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On the Kernel Eigenspace of Coalescence of Singular Graphs

Reeja S. B.* John K. Rajan, Sreekumar K. G.

ABSTRACT: A finite simple undirected graph is said to be singular if its adjacency matrix has eigenvalue 0.
If a vertex u in a graph G is identified with a vertex v in a graph G2, then the resulting graph G1 o G2, of
order |G1|+ |G2| — 1, is called the coalescence of G1 and G2 with respect to u and v. Singular graphs consist
of core and noncore vertices. In this paper, we coalesce two singular graphs and study the kernel eigenspace
of G1 o Ga, and based on this analysis, determine the core and noncore vertices of the coalesced graph.

Key Words: Singular graph, adjacency matrix, core vertex, Noncore vertex, coalescence, Kernel
eigenspace.
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1. Introduction

A simple graph G is a graph with no multiple edges and loops. The total number of vertices in G,
denoted by o(G), is called the order of G . In this paper, we consider finite simple undirected graph. The
adjacency matrix A of a graph G with n vertices vy, vs, -+ ,v, is an n x n matrix with 5" entry as 1
if v; and v; are adjacent, and 0 otherwise. The nullity of the adjacency matrix of a graph G is called
nullity of G. If the nullity n of G is greater than or equal to 1 then G is called singular graph. In this
case, 0 is an eigenvalue of the adjacency matrix. The eigenvectors corresponding to the eigenvalue 0 are
obtained by solving the system of linear equation (AX = 0). If v is a vertex in G, then the null spread of
v is defined as n(G) — n(G — v). Null spread of a vertex lies between —1 and 1. Null spread of a noncore
vertex is either 0 or —1. Also, null spread of a core vertex is always 1. Noncore vertex is called Fiedler
vertex or F-vertex or Core forbidden vertex. In [1,3], noncore vertex with null spread —1 is called upper
core-forbidden vertex and noncore vertex with null spread 0 is called middle core-forbidden vertex.

The concepts of nullity, kernel eigenspaces, and core vertices have been extensively studied in spectral
graph theory. Sciriha laid much of the foundation by characterizing singular graphs [g8], analyzing graphs
with nullity one [7], and investigating maximal core sizes [9]. Her work on extremal non-bonding orbitals
[6] further emphasized the role of graph nullity in mathematical chemistry.

Building on these foundations, Kim and Shader [4] analyzed Fiedler and Parter vertices in acyclic
matrices, while Edholm et al. [2] explored vertex and edge spread in relation to zero forcing number, max-
imum nullity, and minimum rank, highlighting the interplay between structural and spectral properties
of graphs.

Several studies have focused on the spectral effects of graph operations. Ali et al. [1] examined coales-
cence with respect to Fiedler and core vertices, establishing important connections between coalescence
and spectral characteristics. Varkey and Rajan contributed further by investigating the spectrum and
energy of both coalesced singular graphs [11] and singular graphs more broadly [10]. Applications to
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fullerene structures were also demonstrated by Fowler et al. [3], where the spectral properties of singular
graphs were linked to conduction phenomena.

Together, these works underscore the importance of singular graphs in both theoretical and applied
contexts. However, the specific effect of coalescence on the kernel eigenspace and the classification of
vertices into core and noncore categories has not been fully resolved. The present paper addresses this gap
by establishing detailed conditions under which the kernel eigenspace of the coalesced graph decomposes
as a direct sum of the eigenspaces of the components, or properly contains them, while confirming the
preservation of core and noncore vertices across the operation.

2. Preliminaries

In this section, we start with the formal definition of core and non-core vertices of a singular graph,
as introduced in [1], [5], [6], [7].

Definition 2.1 Let G be a singular graph of n vertices vy,vs, -+ , v, with nullity n > 1 and B be a basis
of its kernel eigenspace. If the vertices in G are relabeled in such a way that all the vectors in B are of
the form X = (y,, Toyy s To,, 50,0, ,0), where Ty, , Tyy, -+ , Ty, are nonzero in at least one kernel
eigenvector in B, then the vertices vi,va, -+ ,vn are called core vertices, and Vpmy1,Vm+2, - ,Un aTE€
called noncore vertices.

The distinction between core and noncore vertices plays a fundamental role in determining how the
nullity of a graph changes under vertex deletion and, more generally, under graph operations such as
coalescence. In particular, the concept of null spread provides a measure of this change and allows us
to classify vertices according to their contribution to the kernel eigenspace. Using this framework, the
following result describes how the nullity behaves when two singular graphs are coalesced at vertices with
different null spreads.

Theorem 2.2 [1] If G1, G2 are two singular graphs with nullity n1, n2, respectively, then

1. the nullity of the coalescence G1 0 Gy of G1 and Go with respect to noncore vertices with null spread
2€ero s M1+ N2.

2. the nullity of the coalescence G1 oGy of G1 and G with respect to noncore vertices with null spread
zero and null spread —1 (or vice versa) is 1 + 12.

3. the nullity of the coalescence G10 Gy of G1 and Gs with respect to noncore vertices with null spread
—lism+ m2+ 1.

4. the nullity of the coalescence G1oGy of G1 and Gy with respect to a core vertex in Gy and a noncore
vertex (null spread 0 or —1) in G isn + 12 — 1

3. Kernel Eigenspace of Coalescence of Singular Graphs

Let G1, G be two singular graphs with vertex sets {v1,va, -+, v, } and {uy,ug, -,

Um }, having nullities 7y, 1o, respectively. The vertex labels of G o G5 are the same as those of G
and G, except for the coalesced vertex. If the vertices v; € G and u; € G2 are used for coalescing,
then the coalesced vertex in G o GG is labeled as v;. Thus, the vertex set of G; o Gy are labeled as
V1,02, Vg, Vigd, " Un, UL, U2, * *+ 5 Uj—1, Ujk1, -, Um. Let Ay, Ag, and A be the adjacency matri-
ces of G1,G9,G1 o Gy, respectively. Furthermore, let E7, Fs, and E represent their respective kernel
eigenspaces. Suppose G; and G5 each have at least one noncore vertex. Our aim is to determine the
kernel eigenspace, E of G o G2 with respect to noncore vertices using E; and Fs. For this purpose, we
consider the subspaces E;, Eé of R(ntm=1).

. E; is an 7; dimensional subspace of R(™+™~1) in which the last (m — 1) entries of each vector are
zero and the first n entries coincide with those of the corresponding vector in Fj.
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. E; is an 7y dimensional subspace of R"*™~1 in which the first n entries of each vector are zero and
the remaining (m — 1) entries coincide with the first (m — 1) entries of the corresponding vector in
Es.

Throughout the paper we use the notation Oy to denote a column vector of length k& whose entries
are all zero.
The following example illustrates this relation clearly and also leads to the next theorem.

Example 3.1 In Figure 1, Gy and G2 are singular graphs and G1 o G4 is the coalescence of G1 and Go
with respect to noncore vertices vs and ug with null spread 0.

U3 Y X0} Ug us
V1 ® T Ovg Uy U
Gl G2
V2 & U5 0 Vg
Uz U3 U1
Ug (U5}
® core vertex
G10Gy O noncore vertex

Figure 1: G7 o G2 with respect to the noncore vertices having null spread 0
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Using the direct method for finding kernel eigenvector, we obtain
Ey = span{(—1,1,0,0,0,0)T}, Ey = span{(-1,1,0,0)T}, and

E = span{(-1,1,0,0,0,0,0,0,0)%,(0,0,0,0,0,0,—1,1,0)7}.

As noted earlier in this section, construct the subspace Ei and E; of R? using Ey and Es, respectivelsy.
Thus, E; = span{(—1,1,0,0,0,0,0,0,0)7}, and E, = span{(0,0,0,0,0,0,—1,1,0)7},

Hence, we conclude that E = Ei D Eé

Theorem 3.2 If Gy o G5 is the coalescence of two singular graphs G1 and Go, with nullities n; and 72,
respectively, with respect to noncore vertices having null spread 0, then the kernel eigenspace E of Gy o Ga
satisfies E = E; & E,.
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Proof: Without loss of generality, assume that vy, vs, -+ ,vny and uy,us,---uy; are core vertices of Gy
and G, respectively. All other vertices of G; and G2 are noncore vertices. We take the noncore vertices
v, with null spread zero from G; and u,, with null spread zero from G5 to construct Gy o Go. There
is no loss of generality in making this choice. For convenience, the adjacency matrices A; and A, are
represented as block matrices, each consisting of 9 blocks. Thus we have

P P 5 Q1 Q2 T
A= |Pf Py S|, A= Q) Qs T,
St sT o Tr T 0

where P; is an N x N matrix, P, is an N x (n — N — 1) matrix, Psisan (n = N —1) x (n — N — 1)
matrix, S7 is an N x 1 matrix , Sp is an (n — N — 1) x 1 matrix. @ is an M x M matrix, Q2 is an
M x (m — M — 1) matrix, Q3 isan (m — M — 1) X (m — M — 1) matrix, T; is an M x 1 matrix, T5 is an
(m—M —1) x 1 matrix.

P P S 0 0

P Py Sy 0 0
The adjacency matrix A can be represented as a block matrix such that A= [ S S 0o Tf T¥|.

0 0 Ty Q1 Qo

0 0 T QF Qs
Since G has N core vertices, the last n — N components of every vector in F; are zero. Let [ OXN] be
an arbitrary vector in E7, where X is a column vector with IV entries.

X X

On—N—l X OH—N—l

Then, 0 = |Onp_N| € E, since A 0 = 0. Thus, we get

Om Om-1 Owm

Om—M—1 Om—m-1
/ X X

El = { On_n |:O :| € El} Cc F. (31)
n—N
Om—l

. . . Y
Since G2 has M core vertices, last (m — M) components of every vector in Fy are zero. Let [ 0 } be
m—M
an arbitrary vector in F5, where Y is a column vector with M entries.

ON ON
Oanfl On On7N71
Then, 0 = Y € F, since A 0 = 0. Thus, we get
Y Om—M—1 Y
Om—M—l Om—]V[—l
, O'VL Y
E, = Y { } el CFE (3.2)
Ome
Omefl

From (3.1) and (3.2), we get E), Ey C E. Also, E; + E; C E. By Theorem 1.1, dimE = 0, + 1, =
dimFE, + dimFE,. Hence E = E| & E,. O

Theorem 3.3 If G, o Go is the coalescence of two singular graphs G1 and Go, with nullities n1 and 12,
respectively, with respect to noncore vertices having null spread 0, then all core vertices of G1 and Go
remain core vertices of G1 oGy and all noncore vertices of G1 and Go remain noncore vertices of G1oGs.

Proof: Using Definition 2.1 and Theorem 3.2, we can directly prove this theorem. O

We now explore how FE, E7, and Fs are related when coalescing noncore vertices of G; and G5 having
null spread 0 and —1. The following example illustrates the connection and provides insight for the
subsequent theorem.
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Example 3.4 In Figure 2, G1 and Gy are singular graphs and G1 o G4 is the coalescence of G1 and Go
with respect to noncore vertex vy with null spread 0 and noncore vertex ugy with null spread —1.

U3 9 U2 U3
Uy Us
vre Us ° Y6 o Ue
U
Gy Go
v
Ve O 5 9 U2
V] & U3 us
Uy U5 Ug
G1 o G2
° core vertex
o noncore vertex

Figure 2: G; o G5 with respect to noncore vertices having null spread 0 and null spread —1

Here, E; = span{(—1,1,0,0,0,0)T},

Ey= span{(-1,1,0,0,0,0)",(-1,0,1,0,0,0)T} and

E = span{(-1,1,0,0,0,0,0,0,0,0,0)T, (0,0,0,0,0,0,—-1,1,0,0,0)T, (0,0,0,0,0,0,-1,0,1,0,0)T}.
Construct the subspaces E; , E; of R wsing Eq, Ey, respectively. Thus

E, = span{(-1,1,0,0,0,0,0,0,0,0,0)7}

E; = spani(0,0,0,0,0,0,—1,1,0,0,0)7, (0,0,0,0,0,0,—1,0,—1,0,0)7},

dimE, + dimE, = dimE.

Thus, we get E; €3] E; =FE.

The above example leads to the following theorem.

Theorem 3.5 If G1 o Gy is the coalescence of two singular graphs G1 and Go with nullities n1 and 12
respectively, with respect to noncore vertices having null spreads 0 and —1 (or vice versa), then the kernel
eigenspace E of Gy o Gy satisfies E = E; @ Ej.

Proof: The proof follows the same steps as those in Theorem 3.2. O

Theorem 3.6 If G1 o G5 is the coalescence of two singular graphs G1 and Go with nullities m1 and no
respectively, with respect to non-core vertices having null spreads 0 and —1 (or vice versa), then all core
verices of G1 and Gy remain core vertices in Gy o Ga, and all noncore vertices of G1 and Gy remain
noncore vertices in G1 o Gs.
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Proof: Using Definition 2.1 and Theorem 3.5, we can directly prove this theorem. |

Example 3.7 Consider the singular graphs G1 and Gs in the Example 3.4. G1 o Gy is the coalescence
of G1 and Gy with respect to moncore vertices vg and ug with null spread —1.

U3 V2 Uy

(%4 Vs Ve us

G1 o G2
° core vertex

O  noncore vertex
Figure 3: G1 o G5 with respect to noncore vertices having null spread —1

By applying the direct method to find the kernel eigenvectors, we obtain Ey = span{(—1,1,0,0,0,0)T}

By = span{(—1,1,0,0,0,0)7, (~1,0,1,0,0,0)7}

E = span{(—1,1,0,0,0,0,0,0,0,0,0)7, (0,0,0,0,0,0,—1,1,0,0,0)7, (0,0,0,0,0,0,—1,0,1,0,0)7,
(0,0,1,0,—-1,0,0,0,0,—1,1)7}.

Construct the subspace Ei , E; of R wsing By, Ey, respectively. Thus,

E. = span{(-1,1,0,0,0,0,0,0,0,0,0)},

E, = span{(0,0,0,0,0,0,-1,1,0,0,0)7, (0,0,0,0,0,0, —1,0,—1,0,0)T}

This implies E; + E; CFE

Since By N Ey = {0}, we get E D E, & E,.

Theorem 3.8 If G o Gy is the coalescence of two singular graphs G1 and G, with nullities m1 and
12, respectively, with respect to moncore vertices having null spread —1, then the kernel eigenspace E of
G1 0 Gy satisfies E D E| @ E,.

Proof: The proof for obtaining E; + E; C F follows the same steps as in the proof of Theorem 3.2. By
Theorem 1.1, we have dimE = m + 12 + 1 = dimFEy + dimFEs + 1. Additionally, F; N By = ¢. Thus, it
follows that E D E, & E,. O

When noncore vertices with null spread —1 are identified, the dimension of E; @ Ej is one less than the
dimension of E. Consequently, some noncore vertices in G; and G5 become core vertices in the graph
G1 0 G3. The following theorem describes the preservation of vertex roles from GG; and G2 in G o Gs.

Theorem 3.9 If G1 o Gy is the coalescence of two singular graphs G1 and Gs with nullities 11 and 72,
respectively, with respect to noncore vertices having null spread —1, then all core vertices of G1 and G2
remain core vertices in G1 o Go.

Proof: Using Definition 2.1 and Theorem 3.8, we can directly prove this theorem. O

In the final part of this section, we define the subspaces Ef and E;/ of R**™~1 using subspaces
W1 C Fy and Wy C Es, respectively, where:

e W7 consists of all vectors in F; with the entry corresponding to a core vertex v; equal to zero.

o W5, consists of all vectors in Ey with the entry corresponding to the core vertex u; equal to zero.
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The subspaces F; and E, are defined as follows:

e E| is an n; — 1 dimensional subspace of R"*™~1 in which the first n entries of each vector are the
same as those of the vectors in W, and the last m — 1 entries are zero.

1 . . . — . . .
e E, is an 7y — 1 dimensional subspace of R**™~! in which the first n entries of each vector are zero,

and the last m — 1 entries are obtained from W5 by removing the entry corresponding to the core
vertex u;.

We present an example to illustrate the nature of the vertices in the coalesced graph G; o G5, obtained
by identifying the noncore vertex and core vertex.

Example 3.10 Consider the same graphs Gy and Go in the Example 3.4. In Figure /, G1 o G4 is the
coalescence of G1 and G with respect to noncore vertex ug with null spread —1 and core vertex vs.

V3 V2
V4 Uy
U1 T3 ™ Ul
Us
Ue
G1 o G2

o core vertex

©  noncore vertex
Figure 4: G; o G4 with respect to noncore vertex with null spread —1 and core vertex

Here, E; = span{(—1,1,0,0,0,0)T}

Ey= span{(—1,1,0,0,0,0)",(-1,0,1,0,0,0)T}

E = span{(-1,1,0,0,0,0,0,0,0,0,0)7,(0,0,0,0,0,0,—1,1,0,0,0)"}

Then, as noted earlier in this section, we construct the subspace Wy of E5. Thus we get
Wy = span{(—1,1,0,0,0,0)7}. Hence E; = span{(0,0,0,0,0,0,—1,1,0,0,0)T}.

Using E1 we get E; = span{(—1,1,0,0,0,0,0,0,0,0,0)T}.

Also dimEi + dimEg =dimE. Hence we get E; EBEg =F.

The above example gives rise to the following theorem.

Theorem 3.11 If G; o G5 is the coalescence of two singular graphs, G1 with nullity n; and Gy with
nullity n2, with respect to a noncore vertex in G1 and a core vertex u; in Ga, then the kernel eigenspace,
FE of G1 o Gy satisfies E = Ei &) Eg.

Proof: Let the vertices vy, vs,...,vny and uyg,us,...,up represent the core vertices of G; and Gs, re-
spectively. All remaining vertices in both graphs are considered noncore. To form the coalesced graph
G o G, we identify a noncore vertex v, of G with a core vertex u; of Ga; this choice does not affect
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generality. The adjacency matrix A; of G; can be expressed in block form, similar to its representation
in the proof of Theorem 3.2:

P P S
A= |Pf Py S,
ST ST o

Likewise, the adjacency matrix A, of G5 can be partitioned as

Q1 T Q2 Q3
Tr 0 T T
AQZ T

3 T Q4 Qs|’
i T3 QF Qs

where Q1 isa (j— 1) x (j — 1) matrix, Q2 is a (j — 1) x (M — j) matrix, @3 is a (j — 1) x (m — M) matrix,
Qqisa (M — j) x (M — j) matrix, Q5 is a (M — j) x (m — M) matrix, Q¢ is a (m — M) x (m — M)
matrix, and 77, T, T3 are column matrices of corresponding orders.

The adjacency matrix A of the coalesced graph G; o G is then

P P S; 0 0 0

PP P, S, 0 0 0

st st o 1 1 TF
0 0 T Q1 Q2 Q3
0 0 T» QF Qi Qs
0 0 T3 QF QF Qs

A=

Since G contains N core vertices, every vector in its kernel eigenspace E; has its last (n — N)

. . X .

components equal to zero. Hence, an arbitrary vector in F; can be represented as [ 0 , where X is
n—N

an N x 1 column vector.

X X

On_N-1 X / On—nN-1
Then 0 = |On—n| € Ey, since A 0 = 0. Hence,

O]y[ Om71 O]M

Om—n—1 Om—n—1
, X X
E, = span{ On_n [O } € El} CcFE (3.3)
Om—l n—N

Consider the subspace W5 of E5 which contains all vectors in Fy having jth entry zero. Since G2 has M

Y;
core vertices, the last m — M entries of every vector in Fy are zero. Let }9 be an arbitrary vector
2
Ome
in Wy , where Y; is a column matrix with (j — 1) entries, Y5 is a column matrix with (M — j) entries.
ON ON
On—n-1 O, On-n-1
0 - Y1 . 0 -
Then Y, = Yy € E, since A Y, = 0. Hence,
Y, Om-um Y,
Om-m Om-um
O, Y;
v Y, 0
E, = span{ Yy ' Yy € Eg} CcCFE (3.4)
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From (3.3) and (3.4), Ey,E, C E and E; + E, C E. By Theorem 2.2, dim(E) = n + 13 — 1 =
dim(E,) + dim(Ey). Hence, E = E, & E, . O

Theorem 3.12 If G 0 Gs is the coalescence of two singular graphs G1 and Gy with respect to a noncore
vertex in G1 and a core vertex u; in G, then all core vertices in G1 remain core vertices in G0 Go and
all noncore vertices in G1 and G9 remain noncore vertices in G1 o Go.

Proof: Using Definition 2.1 and Theorem 3.11, we can directly prove this theorem. O

4. Conclusion

In this paper, we studied the structure of the kernel eigenspace of the coalescence of two singular
graphs under different conditions on the null spread of the involved vertices. We established that when
the coalescence is taken with respect to noncore vertices having null spread 0, the kernel eigenspace of the
resulting graph decomposes as the direct sum of the vector spaces constructed from the corresponding
eigenspaces, and the classification of core and noncore vertices is preserved. A similar preservation of
eigenspaces and vertex classification was obtained when the coalescence is taken with respect to noncore
vertices having null spreads 0 and —1 (or vice versa).When the coalescence is performed with respect
to noncore vertices having null spread —1, we determined a relation of the kernel eigenspaces of the
graphs and that of the coalesced graph, and proved that the coalesced graph preserves the roles of core
vertices. Furthermore, when a noncore vertex of one graph is coalesced with a core vertex of the other,
we established a relation among the eigenspaces, and verified that noncore vertices remain unchanged in
the coalesced graph.Overall, these results provide a detailed characterization of how kernel eigenspaces
and the classification of core and noncore vertices behave under coalescence. They offer insight into the
algebraic structure of singular graphs and open further directions for investigating spectral properties of
more general graph operations. Since singular graphs and their nullities have interpretations in molecular
orbital theory, particularly in the study of nonbonding orbitals, the present result may be applied to
construct or analyze molecular structures with desired spectral characteristics.
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