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abstract: In this paper, we consider a Kirchhoff-type viscoelastic equation with nonlinear damping and
source terms involving variable exponents. We establish results on the blow-up and exponential growth of
solutions corresponding to negative initial energy.
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1. Introduction

In this work, we consider the following system of a parabolic-type Kirchhoff equation with variable
exponents:

ut −M
(
∥∇u∥2

)
∆u+

∫ t

0
g1(t− s)∆u (s) ds+ |u|q(x)−2

ut = f1 (x, u, v) , (x, t) ∈ Ω× (0,∞),

vt −M
(
∥∇v∥2

)
∆v +

∫ t

0
g2(t− s)∆v (s) ds+ |v|q(x)−2

vt = f2 (x, u, v) , (x, t) ∈ Ω× (0,∞),

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞),
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(1.1)

where Ω be a bounded and regular domain of Rn, n ≥ 1, with a smooth boundary ∂Ω. The relaxation
functions gi: R+ → R+ (i = 1, 2) satisfy assumptions to be specified later. The Kirchhoff function is
defined as

M(s) = 1 + sγ , γ > 0.

The source terms f1 (., ., .) , f2 (., ., .) : Ω× R2 → L1((0, T ), H1
0 (Ω)) are given by

f1(x, u, v) = a |u+ v|2(p(x)+1)
(u+ v) + bu |u|p(x) |v|p(x)+2

, (1.2)

f2(x, u, v) = a |u+ v|2(p(x)+1)
(u+ v) + bv |v|p(x) |u|p(x)+2

.

u, v ∈ L1((0, T ), H1
0 (Ω)).

where a, b > 0 are constants and p(.), q(.) : Ω → [1,∞) are continuous variable exponent functions on Ω.
Assume that the exponent p(·) satisfies the log-H

..
olderer continuity condition

|p (x)− p (y)| ≤ A

log
(

1
|x−y|

) , for all x, y ∈ Ω with |x− y| < δ. (1.3)

where A > 0 and 0 < δ < 1.
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From the definitions of f1(u, v) and f2(u, v), we have:

uf1(x, u, v) + vf2(x, u, v) = 2(p(x) + 2)F (x, u, v), ∀(u, v) ∈ R2, (1.4)

where the potential function F (u, v) is given by:

F (x, u, v) =
1

2(p(x) + 2)

[
a|u+ v|2(p(x)+2) + 2b|uv|p(x)+2

]
,

and
∂F

∂u
(x, u, v) = f1(x, u, v),

∂F

∂v
(x, u, v) = f2(x, u, v).

We assume the following bounds for the variable exponents{
2 ≤ q− ≤ q(x) ≤ q+ ≤ q∗,

2 ≤ p− ≤ p(x) ≤ p+ ≤ p∗,
(1.5)

where {
q− = ess infx∈Ω q(x), q+ = ess supx∈Ω m(x),

p− = ess infx∈Ω p(x), p2 = ess supx∈Ω p(x),

and we assume {
2 < q∗, p∗ < ∞ if n ≤ 2,

2 < q∗, p∗ < 2n
n−2 if n > 2.

Then the embedding H1
0 (Ω) ↪→ Lq(x)(Ω) is continuous and compact. Before discussing our problem, we

present some earlier work related to wave equations in the case of constant-exponent nonlinearity. For
instance, Erhan Pişkina, Fatma Ekinci [20] studied a system of viscoelastic parabolic type Kirchhoff
equation with multiple nonlinearities This article deals with the following initial value problem:

ut −M
(
∥∇u∥2

)
∆u+

∫ t

0
ω1(t− s)∆u (s) ds+ |u|q−2

ut = f1 (u, v) , x ∈ Ω, t > 0,

vt −M
(
∥∇v∥2

)
∆v +

∫ t

0
ω2(t− s)∆v (s) ds+ |v|q−2

vt = f2 (u, v) , x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t ≥ 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω

(1.6)

The system consists of two viscoelastic parabolic-type Kirchhoff equations with memory terms.
M
(
∥∇u∥2

)
and M

(
∥∇v∥2

)
represent Kirchhoff-type coefficients depending on the gradient norms,

ω1and ω2 are memory kernels.The terms |u|q−2
ut and |v|q−2

vt, represent nonlinear damping. f1 (u, v)
and f2 (u, v) are nonlinear source terms depending on both u and v.

The system is subjected to homogeneous Dirichlet boundary conditions and given initial data in the
domain Ω.

Partial differential equations with nonlinear terms and variable exponents have received significant
attention in recent years, as they provide more realistic models for complex physical phenomena. For
example, Wu et al [29] established the blow-up of solutions with positive initial energy for the equation

ut −Du = up(x). (1.7)

These results were later extended by other authors (see [2,28]). Qu et al [23] investigated the fourth-order
equation

ut +D2u = up(x). (1.8)

Analyzing the asymptotic behavior of its solutions. In the absence of the fourth-order term, the equation
takes the form

ut −M
(
∥∇u∥2

)
Du+ |u|m(x)−2ut = |u|r(x)−2u. (1.9)
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which was studied by Khaldi et al [8], where they addressed the global existence and stability of solutions.
More broadly, numerous recent studies have addressed local and global existence, blow-up, and stability
results for problems involving variable exponents (see [1,25]). These works motivate our current study, in
which we aim to deepen the understanding of such systems by analyzing a new viscoelastic Kirchhoff-type
model with variable coefficients and complex nonlinearities.

Finally, in [17], Pişkin, Erhan, and Gülistan Butakın studied the following parabolic-type Kirchhoff
equation with variable exponents

(
1 + |u|q(x)−2

)
ut +∆2u−M

(
∥∇u∥2

)
∆u = |u|q(x)−2

u, in (x, t) ∈ Ω× ( 0, T ) ,

u(x, t) = ∂u
∂υ (x, t) = 0, on (x, t) ∈ ∂Ω× ( 0, T ) ,
u(x, 0) = u0(x), in x ∈ Ω.

(1.10)

This paper is organized as follows: In Section 2, we recall the definition of the variable exponent Lebesgue
space Lp(.)(Ω), as well as some of their properties. We also give some hypotheses and some necessary
preliminaries. In Section 3, we prove the blow up of solution with negative initial energy. In Section 4,
we prove the exponential growth of solution with negative initial energy.

2. Preliminaries and assumptions

Let q : Ω → [1,∞) be a continuous function. We define the Lebesgue space with a variable exponent by:

Lp(.)(Ω) =
{
u : Ω → R measurable in Ω : ρp(·) (λu) < +∞, for some λ > 0

}
where

ρp(·) (u) =

∫
Ω

|u|p(x) dx.

The space Lp(.)(Ω) equipped with the Luxemburg-type norm

∥u∥p(.) = ∥u∥Lp(.)(Ω) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣u (x)λ

∣∣∣∣p(x) dx ≤ 1

}
.

Lp(.)(Ω) is a Banach space.
We also defne the variable-exponent Sobolev space W 1,p(.)(Ω) as

W 1,p(.)(Ω) =
{
u ∈ Lp(.)(Ω) such that ∇u exists and |∇u| ∈ Lp(.)(Ω)

}
.

For the relaxation function g we assume the following.

Lemma 2.1 (H
..
older’s inequality) [9] Let Ω be a bounded domain in Rn

(i) The space (Lp(x)(Ω), ∥.∥p(x)) is a Banach space, and its conjugate space is Lq(x)(Ω),
where 1

p(x) +
1

q(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have∣∣∣∣∫
Ω

uvdx

∣∣∣∣ ≤ 2 ∥u∥p(x) ∥v∥q(x) .

(ii) If p, q ∈ C+(Ω) with q(x) ≤ p(x) for any x ∈ Ω, then Lp(x)(Ω) ↪→ Lq(x)(Ω), and the imbedding is
continuous.

Lemma 2.2 (Young’s inequality ) [9] Let p, q and s be measurable functions defined on Ω such that

1

p(x)
+

1

q(x)
=

1

s(x)
, for a.e. x ∈ Ω.

Then for all a, b ≥ 0, we have
(ab)s(·)

s(·)
≤ (a)p(·)

p(·)
+

(b)q(·)

q(·)
.

For p = q = 2, a > 0, b > 0, we have

ab ≤ δa2 +
1

4δ
b2.
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We assume the following hypotheses:
(H1) The relaxation functions gi : R+ → R+, i = 1, 2 are a differentiable and decreasing functions such
that

gi(0) > 0, g′i(s) < 0, 1−
∫ ∞

0

gi(s)ds = li > 0, i = 1, 2. (2.1)

(H2) Assume there exist two positive non-increasing differentiable functions ξ1 and ξ2 such that

g′i(t) < −ξi(t)gi(t) t ≥ 0,

∫ ∞

0

ξi(s)ds = ∞, i = 1, 2.

By using the direct calculations, we have∫ t

0

g(t− s) (∇ut (t) ,∇u(s)) ds = −1

2
g(t) ∥u (t)∥22 +

1

2
(g′ ◦ ∇u)(t)

− 1

2

d

dt

[
(g ◦ ∇u)(t)−

(∫ t

0

g(s)ds

)
∥∇u (t)∥22

]
,

where

(g ◦ u)(t) =
∫ t

0

g(t− s) ∥u(t)− u(s)∥22 ds.

Lemma 2.3 (Poincaré’s inequality) [9] Let Ω be a bounded domain of Rn and q(.) satisfies (1.3), and
1 ≤ q− ≤ q(x) ≤ q+ < +∞, Then

∥u∥q(·) ≤ C ∥∇u∥q(·) , for all u ∈ W
1,q(·)
0 (Ω).

where the positive constant C depending on q−, q+ and Ω only. In particular, the space W
1,q(·)
0 (Ω)

has an equivalent norm given by ∥u∥
W

1,q(·)
0 (Ω)

= ∥∇u∥q(·) .

Lemma 2.4 [11] There exist two positive constants c0 and c1 such that, for all x ∈ Ω, (u, v) ∈ R2.

c0
2(p(x) + 2)

(
|u|2(p(x)+2)

+ |v|2(p(x)+2)
)
≤ F (x, u, v) ≤ c1

2(p(x) + 2)

(
|u|2(p(x)+2)

+ |v|2(p(x)+2)
)
.

Corollary 2.1 [11] For all x ∈ Ω and (u, v) ∈ R2, we have

c0
(
ρp(x)+1 (u) + ρp(x)+1 (v)

)
≤
∫
Ω

F (x, u, v) dx ≤ c1
(
ρp(x)+1 (u) + ρp(x)+1 (v)

)
. (2.2)

Lemma 2.5 [9] Let p be a measurable function on Ω. Then

∥u∥p(.) ≤ 1 if and only if ρp(.) (u) ≤ 1.

If 1 < p− ≤ p(x) ≤ p+ < +∞, hold then

min
{
∥u∥p

−

p(.) , ∥u∥
p+

p(.)

}
≤ ρp(.) (u) ≤ max

{
∥u∥p

−

p(.) , ∥u∥
p+

p(.)

}
.

for any u ∈ Lp(.)(Ω).

3. Blow-up result

In this section we state and prove our main blow-up result. For this purpose, we define the energy
functional of (1.1) as

E(t) =
1

2

(
1−

∫ t

0

g1(s)ds

)
∥∇u∥2 + 1

2

(
1−

∫ t

0

g2(s)ds

)
∥∇v∥2 (3.1)

+
1

2 (γ + 1)

(
∥∇u∥2(γ+1)

+ ∥∇v∥2(γ+1)
)
+

1

2
((g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t))−

∫
Ω

F (x, u, v) dx.

where u, v ∈ W
1,2(γ+1)
0 (Ω).
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Lemma 3.1 E(t) energy functional is nonincreasing function.

Proof: Multiplying the frst equation of (1.1) by ut and the second equation by vt, integrating over Ω,
since gi(s) ≤ 0, we get

E′(t) = −∥ut∥22 − ∥vt∥22 −
1

2

[
g1(t)

∫
Ω

|∇u (t, x)|2 dx+ g2(t)

∫
Ω

|∇v (t, x)|2 dx
]

(3.2)

+
1

2
[(g′1 ◦ ∇u)(t) + (g′2 ◦ ∇v)(t)]−

∫
Ω

|ut|2 |u|q(x)−2
dx−

∫
Ω

|vt|2 |v|q(x)−2
dx

≤ 0.

2

Now, the main result of this work is given in the following theorem.

Theorem 3.1 [9] Let (1.5)−(2.1) hold, u0, v0 ∈ W
1,2(γ+1)
0 (Ω) and (u, v) is a local solution of the system

(1.1). Assume further that ∫ t

0

gi(s)ds ≥
γ

γ + 1
4

, i = 1, 2,

and
E(0) < 0, max

{
q−, q+

}
≤ p− + 1. (3.3)

Then there exists a fnite time T ∗ such that the solution of problem (1.1)blows up in a fnite time, and

T ∗ ≤ 1− α

ΛαL
α

1−α (0)
.

Lemma 3.2 [11] Assume that (1.5) holds. Then, we have the following inequalities[
ρp(.) (u) + ρp(.) (v)

] s

2(p−+2) ≤ C
(
∥∇u∥2 + ∥∇v∥2 + ρp(.) (u) + ρp(.) (v)

)
, (3.4)

ρp(.) (u) + ρp(.) (v) ≤ C
(
∥u∥2(p

−+2)
2(p−+2) + ∥v∥2(p

−+2)
2(p−+2)

)
, (3.5)

∥u∥s2(p−+2) ≤ C
(
∥∇u∥2 + ∥∇v∥2 + ∥ut∥2(p

−+2)
2(p−+2) + ∥vt∥2(p

−+2)
2(p−+2)

)
, (3.6)

∥v∥s2(p−+2) ≤ C
(
∥∇u∥2 + ∥∇v∥2 + ∥ut∥2(p

−+2)
2(p−+2) + ∥vt∥2(p

−+2)
2(p−+2)

)
, (3.7)∫

Ω

|u|q(x)+1 dx ≤ c3

[(
ρp(.) (u) + ρp(.) (v)

) q−+1

2(p−+2) +
(
ρp(.) (u) + ρp(.) (v)

) q++1

2(p−+2)

]
, (3.8)

∥u∥p
−+1

p−+1 + ∥v∥p
−+1

p−+1 ≤ c3
(
ρp(x)+1 (u) + ρp(x)+1 (v)

)
, (3.9)

for any u, v ∈ H1
0 (Ω) and 2 ≤ s ≤ 2(p− + 2). Where C > 1, c3 > 0 , c4 > 0 are constants.

Proof of Theorem 1. Let us set
H(t) = −E(t). (3.10)

By using (3.10), we have

H ′(t) = −E′(t) (3.11)

≥
∫
Ω

u2
t |u|

q(x)−2
dx+

∫
Ω

v2t |v|
q(x)−2

dx ≥ 0.
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Then E(0) < 0 and (3.11) gives H(t) ≥ H(0) > 0. By the defnition H(t) and (2.2), we get

H(t) ≤
∫
Ω

F (x, u, v) dx (3.12)

≤ c1
(
ρp(x)+1 (u) + ρp(x)+1 (v)

)
.

We defne
L(t) := H1−α(t) +

ε

2

∫
Ω

u2dx++
ε

2

∫
Ω

v2dx, t ≥ 0. (3.13)

where ε > 0 to be fixed later and

0 < α ≤ min

{
p− − q+ + 1

(p− + 1) (q+ − 1)
,

p− − 1

2 (p− + 1)

}
. (3.14)

By derivating L(t) and using Eq (1.1), we obtain

L′(t) = (1− α)H ′(t)H−α(t) + ε

∫
Ω

utudx+ ε

∫
Ω

vtvdx (3.15)

= (1− α)H ′(t)H−α(t)− ε
(
∥∇u∥2(γ+1) + ∥∇v∥2(γ+1)

)
−ε

((
1−

∫ t

0

g1(s)ds

)
∥∇u∥2 +

(
1−

∫ t

0

g2(s)ds

)
∥∇v∥2

)
−ε

∫
Ω

∇u (t)

∫ t

0

g1(t− s) (∇u (t)−∇u (s)) dsdx− ε

∫
Ω

∇v (t)

∫ t

0

g2(t− s) (∇v (t)−∇v (s)) dsdx

+2ε

∫
Ω

(p(x) + 2)F (x, u, v) dx

−ε

∫
Ω

uut |u|q(x)−2 dx− ε

∫
Ω

vvt |v|q(x)−2 dx.

In order to estimate the last term in (3.15), we make use of the following Young’s inequality, we have

XY ≤ 1

4δ
X2 + δY 2.

for δ > 0, with X = ut |u|
q(x)−2

2 and Y = u |u|
q(x)−2

2 , we find∫
Ω

utu |u|q(x)−2
dx =

∫
Ω

ut |u|
q(x)−2

2 u |u|
q(x)−2

2 dx (3.16)

≤ 1

4δ

∫
Ω

u2
t |u|

q(x)−2
dx+ δ

∫
Ω

|u|q(x) dx.

Similarly, we have ∫
Ω

vtv |v|q(x)−2
dx ≤ 1

4δ

∫
Ω

v2t |v|
q(x)−2

dx+ δ

∫
Ω

|v|q(x) dx. (3.17)

Cachy-Schwarz ans Young inequalities, we have∫ t

0

g1(t− s)

∫
Ω

∇u (t, x) (∇u (t, x)−∇u(s, x)) dxds (3.18)

≤
∫ t

0

g1(t− s) ∥∇u (t, x)∥2 ∥∇u (t, x)−∇u(s, x)∥2 ds

≤ 1

4δ

(∫ t

0

g1(s)ds

)
∥∇u∥22 + δ(g1 ◦ ∇u) (t) , ∀δ > 0.

Similarly, ∫ t

0

g2(t− s)

∫
Ω

∇v (t, x) . (∇v (t, x)−∇v(s, x)) dxds (3.19)

≤ 1

4δ

(∫ t

0

g2(s)ds

)
∥∇v∥22 + δ(g2 ◦ ∇v) (t) , ∀δ > 0.
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Combining (3.16) , (3.17) , (3.18) and (3.19), give

L′(t) ≥ (1− α)H ′(t)H−α(t)− ε
(
∥∇u∥2(γ+1)

+ ∥∇v∥2(γ+1)
)

(3.20)

−ε

(
1−

(
1− 1

4δ

)∫ t

0

g1(s)ds

)
∥∇u∥2 − ε

(
1−

(
1− 1

4δ

)∫ t

0

g2(s)ds

)
∥∇v∥2

−δε ((g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)) + 2εc0
(
p− + 2

) (
ρp(x)+1 (u) + ρp(x)+1 (v)

)
−δε

(∫
Ω

|u|q(x) dx+

∫
Ω

|v|q(x) dx
)
− ε

4δ

(∫
Ω

u2
t |u|

q(x)−2
dx+

∫
Ω

v2t |v|
q(x)−2

dx

)
≥ (1− α)H ′(t)H−α(t)− ε

(
∥∇u∥2(γ+1)

2(γ+1) + ∥∇v∥2(γ+1)
2(γ+1)

)
−ε

(
1−

(
1− 1

4δ

) ∫ t

0
g1(s)ds

1−
∫ t

0
g1(s)ds

)
l1 ∥∇u∥2 − ε

(
1−

(
1− 1

4δ

) ∫ t

0
g2(s)ds

1−
∫ t

0
g2(s)ds

)
l2 ∥∇v∥2

−δε ((g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)) + 2εc0
(
p− + 2

) (
ρp(x)+1 (u) + ρp(x)+1 (v)

)
−δε

(∫
Ω

|u|q(x) dx+

∫
Ω

|v|q(x) dx
)
− ε

4δ

(∫
Ω

u2
t |u|

q(x)−2
dx+

∫
Ω

v2t |v|
q(x)−2

dx

)
.

We denote ηi =
1−(1− 1

4δ )
∫ t
0
gi(s)ds

1−
∫ t
0
gi(s)ds

, i = 1, 2.

By using Lemma 3.8 (2.1) and estimate (3.20), we get

L′(t) ≥ (1− α)H ′(t)H−α(t)− ε
(
∥∇u∥2(γ+1)

+ ∥∇v∥2(γ+1)
)

(3.21)

−ε
(
η1l1 ∥∇u∥2 + η2l2

)
∥∇v∥2

−δε ((g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)) + 2εc0
(
p− + 2

) (
ρp(x)+1 (u) + ρp(x)+1 (v)

)
−δε

(∫
Ω

|u|q(x) dx+

∫
Ω

|v|q(x) dx
)
− ε

4δ

(∫
Ω

u2
t |u|

q(x)−2
dx+

∫
Ω

v2t |v|
q(x)−2

dx

)
≥ (1− α)H ′(t)H−α(t)− ε

(
∥∇u∥2(γ+1)

+ ∥∇v∥2(γ+1)
)

−ε min
i=1,2

(ηi)
(
l1 ∥∇u∥2 + l2 ∥∇v∥2

)
−δε ((g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)) + 2εc0

(
p− + 2

) (
ρp(x)+1 (u) + ρp(x)+1 (v)

)
−2δεc4

((
ρp(x)+1 (u) + ρp(x)+1 (v)

) q+

p−+1 +
(
ρp(x)+1 (u) + ρp(x)+1 (v)

) q−

p−+1

)
− ε

4δ

(∫
Ω

u2
t |u|

q(x)−2
dx+

∫
Ω

v2t |v|
q(x)−2

dx

)
.

Then, from the defnition H(t) and li, (i = 1, 2), we get

−
(
l1 ∥∇u∥2 + l2 ∥∇v∥2

)
(3.22)

≥ 2H(t) +
1

(γ + 1)

(
∥∇u∥2(γ+1)

+ ∥∇v∥2(γ+1)
)
+ (g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)− 2

∫
Ω

F (x, u, v) dx

≥ 2H(t) +
1

(γ + 1)

(
∥∇u∥2(γ+1)

+ ∥∇v∥2(γ+1)
)
+ (g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)

−2c1
(
ρp(x)+1 (u) + ρp(x)+1 (v)

)
.

Using the last inequality, for z ≥ 0, 0 < β ≤ 1 and d > 0, we have

zβ ≤ z + 1 ≤
(
1 +

1

d

)
(z + d) . (3.23)
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Applying (3.23) with z = ρp(x)+1 (u)+ρp(x)+1 (v) , d = H(0), β = q+

p−+1 ≤ 1 and then with β = q−

p−+1 ≤ 1
respectively, we get

(
ρp(x)+1 (u) + ρp(x)+1 (v)

) q+

p−+1 ≤
(
1 +

1

H(0)

)(
ρp(x)+1 (u) + ρp(x)+1 (v) +H(0)

)
(3.24)

≤ c5
((
ρp(x)+1 (u) + ρp(x)+1 (v)

)
+H(t)

)
.

where c5 = 1 + 1
H(0) .

Similar calculations give, for some c5 > 0

(
ρp(x)+1 (u) + ρp(x)+1 (v)

) q−

p−+1 ≤ c5
(
ρp(x)+1 (u) + ρp(x)+1 (v) +H(t)

)
. (3.25)

A combination of (3.5)− (3.24)− (3.25) implies that, for some c6 > 0∫
Ω
|u|q(x) dx+

∫
Ω
|v|q(x) dx ≤ 2c4

((
ρp(x)+1 (u) + ρp(x)+1 (v)

) q+

p−+1 +
(
ρp(x)+1 (u) + ρp(x)+1 (v)

) q−

p−+1

)
(3.26)

≤ c6
(
ρp(x)+1 (u) + ρp(x)+1 (v) +H(t)

)
,

where c6 = 4c4.c5.
Consequently,

L′(t) ≥ (1− α)H ′(t)H−α(t)− ε
(
∥∇u∥2(γ+1)

+ ∥∇v∥2(γ+1)
)

(3.27)

+ε min
i=1,2

(ηi)

(
−2H(t) +

1

(γ + 1)

(
∥∇u∥2(γ+1)

+ ∥∇v∥2(γ+1)
)
+ (g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)

)
−2ε min

i=1,2
(ηi)

∫
Ω

F (x, u, v) dx

−δε ((g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)) +
(
2εc0

(
p− + 2

)
− δεc6

) (
ρp(x)+1 (u) + ρp(x)+1 (v)

)
− ε

4δ

(∫
Ω

u2
t |u|

q(x)−2
dx+

∫
Ω

v2t |v|
q(x)−2

dx

)
≥ (1− α)H ′(t)H−α(t) + 2ε

(
min
i=1,2

(ηi)− δc4c6

)
H(t)

+ε

(
mini=1,2 (ηi)

(γ + 1)
− 1

)(
∥∇u∥2(γ+1)

+ ∥∇v∥2(γ+1)
)

+ε

(
min
i=1,2

(ηi)− δ

)
((g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t))

+ε

(
2c0
(
p− + 2

)
− 2 min

i=1,2
(ηi) c1 − δc6

)(
ρp(x)+1 (u) + ρp(x)+1 (v)

)
− ε

4δ

(∫
Ω

u2
t |u|

q(x)−2
dx+

∫
Ω

v2t |v|
q(x)−2

dx

)
.

So by choosing δ such that 1
4δ = κH−α(t), where κ is a large constant to be specified later,

ε
(

mini=1,2(ηi)
(γ+1) − 1

)
≥ 0, ε (mini=1,2 (ηi)− δ) ≥ 0

c7 = ε

(
2c0
(
p− + 2

)
− 2 min

i=1,2
(ηi)− δεc6

)
> 0.

substituting in(3.27), we obtain

L′(t) ≥ (1− α− εκ)H ′(t)H−α(t) + 2ε min
i=1,2

(ηi)H(t) + c7
(
ρp(x)+1 (u) + ρp(x)+1 (v)

)
(3.28)

≥ c8
(
H(t) + ρp(x)+1 (u) + ρp(x)+1 (v)

)
,
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where c8 = min (2εmini=1,2 (ηi) , c7) and we pick ε small enough such that 1− α− εκ ≥ 0.
Next, using the algebraic inequality

(a+ b)
p ≤ 2p−1 (ap + bp) .

and on the other hand, thanks to the H
..
older’s inequality and the embedding L(p−+1)(Ω) ↪→ L2(Ω),

we obtain
Finally, by noting that

L
1

1−α (t) =

(
H1−α(t) +

ε

2

∫
Ω

u2dx+
ε

2

∫
Ω

v2dx

) 1
1−α

(3.29)

≤ 2
α

1−α

[
H(t) +

(ε
2
∥u∥2 + ε

2
∥v∥2

) 1
1−α

]
≤ C

[
H(t) + ∥u∥

2
1−α

p−+1 + ∥v∥
2

1−α

p−+1

]
= C

[
H(t) +

(
∥u∥p

−+1
p−+1

) 2
1−α

+
(
∥v∥p

−+1
p−+1

) 2
1−α

]
≤ C

[(
ρp(x)+1 (u) + ρp(x)+1 (v)

) 2
1−α

]
≤ C

[
H(t) + ρp(x)+1 (u) + ρp(x)+1 (v)

]
.

we get, for some
L

1
1−α (t) ≤ C

[
H(t) + ρp(x)+1 (u) + ρp(x)+1 (v)

]
. (3.30)

Thus,(3.28) and (3.30) arrive at

L′(t) ≥ ΛL
1

1−α (t), for t ≥ 0. (3.31)

where Λ = c8
C is a positive constant.

A direct integration over (0, t) of (3.31) then yields

L
1

1−α (t) ≥ 1

L− α
1−α (0)− Λ αt

1−α

, for t ≥ 0.

Therefore, L(t) blows up in time

T ≤ T ∗ =
1− α

ΛαL
α

1−α (0)
.

which implies that L(t) → +∞, as t → T ∗, where T ≤ T ∗ = 1−α

ΛαL
α

1−α (0)
. Consequently, the solution of

problem (1.1) blows-up in a finite time.
This completes the proof.

4. Exponential growt

In this section, we aim to indicate that the energy grow up as an exponential function as time as goes to
infinity.

Theorem 4.1 Suppose that (1.5) − (2.1) hold. (u, v) be a any solution to (1.1). Suppose further that
E(0) < 0 and ∫ t

0

gi(s)ds ≥
γ

γ + 1
2

, i = 1, 2.

Then, the solution to (1.1) grows exponentially.
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Proof: We define
G(t) := H(t) +

ε

2

∫
Ω

u2dx++
ε

2

∫
Ω

v2dx, t ≥ 0. (4.1)

where H(t) = −E(t) and choose 0 < ε ≤ 1 in this interval to obtain small perturbation of E(t) and
we will indicate that G(t) grows exponentialy, namely G(t) satisfies a differential inequality of the form

G′(t) ≥ ξΓG(t), for t ≥ 0.

By derivating (4.1) and using Eq (1.1), we have

G′(t) = H ′(t) + ε

∫
Ω

utudx+ ε

∫
Ω

vtvdx (4.2)

= ∥ut∥22 + ∥vt∥22 +
1

2

[
g1(t) ∥∇u∥2 + g2(t) ∥∇v∥2

]
−1

2
[(g′1 ◦ ∇u)(t) + (g′2 ◦ ∇v)(t)] +

∫
Ω

|ut|2 |u|q(x)−2
dx+

∫
Ω

|vt|2 |v|q(x)−2
dx

−ε
(
∥∇u∥2(γ+1)

+ ∥∇v∥2(γ+1)
)
− ε

(
∥∇u∥2 + ∥∇v∥2

)
+ε

∫
Ω

∇u (t)

∫ t

0

g1(t− s)∇u (s) dsdx+ ε

∫
Ω

∇v (t)

∫ t

0

g2(t− s)∇v (s) dsdx

+ε

∫
Ω

(uf1 (x, u, v) + vf2 (x, u, v)) dx

−ε

∫
Ω

uut |u|q(x)−2
dx− ε

∫
Ω

vvt |v|q(x)−2
dx

≥ ∥ut∥22 + ∥vt∥22 +
1

2

[
g1(t) ∥∇u∥2 + g2(t) ∥∇v∥2

]
−ε
(
∥∇u∥2 + ∥∇v∥2

)
−1

2
[(g′1 ◦ ∇u)(t) + (g′2 ◦ ∇v)(t)] .+

∫
Ω

|ut|2 |u|q(x)−2
dx+

∫
Ω

|vt|2 |v|q(x)−2
dx

−ε
(
∥∇u∥2(γ+1)

+ ∥∇v∥2(γ+1)
)
+ 2ε

(
p− + 2

) ∫
Ω

F (x, u, v) dx

+ε

∫
Ω

∇u (t)

∫ t

0

g1(t− s)∇u (s) dsdx+ ε

∫
Ω

∇v (t)

∫ t

0

g2(t− s)∇v (s) dsdx

−ε

∫
Ω

uut |u|q(x)−2
dx− ε

∫
Ω

vvt |v|q(x)−2
dx.

Terms in (4.2) is estimated as follows:∫
Ω

utu |u|q(x)−2
dx ≤ 1

4δ

∫
Ω

u2
t |u|

q(x)−2
dx+ δ

∫
Ω

|u|q(x) dx. (4.3)

Similarly, we have ∫
Ω

vtv |v|q(x)−2
dx ≤ 1

4δ

∫
Ω

v2t |v|
q(x)−2

dx+ δ

∫
Ω

|v|q(x) dx. (4.4)

Therefore, combining with and Cachy-Schwarz ans Young inequalities, we have∫
Ω

∇u (t)

∫ t

0

g1(t− s)∇u (s) dsdx (4.5)

=

∫ t

0

g1(s)ds ∥∇u∥2 −
∫ t

0

g1(t− s)

∫
Ω

∇u (t, x) (∇u (t, x)−∇u(s, x)) dxds

≥ 1

2

∫ t

0

g1(s)ds ∥∇u∥2 − 1

2
(g1 ◦ ∇u) (t) .
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Similarly, ∫
Ω

∇v (t)

∫ t

0

g2(t− s)∇v (s) dsdx ≥ 1

2

∫ t

0

g2(s)ds ∥∇v∥2 − 1

2
(g2 ◦ ∇v) (t) . (4.6)

Combining (4.3) , (4.4) ,(4.5)and (4.6), give

G′(t) ≥ ∥ut∥2 + ∥vt∥2 − ε
(
∥∇u∥2(γ+1)

+ ∥∇v∥2(γ+1)
)

(4.7)

−ε

(
1− 1

2

∫ t

0

g1(s)ds

)
∥∇u∥2 − ε

(
1− 1

2

∫ t

0

g2(s)ds

)
∥∇v∥2

−ε

2
((g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)) + 2εc0

(
p− + 2

) (
ρp(x)+1 (u) + ρp(x)+1 (v)

)
−δε

(∫
Ω

|u|q(x) dx+

∫
Ω

|v|q(x) dx
)
+
(
1− ε

4δ

)(∫
Ω

u2
t |u|

q(x)−2
dx+

∫
Ω

v2t |v|
q(x)−2

dx

)
≥ ∥ut∥2 + ∥vt∥2 − ε

(
∥∇u∥2(γ+1)

+ ∥∇v∥2(γ+1)
)

−ε

(
1− 1

2

∫ t

0
g1(s)ds

1−
∫ t

0
g1(s)ds

)
l1 ∥∇u∥22 − ε

(
1− 1

2

∫ t

0
g2(s)ds

1−
∫ t

0
g2(s)ds

)
l2 ∥∇v∥22

−ε

2
((g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)) + 2εc0

(
p− + 2

) (
ρp(x)+1 (u) + ρp(x)+1 (v)

)
−δε

(∫
Ω

|u|q(x) dx+

∫
Ω

|v|q(x) dx
)
+
(
1− ε

4δ

)(∫
Ω

u2
t |u|

q(x)−2
dx+

∫
Ω

v2t |v|
q(x)−2

dx

)
.

We denote wi =
1− 1

2

∫ t
0
gi(s)ds

1−
∫ t
0
gi(s)ds

, i = 1, 2.

G′(t) ≥ ∥ut∥2 + ∥vt∥2 − ε
(
∥∇u∥2(γ+1)

+ ∥∇v∥2(γ+1)
)

(4.8)

−ε
(
w1l1 ∥∇u∥2 + w2l2

)
∥∇v∥2

−ε

2
((g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)) + 2εc0

(
p− + 2

) (
ρp(x)+1 (u) + ρp(x)+1 (v)

)
−δε

(∫
Ω

|u|q(x) dx+

∫
Ω

|v|q(x) dx
)
+
(
1− ε

4δ

)(∫
Ω

u2
t |u|

q(x)−2
dx+

∫
Ω

v2t |v|
q(x)−2

dx

)
≥ ∥ut∥2 + ∥vt∥2 − ε

(
∥∇u∥2(γ+1)

+ ∥∇v∥2(γ+1)
)

−ε min
i=1,2

(wi)
(
l1 ∥∇u∥2 + l2 ∥∇v∥2

)
−ε

2
((g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)) + 2εc0

(
p− + 2

) (
ρp(x)+1 (u) + ρp(x)+1 (v)

)
−δε

(∫
Ω

|u|q(x) dx+

∫
Ω

|v|q(x) dx
)
+
(
1− ε

4δ

)(∫
Ω

u2
t |u|

q(x)−2
dx+

∫
Ω

v2t |v|
q(x)−2

dx

)
.

Then, from the defnition H(t), consequently,

G′(t) ≥ ∥ut∥2 + ∥vt∥2 + 2ε min
i=1,2

(wi)H(t) (4.9)

+ε

(
mini=1,2 (wi)

γ + 1
− 1

)(
∥∇u∥2(γ+1)

+ ∥∇v∥2(γ+1)
)

+ε

(
min
i=1,2

(wi)− 1

)
((g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t))

+ε

(
2c0
(
p− + 2

)
− 2c4δ − 2c1 min

i=1,2
(wi)

)(
ρp(x)+1 (u) + ρp(x)+1 (v)

)
+
(
1− ε

4δ

)(∫
Ω

u2
t |u|

q(x)−2
dx+

∫
Ω

v2t |v|
q(x)−2

dx

)
.
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Taking δ small enough such that k1 = 2c0 (p
− + 2) − 2c4δ − 2c1 mini=1,2 (wi) > 0 and

k2 = mini=1,2 (wi)− 1
2 > 0 and k3 =

mini=1,2(wi)
γ+1 − 1 > 0 then taking ε small enough such that 1− ε

4δ > 0
, we have

G′(t) ≥ C ′
[
H(t) + ∥ut∥2 + ∥vt∥2 + (g1 ◦ ∇u)(t) + (g2 ◦ ∇v)(t) + ρp(x)+1 (u) + ρp(x)+1 (v)

]
. (4.10)

Thus, the functional G(t) is strictly positive and increasing for all t ≥ 0.
Conversely, from G(t) function we obtain

G(t) = H(t) +
ε

2
∥u∥2 + ε

2
∥v∥2 (4.11)

≤ C
′′
[
H(t) + ∥∇u∥2 + ∥∇v∥2

]
≤ C ′′

[
H(t) + ∥ut∥2 + ∥vt∥2 + (g1 ◦ ∇u)(t) + (g2 ◦ ∇v)(t) + ρp(x)+1 (u) + ρp(x)+1 (v)

]
.

From (4.10) and (4.11) we arrive at

G′(t) ≥ λG(t), for t ≥ 0. (4.12)

where λ = C′

C′′ > 0 is a constant.
Integration of (4.12) over (0, t) gives us

G(t) ≥ G(0) exp (λt) , for t ≥ 0. (4.13)

his completes the proof. 2
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13. Pişkin, E. and Ekinci, F., Qualitative analysis of solutions for a Kirchhoff-type parabolic equation with multiple
nonlinearities. Hacettepe Journal of Mathematics and Statistics, 50(2), pp.397-413, (2021).
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25. Shahrouzi, M., Ferreira, J., Pişkin, E. and Boumaza, N., Blow-up analysis for a class of plate viscoelastic p(x)-
Kirchhoff type inverse source problem with variable-exponent nonlinearities. Сибирские электронные математические
известия, 19(2), pp.912-934, (2022).

26. Tebba, Z., Degaichia, H., Abdalla, M., Cherif, B.B. and Mekawy, I., Blow-Up of Solutions for a Class
Quasilinear Wave Equation with Nonlinearity Variable Exponents. Journal of Function Spaces, 2021(1), p.5546630,
2021).

27. Truong, L.X. and Van Y, N., Exponential growth with Lp-norm of solutions for nonlinear heat equations with
viscoelastic term. Applied Mathematics and Computation, 273, pp.656-663, (2016).

28. Wang, H. and He, Y., On blow-up of solutions for a semilinear parabolic equation involving variable source and
positive initial energy. Applied Mathematics Letters, 26(10), pp.1008-1012. 2013).

29. Wu, X., Guo, B. and Gao, W., Blow-up of solutions for a semilinear parabolic equation involving variable source
and positive initial energy. Applied Mathematics Letters, 26(5), pp.539-543, (2013).

30. Wu, Y. and Gao, Y., Blow up of solutions of Kirchhoff type viscoelastic wave equations with logarithmic nonlinearity
of variable exponents, (2023).

Abdeldjabar Bourega,
Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO)
University of Oran 1, Ahmed Ben Bella, B.P. 1524 El M’naouar, Oran, Algeria.
Amar Teledji University, Laghouat, Algeria.
E-mail address: a.bourega@lagh-univ.dz

and

Fares Yazid,
Laboratory of pure and applied mathematics, Amar Teledji University, Laghouat 03000, Algeria.
E-mail address: f.yazid@lagh-univ.dz


	Introduction
	Preliminaries and assumptions
	Blow-up result
	Exponential growt

