti(@ar)’ - 2 bban* — 27 2aabb* + (b¥)
~ v 2 v
[MT(LP#L )] [Mr(fﬁ ] n [ nzlg, )]

= 22"(@a*)(1 4 2% + 2%) — 2"bb*aa* (1 + 2 + 2%)
~ ~ 2
—2"aa*bb*(1 + 2 + 22) + 3(ﬂolb*>

21 (22") (Aa*)? + 3(%&;*)2 — 7(2")(bb*aa* + Aa*bb*)

ii)

— (p,q,v) I /A %\2 NI kA nAa kK T 2
ML, = 2°"(@a™)” + 2"bb*aa* + 2"2a*bb +(UOUo)

77 (P:0v) 2n+2 4 %)2 ntlp kA, * ntla, #p* a2
ML) = 22n+2(3p%)? 4 9" F1bb*Aa* + 2" 1Aa*bb +(Ibﬂo)

2 2
[MLELPJ:]{ )] [ML(p,q, )]

= 22@a*)?(22 — 1) + 2"bb*aa* (2 — 1) + 2"aa*bb*(2 — 1)
22" (Aa*)’ My + 2"(Aa*bb* + bb*aa*)

15
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4. Conclusion

An infinite number of terms of the unrestricted Mersenne and Mersenne-Lucas hybrid Octonions and

Sedenions sequences are found. Also verified the above sequences through some well known identities.
One can generate various number patterns whose characteristics satisfying unrestricted hybrid sequences.
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