
Bol. Soc. Paran. Mat. (3s.) v. 2026 (44) 4 : 1–11.
©SPM – E-ISSN-2175-1188 ISSN-0037-8712
SPM: www.spm.uem.br/bspm doi:10.5269/bspm.79932

A Note on Non-Inclusion Principal Ideal Graph of Completely Simple Semigroups

S. Krithi∗, R. S. Indu

abstract: The non-inclusion principal left ideal graph of a semigroup, denoted by nPiGl(S) is a simple,
undirected graph with the nonzero elements of S as vertices and two distinct elements a, b ∈ S are adjacent if
and only if a /∈ S1b and b /∈ S1a, where S1a and S1b are principal left ideals generated by a and b respectively.
The non-inclusion principal right ideal graph, nPiGr(S) is defined similarly. Here, we identify the structure
of nPiGl(S) and nPiGr(S) when S is a completely simple semigroup in terms of Green’s equivalences and
we establish the correspondence between these graphs and the complete k-partite graphs . Furthermore, we
analyze the automorphism groups and discuss some energies associated with these graph structures.
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Introduction

Algebraic graph theory primarily focuses on the dynamic relationship between graph structures and
algebraic structures. The characterization and determination of properties of algebraic structures using
their graphs have been a subject of increasing interest in the past few decades and have been actively
investigated in the literature. In the modern era, it has evolved significantly due to advances in computa-
tional power, interdisciplinary applications, and new theoretical developments [1,18,15]. Graph energy is
a well-defined concept in algebraic graph theory, computed using the eigenvalues of the adjacency matrix
of the graph. The concept of graph energy was initially developed by Ivan Gutman [7] in the context
of chemical graph theory and has evolved into a versatile tool with applications across mathematics,
chemistry, physics, and computer science.

For a commutative ring R with a nonzero identity, the concept of cozero-divisor graphs was introduced
in 2011 [14]. The cozero-divisor graph Γ′(R), viewed as a dual counterpart to the zero-divisor graph Γ(R),
is an undirected graph whose vertices belong to all non-unit elements of R, and two distinct vertices a and
b are adjacent exactly when a /∈ bR and b /∈ aR. In the same year, principal ideal graphs of semigroups
were studied by R. S. Indu and L. John as the graph with vertex set as a semigroup and two vertices
are connected by an edge in the graph if their principal ideals intersect [9,10,11,12]. Recent studies on
the different energies of these graphs can be found in [4,5]. Inspired by this, we introduce the notion
of the non-inclusion principal ideal graph for semigroups. Specifically, the non-inclusion principal left
ideal graph nPiGl(S) is defined with vertex set S \ {0}, where two distinct vertices a and b are adjacent
precisely when a /∈ S1b and b /∈ S1a; here, S1a = {a} ∪ {sa : s ∈ S} denotes the principal left ideal
generated by a. Similarly, the non-inclusion principal right ideal graph nPiGr(S) has vertex set S \ {0},
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with vertices a and b adjacent if and only if a /∈ bS1 and b /∈ aS1. This study extends existing work on
cozero-divisor graphs and principal ideal graphs by introducing new graph structures for semigroups that
parallel the concepts used in commutative ring theory but specifically tailored to the algebraic structure
of semigroups.

This article focuses on investigating the structural characteristics of the non-inclusion principal ideal
graphs associated with completely simple semigroups. We explore the automorphism groups and various
energy measures of these graphs.

Section 1 presents relevant preliminary notions. In Section 2, we establish necessary and sufficient con-
ditions characterizing adjacency and non-adjacency in nPiGl(S) and nPiGr(S), and provide descriptions
of these graphs in terms of L -classes and R-classes, respectively. We demonstrate that both nPiGl(S)
and nPiGr(S) are complete k-partite graphs, and show that for each complete k-partite graph G, there
exists a completely simple semigroup S whose corresponding non-inclusion principal left (or right) ideal
graph is isomorphic to G. Moreover, we analyze the conditions under which the graphs for completely
simple semigroups coincide with those of rectangular bands.

The automorphism group Aut(G) of a graph G is the set of bijections ψ : V(G) → V(G) preserving
adjacency and non-adjacency [6]. Section 3 characterizes the automorphism groups Aut(nPiGl(S)) and
Aut(nPiGr(S)) when S is completely simple.

Finally, Section 4 investigates the characteristic polynomials of certain matrices associated with the
non-inclusion principal ideal graphs of completely simple semigroups and computes the related graph
energies.

1. Preliminaries

The notations and terminologies used throughout this paper are introduced in this section. By a
semigroup S, we mean a nonempty set equipped with an associative binary operation. Green’s equivalence
relation L on S is such that for a, b ∈ S, we have aL b if and only if the principal left ideals generated
by a and b coincide, i.e., S1a = S1b [8]. The relation R is defined analogously but with respect to
principal right ideals. An element a ∈ S is called regular if there exists some a′ ∈ S such that aa′a = a.
A semigroup in which every element is regular is a regular semigroup. The join of the relations L and

R is denoted by D [8]. In this work, our attention is focused on completely simple semigroups, which
are regular semigroups with exactly one D-class. According to Rees [17], completely simple semigroups
admit a structural description as a semigroup constructed from a group, two nonempty index sets, and
a matrix with entries from the group.

Theorem 1.1 ( [8]). Let G be a group, and let I and Λ be nonempty sets. Consider a matrix P = (pλi)
of size Λ× I with entries in G. Define the set S = G× I × Λ with multiplication given by

(h1, i, λ)(h2, j, τ) = (h1pλjh2, i, τ).

Then S is a completely simple semigroup. Moreover, every completely simple semigroup is isomorphic to
one constructed via this method.

The semigroup S = M(G; I,Λ;P ) is used to denote this construction. In this special case where
G = {e} is the trivial group with a single element, S is called a rectangular band [8]. Here, the group
component can be suppressed, and the multiplication reduces to (i, λ)(j, τ) = (i, τ).

Proposition 1.2. [8] For (h1, i, λ), (h2, j, τ) ∈ M(G; I,Λ;P ),

• (h1, i, λ)L (h2, j, τ) if and only if λ = τ ,

• (h1, i, λ)R(h2, j, τ) if and only if i = j.

The graphs here considered are simple and undirected. A complete k-partite graph is one whose
vertex set can be partitioned into k disjoint subsets such that each vertex is connected to every vertex
not in its own subset. The complete k-partite graph with each partition having size p is denoted by Tk,p
[3].
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The A-energy of a graph G, denoted ϵA(G), is the sum of absolute values of the eigenvalues of the
adjacency matrix A(G) [7]. Define D(G) = diag(d1, d2, . . . , dn) where di = deg(vi) for each vertex vi.
The Laplacian matrix L(G) and the signless Laplacian matrix Q(G) of G are given by

L(G) = D(G)−A(G), Q(G) = D(G) +A(G).

Their respective energies are denoted by ϵL(G) and ϵQ(G) [16]. The distance matrix, denoted D, is
defined by D = [dij ], where dij is the distance between vertices vi and vj ; its energy is denoted by ϵD(G)
[13].

For any undefined terminology related to semigroup theory, graph theory, or algebraic graph theory,
the reader is referred to [8], [3], and [2].

2. Non-Inclusion Principal Ideal Graphs of Completely Simple Semigroups

Here, we outline the distinctive features of the non-inclusion principal ideal graphs associated with
completely simple semigroups. Throughout this paper, unless specified otherwise, let S = M(G; I,Λ;P )
represent a completely simple semigroup, where |G| = g, |I| = m, and |Λ| = n. Since S is a regular
semigroup, it holds that S1a = Sa and aS1 = aS for any a ∈ S [8].

We commence by establishing the necessary and sufficient conditions under which two elements of S
become adjacent in the non-inclusion principal left ideal graph nPiGl(S).

Proposition 2.1. Let (h1, i, λ), (h2, j, τ) ∈ S. Then they are adjacent in nPiGl(S) if and only if λ ̸= τ .

Proof. Let m1 = (h1, i, λ),m2 = (h2, j, τ) ∈ S. If there is an edge between m1 and m2, then m1 /∈ Sm2

and m2 /∈ Sm1. Thus, m1 /∈ Sm2 ⊆ {(h2, j, τ) : h2 ∈ G, j ∈ I}. That is (h1, i, λ) /∈ {(h2, j, τ) : h2 ∈
G, j ∈ I}. Hence λ ̸= τ .

Conversely, assume that λ ̸= τ . We will show that m1 /∈ Sm2 and m2 /∈ Sm1. If not, let m1 ∈ Sm2.
Then there exists (g1, i1, λ1) ∈ S such that

(g1, i1, λ1)(h2, j, τ) = (h1, i, λ)

That means (g1pλ1jh2, i1, τ) = (h1, i, λ). This leads to a contradiction that λ = τ . Hence, when λ ̸= τ ,
(h1, i, λ) and (h2, j, τ) are adjacent in nPiGl(S). 2

Now, we state the analogous result for nPiGr(S).

Proposition 2.2. Let (h1, i, λ), (h2, j, τ) ∈ S. Then (h1, i, λ) and (h2, j, τ) are adjacent in nPiGr(S), if
and only if i ̸= j.

Proposition 1.2 in conjunction with Proposition 2.1 enables us to deduce that L -related elements in
S are non-adjacent in nPiGl(S).

Proposition 2.3. For (h1, i, λ), (h2, j, τ) ∈ S are adjacent in nPiGl(S), if and only if (h1, i, λ) and
(h2, j, τ) are not L -related elements.

Proof. By Proposition 1.2, (h1, i, λ)L (h2, j, τ) if and only if λ = τ . Now, by Proposition 2.1, (h1, i, λ)
and (h2, j, τ) ∈ S are adjacent if and only if λ ̸= τ . Thus, it is necessary and sufficient that (h1, i, λ) and
(h2, j, τ) are non-L -related, for them to be adjacent in nPiGl(S). 2

By combining Proposition 1.2 and Proposition 2.2, we see that R-related elements in S are non-
adjacent in nPiGr(S).

Proposition 2.4. Two elements (h1, i, λ), (h2, j, τ) ∈ S are adjacent in nPiGr(S), if and only if (h1, i, λ)
and (h2, j, τ) are not R- related.

Now we characterize nPiGl(La), the induced subgraph of nPiGl(S).

Proposition 2.5. For a ∈ S, let La represent the L -class that includes the element a. Then,
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1. The induced subgraph nPiGl(La) of nPiGl(S) with vertex set La is a null graph consisting of gm
vertices.

2. For elements a, b ∈ S with b /∈ La, each vertex in nPiGl(La) is connected to every vertex in
nPiGl(Lb).

Proof. 1. Let a ∈ S and x, y ∈ La so that xL a, yL a and hence xL y. Then, by Proposition 2.3,
there does not exist an edge between x and y. This leads to the conclusion that nPiGl(La) is a
null graph. Also, (hx, ix, λx)L (h1, i, λ) if and only if λx = λ. Thus, La = {(h, i, λ) : h ∈ G, i ∈ I}
and nPiGl(La) has |La | = gm vertices.

2. Let x ∈ nPiGl(La) and y ∈ nPiGl(Lb). Then xL a and yL b. That is (hx, ix, λx)L (h1, i, λ)
and (hy, iy, λy)L (h2, j, τ), then λx = λ and λy = τ . Since b /∈ La, λ ̸= τ . Therefore, λx ̸= λy.
Hence, by Proposition 2.1, x and y are adjacent in nPiGl(S).

2

Recall that the join of two graphs G1 and G2, denoted by G1

∨
G2, is constructed by taking disjoint

copies of G1 and G2 and adding edges between every vertex of G1 and every vertex of G2. In other words,
it forms the union of these two graphs along with all possible edges connecting the vertices across the
separate components [2]. Utilizing this definition together with the conclusions from Proposition 2.5, we
obtain a significant description of the graph nPiGl(S) in terms of the L -classes of elements a ∈ S.

Theorem 2.6. Let La denote the L -class containing a ∈ S. Then nPiGl(S) =
∨

a∈S nPiGl(La).

Proof. For each a ∈ S, {La : a ∈ S} forms a partition of the vertex set of nPiGl(S). By Proposition 2.5,
nPiGl(La) with vertex set La is a null graph of gm vertices and for a, b ∈ S and b /∈ La, every vertex
of nPiGl(La) is adjacent to every vertex of nPiGl(Lb). Therefore, nPiGl(S) is obtained as the join of
the induced subgraphs nPiGl(La). 2

Dually, for nPiGr(S), we have the following theorem.

Proposition 2.7. Let Ra denote the R-class of an element a ∈ S. Then,

1. The induced subgraph nPiGr(Ra) of nPiGr(S) with vertex set Ra is a null graph containing gn
vertices.

2. For any a, b ∈ S with b /∈ Ra, each vertex in nPiGr(Ra) is connected to every vertex in nPiGr(Rb).

Theorem 2.8. Let Ra denote the R-class containing a ∈ S. Then nPiGr(S) =
∨

a∈S nPiGr(Ra).

Theorem 2.6 establishes that for every element a ∈ S, the subset La induces a null subgraph, while
for distinct elements a and b, every vertex in La is connected to all vertices in Lb. This observation
enables us to examine the structure of the graph nPiGl(S) as a complete n-partite graph, where each
part corresponds to a distinct L -class.

Theorem 2.9. nPiGl(S) ∼= Tn,gm

Proof. By Theorem 2.6, nPiGl(S) =
∨

a∈S nPiGl(La) where, each nPiGl(La) is a null graph with gm
vertices. Also, for a, b ∈ S and b /∈ La, every vertex of nPiGl(La) is adjacent to every other vertex
of nPiGl(Lb). Now b /∈ La, gives λ ̸= τ . Therefore, there are n distinct L classes and it follows that
nPiGl(S) ∼= Tn,gm. 2

Corollary 2.10. In nPiGl(S), the degree of each vertex is (n− 1)gm and the total degree of nPiGl(S)
is n(n− 1)g2m2.

Proof. Theorem 2.9 yields that the degree of each vertex is gmn − gm = gm(n − 1). As there are gmn
vertices of degree gm(n− 1), the total degree of the graph is gm(n− 1)gmn = n(n− 1)g2m2. 2
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Corollary 2.11. nPiGl(S) has
n(n−1)

2 m2g2 edges.

Corollary 2.12. Consider S with |G| = g, |I| = m and |Λ| = 1, nPiGl(S) is a null graph with gm
vertices.

Corollary 2.13. nPiGl(S) is a connected graph unless |Λ| = 1.

The results corresponding to nPiGr(S) are as follows.

Theorem 2.14. The non-inclusion principal right ideal graph nPiGr(S) forms a complete m-partite
graph, where each partition contains exactly gn vertices.

Corollary 2.15. In nPiGr(S), the degree of each vertex is (m− 1)gn and the total degree of nPiGr(S)
is m(m− 1)g2n2.

Corollary 2.16. The number of edges in nPiGr(S) is
m(m−1)

2 n2g2.

Corollary 2.17. Let S be a completely simple semigroup with |G| = g, |I| = 1 and |Λ| = n, then
nPiGr(S) is a null graph with gn vertices.

Corollary 2.18. nPiGr(S) is a connected graph unless |I| = 1.

In the following theorem, we construct a completely simple semigroup from a complete n-partite
graph, which is isomorphic to the non-inclusion left ideal graphs.

Theorem 2.19. For a graph G with G ∼= Tn,m, there corresponds a completely simple semigroup S such
that nPiGl(S) ∼= G.

Proof. Suppose G is a complete n-partite graph with all parts of size m. Then G =
∨

λ∈ΛHλ, where
each subgraph Hλ is an independent set with |Hλ| = m for all distinct indices λ ∈ Λ, and the number
of parts satisfies |Λ| = n. For any group G of order m, choose the completely simple semigroup S =
M(G; I,Λ;P ) with I = {1}. By Theorem 2.6, the graph nPiGl(S) decomposes as a join of null subgraphs:∨

x∈S nPiGl(Lx), where each nPiGl(Lx) is an edgeless graph on |G| × |I| = m vertices. Since there are
exactly n distinct L -classes in S, it follows that nPiGl(S) is a complete n-partite graph with parts of
size m. Consequently, nPiGl(S) ∼= G. 2

Similarly, one can realize nPiGr(S) as a complete m-partite graph following the analogous construc-
tion.

Theorem 2.20. For a graph G with G ∼= Tm,n, there corresponds a completely simple semigroup S such
that nPiGr(S) ∼= G.

Now, we establish the existence of non-inclusion principal ideal graphs associated with a finite join of
null graphs possessing some properties.

Theorem 2.21. Let G = {Gλ : λ ∈ Λ} and H = {Hi : i ∈ I} be finite join of null graphs such that for
some integer g, |Gλ| = g|I| for every λ ∈ Λ and |Hi| = g|Λ| for every i ∈ I. Then there corresponds a
completely simple semigroup S with nPiGl(S) ∼= G and nPiGr(S) ∼= H.

Proof. Consider S = M(G; I,Λ;P ), where G is a group of order g. According to Theorem 2.6, the
graph nPiGl(S) can be expressed as a join,

∨
a∈S nPiGl(La), with each nPiGl(La) being an edgeless

graph whose vertex set is La. For an element a = (h1, i, λ) ∈ S, the vertex set of nPiGl(La) is

La = {(h′1, i′, λ) : h′1 ∈ G, i′ ∈ I}, which contains |G| × |I| = g|I| vertices. The number of distinct

L -classes in nPiGl(S) equals |Λ|, and each class La is isomorphic to some unique subgraph Gλ for
λ ∈ Λ. Hence, nPiGl(S) ∼= G.

Similarly, applying Theorem 2.8, it follows that nPiGr(S) =
∨

a∈S nPiGr(Ra), where each
nPiGr(Ra) is a null graph with vertex set Ra = {(h′1, i, λ′) : h′1 ∈ G, λ′ ∈ Λ}, which also has size
|G| × |Λ| = g|Λ|. The total number of distinct R-classes in nPiGr(S) matches |I|, and each Ra is
isomorphic to a unique Hi for some i ∈ I. From this, we conclude that nPiGr(S) ∼= H. 2
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It is well-known that a completely simple semigroup becomes a rectangular band when its group
component G is trivial. The subsequent propositions extend this idea, asserting that the non-inclusion
principal ideal graphs of a completely simple semigroup and a rectangular band are, in fact, isomorphic,
under appropriate conditions.

Proposition 2.22. Let G be a trivial group {e} and S∗ be the rectangular band (I×Λ). Then nPiGl(S) ∼=
nPiGl(S

∗).

Proposition 2.23. Let S = G × I × Λ with G = {e} and S∗ be the rectangular band (I × Λ). Then
nPiGr(S) ∼= nPiGr(S

∗).

We conclude this section with an example illustrating nPiGl(S) and nPiGr(S).

Example 2.24. Let S = M(G; I,Λ;P ) with G = Z2 = {0, 1}, I = {1, 2, 3}, Λ = {1, 2} and P = (pλi)
be any Λ × I matrix with entries in the group G. Then nPiGl(S) is a 2-partite graph with 6 vertices
in each partition as shown in Figure 1. While nPiGr(S) is a 3- partite graph with 4 vertices in each
partition, as shown in Figure 2.

(0, 1, 1) (0, 2, 1) (0, 3, 1) (1, 1, 1) (1, 2, 1) (1, 3, 1)

(0, 1, 2) (0, 2, 2) (0, 3, 2) (1, 1, 2) (1, 2, 2) (1, 3, 2)

Figure 1: nPiGl(Z2; {1, 2, 3}, {1, 2};P )

(0, 1, 1)

(1, 1, 1)

(0, 1, 2)

(1, 1, 2)

(0, 2, 2)

(1, 2, 2)

(0, 2, 1)

(1, 2, 1)

(0, 3, 1)
(1, 3, 1) (0, 3, 2)

(1, 3, 2)

Figure 2: nPiGr(Z2; {1, 2, 3}, {1, 2};P )
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3. Aut(nPiGl(S)) and Aut(nPiGr(S))

This section focuses on the group of automorphisms of nPiGl(S) and nPiGr(S). First, we determine
the automorphism group of nPiGl(S).

Theorem 3.1. Aut(nPiGl(S)) ∼= Sn ×Πn
k=1Sgm, where Sn denotes the symmetric group on n letters.

Proof. By Theorem 2.9, nPiGl(S) is a complete n-partite graph with each partition having gm vertices.
Automorphism of these n partitions is isomorphic to Πn

k=1Sgm. Since there are n partitions, by permuting
them, the group of automorphisms of nPiGl(S) is isomorphic to

Sn ×Πn
k=1Sgm

2

Theorem 3.2. Aut(nPiGr(S)) ∼= Sm ×Πn
k=1Sgn.

4. Energies of nPiGl(S) and nPiGr(S)

In this section, we determine the characteristic polynomials of nPiGl(S) and nPiGr(S), which are
associated with various energies of the graphs. First, we describe ϵA(nPiGl(S)).

Theorem 4.1. The A-energy, ϵA(nPiGl(S) is 2gm(n− 1).

Proof. Theorem 2.9 depicts that the adjacency matrix of nPiGl(S) has a block structure, with zero ma-
trices for vertices within the same partition and all-one matrices for vertices between different partitions.
The structure of the adjacency matrix is given by,

A(nPiGl(S)) =


Ogm Ugm ... Ugm

Ugm Ogm ... Ugm

. . ... .

. . ... .
Ugm Ugm ... Ogm


gmn×gmn

where,

Ogm =


0 0 ... 0
0 0 ... 0
. . ... .
. . ... .
0 0 ... 0


gm×gm

and

Ugm =


1 1 ... 1
1 1 ... 1
. . ... .
. . ... .
1 1 ... 1


gm×gm

The characteristic polynomial of A(nPiGl(S)) is obtained as

xn(gm−1)[x− gm(n− 1)](x+ gm)n−1.

The A-eigenvalues obtained are 0 of multiplicity n(gm− 1), gm(n− 1) of multiplicity 1, and −gm of
multiplicity (n− 1) which yields that ϵA(nPiGl(S)) = 2gm(n− 1). 2

Corollary 4.2. If ρ(nPiGl(S)) denotes the largest A-eigenvalue of nPiGl(S), then we have
ρ(nPiGl(S)) ≥ 0 and ρ(nPiGl(S)) = gm(n− 1) with multiplicity 1.
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Proof. The A- eigenvalues of nPiGl(S) are 0, gm(n−1) and −gm, of which the largest value is gm(n−1)
with multiplicity 1. Since n ≥ 1 and hence ρ(nPiGl(S)) ≥ 0. 2

Next, we give a characterization for ϵL(nPiGl(S))

Theorem 4.3. The L-energy, ϵL(nPiGl(S)) is g
2m2n(n− 1).

Proof. Theorem 2.9 and Corollary 2.10 yield that the Laplacian matrix has a block structure with (n−
1)gmIgm vertices within the same partition and all −1 entry matrices for vertices between different
partitions. We obtain the structure of the Laplacian matrix L(nPiGl(S)) as

L(nPiGl(S)) =


(n− 1)gmIgm −Ugm ... −Ugm

−Ugm (n− 1)gmIgm ... −Ugm

. . ... .

. . ... .
−Ugm −Ugm ... (n− 1)gmIgm


gmn×gmn

where,

(n− 1)gmIgm =


(n− 1)gm 0 ... 0

0 (n− 1)gm ... 0
. . ... .
. . ... .
0 0 ... (n− 1)gm


gm×gm

and

−Ugm =


−1 −1 ... −1
−1 −1 ... −1
. . ... .
. . ... .
−1 −1 ... −1


gm×gm

.
The characteristic polynomial of L(nPiGl(S)) is obtained as

x[x− gm(n− 1)](gm−1)n(x− gmn)n−1.

Thus the L-eigenvalues are 0 of multiplicity 1, gm(n−1) of multiplicity (gm−1)n, and gmn of multiplicity
(n− 1). Thus, ϵL(nPiGl(S)) = g2m2n(n− 1). 2

Corollary 4.4. If µ(nPiGl(S)) denotes the largest L-eigenvalue of nPiGl(S), then µ(nPiGl(S)) ≥ 1
and µ(nPiGl(S)) = gmn with multiplicity n− 1.

Proof. By Theorem 4.3, the L- eigenvalues of nPiGl(S) are 0, gm(n− 1) and gmn of which gmn is the
largest with multiplicity n− 1. Since G, I,Λ are nonempty, µ(nPiGl(S)) ≥ 1. 2

Now we characterize the signless Laplacian energy of nPiGl(S).

Theorem 4.5. The Q-energy ϵQ(nPiGl(S)) of the non-inclusion left ideal graph is g2m2n(n− 1).

Proof. Theorem 2.9 and Corollary 2.10 express the signless Laplacian matrix has a block structure, with
(n − 1)gmIgm for vertices within the same partition and all-one matrix for vertices between different
partitions. The structure of the signless Laplacian matrix Q(nPiGl(S)) is obtained as

Q(nPiGl(S)) =


(n− 1)gmIgm Ugm ... Ugm

Ugm (n− 1)gmIgm ... Ugm

. . ... .

. . ... .
Ugm Ugm ... (n− 1)gmIgm


gmn×gmn
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where,

(n− 1)gmIgm =


(n− 1)gm 0 ... 0

0 (n− 1)gm ... 0
. . ... .
. . ... .
0 0 ... (n− 1)gm


gm×gm

and

Ugm =


1 1 ... 1
1 1 ... 1
. . ... .
. . ... .
1 1 ... 1


gm×gm

The characteristic polynomial of Q(nPiGl(S)) is obtained as

[x− 2gm(n− 1)][x− gm(n− 2)](n−1)[x− gm(n− 1)](m−1)n.

Hence the Q-eigenvalues of L(nPiGl(S)) are 2gm(n−1) of multiplicity 1, gm(n−2) of multiplicity n−1,
and gm(n− 1) of multiplicity (m− 1)n. Thus the Q-energy is ϵQ(nPiGl(S)) = g2m2n(n− 1). 2

Corollary 4.6. If q(nPiGl(S)) denotes the largest Q-eigenvalue of nPiGl(S), then q(nPiGl(S)) ≥ 0
and q(nPiGl(S)) = 2gm(n− 1) with multiplicity 1.

Proof. By Theorem 4.5, the eigenvalues ofQ(nPiGl(S)) are 2gm(n−1) , gm(n−2) and gm(n−1) of which
the largest value is 2gm(n− 1) with multiplicity 1. Since Λ is nonempty n ≥ 1 and q(nPiGl(S)) ≥ 0. 2

From Theorem 4.3 and Theorem 4.5, we can conclude that ϵL(nPiGl(S)) = ϵQ(nPiGl(S))
Since nPiGl(S) is connected, we compute its distance energy in the following theorem.

Theorem 4.7. The D-energy, ϵD(nPiGl(S)) is 3gmn+ 2gm− 2n− 4

Proof. By Theorem 2.9, in nPiGl(S), the distance between two vertices belonging to the same partition
is 2 and that between those vertices belonging to different partitions is 1. Hence, the distance matrix has
a block structure with 2Ugm − 2Igm for vertices within the same partition and all-one matrix for vertices
between different partitions. The distance matrix D(nPiGl(S) is given by

D(nPiGl(S)) =


2Ugm − 2Igm Ugm ... Ugm

Ugm 2Ugm − 2Igm ... Ugm

. . ... .

. . ... .
Ugm Ugm ... 2Ugm − 2Igm


gmn×gmn

where,

2Ugm − 2Igm =


0 2 ... 2
2 0 ... 2
. . ... .
. . ... .
2 2 ... 0


gm×gm

and

Ugm =


1 1 ... 1
1 1 ... 1
. . ... .
. . ... .
1 1 ... 1


gm×gm
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The characteristic polynomial of D(nPiGl(S)) is obtained as

[x− (gm(n+ 1)− 2)][x− (gm− 2)](x+ 2)n(gm−1)

Hence, the D-eigenvalues of D(nPiGl(S)) are gm(n+ 1)− 2 of multiplicity 1, gm− 2 of multiplicity 1 ,
and −2 of multiplicity n(gm− 1) , and the D-energy is
ϵD(nPiGl(S)) = 3gmn+ 2gm− 2n− 4 . 2

Corollary 4.8. If d(nPiGl(S)) denotes the largest D−eigenvalue of nPiGl(S), then d(nPiGl(S)) ≥ 0
and d(nPiGl(S)) = gm(n+ 1)− 2 with multiplicity 1.

Proof. By Theorem 4.7, D-eigenvalues of nPiGl(S) are gm(n+1)−2, gm−2 and −2 of which the largest
value is gm(n+ 1)− 2 with multiplicity 1. Since Λ is nonempty n ≥ 1 and d(nPiGl(S)) ≥ 0. 2

We conclude this section by stating the relevant results related to the energies of nPiGr(S) without
delving into the proofs.

Theorem 4.9. The A-energy, ϵA(nPiGr(S)) is 2gn(m− 1) and the largest A-eigenvalue of nPiGr(S),
ρ(nPiGr(S)) ≥ 0 and ρ(nPiGr(S)) is gn(m− 1) with multiplicity 1.

Theorem 4.10. The L-energy, ϵL(nPiGr(S)) is g2n2m(m− 1) the largest L-eigenvalue of nPiGr(S),
µ(nPiGr(S)) ≥ 1 and µ(nPiGr(S)) is gmn with multiplicity m− 1.

Theorem 4.11. The Q-energy, ϵL(nPiGr(S)) is g
2n2m(m−1) and the largest Q-eigenvalue of nPiGr(S),

q(nPiGr(S)) ≥ 0 and q(nPiGr(S)) is 2gn(m− 1) with multiplicity 1.

Theorem 4.12. The D− energy, ϵD(nPiGl(S)) is 3gmn + 2gn − 2m − 4 and the largest D-eigenvalue
of nPiGr(S), d(nPiGr(S)) ≥ 0 and d(nPiGr(S)) is gn(m+ 1)− 2 with multiplicity 1.

5. Conclusion

In this article, we introduced the notion of non-inclusion principal ideal graphs of semigroups. We
studied the structure, automorphism group, and some energies of the non-inclusion principal ideal graphs
when the semigroup is completely simple. We obtained that the graph structure is isomorphic to that
of a complete k-partite graph G, and for a given complete k-partite graph G, we can find a completely
simple semigroup S, whose non-inclusion principal ideal graphs are isomorphic to G. We summarize the
main results in the following table:

nPiGl nPiGr

Graph structure Tn,gm Tm,gn

Degree of each vertex (n− 1)gm (m− 1)gn

Total degree n(n− 1)g2m2 m(m− 1)g2n2

Number of edges n(n−1)
2 g2m2 m(m−1)

2 g2n2

Aut(G) Sn ×
∏n

k=1 Sgm Sm ×
∏m

k=1 Sgn

A-energy 2gm(n− 1) 2gn(m− 1)

largest A-eigenvalue gm(n− 1) gn(m− 1)

L-Energy g2m2n(n− 1) g2n2m(m− 1)

largest L-eigenvalue gmn gmn

Q-Energy g2m2n(n− 1) g2n2m(m− 1)

largest Q-eigenvalue 2gm(n− 1) 2gn(m− 1)

D-Energy 3gmn+ 2gm− 2n− 4 3gmn+ 2gn− 2m− 4

largest D-eigenvalue gm(n+ 1)− 2 gn(m+ 1)− 2
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