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On the Kernel Eigenspace of Coalescence of Singular Graphs

Reeja S. B.∗, John K. Rajan, Sreekumar K. G.

abstract: A finite simple undirected graph is said to be singular if its adjacency matrix has eigenvalue 0.
If a vertex u in a graph G1 is identified with a vertex v in a graph G2, then the resulting graph G1 ◦ G2, of
order |G1|+ |G2| − 1, is called the coalescence of G1 and G2 with respect to u and v. Singular graphs consist
of core and noncore vertices. In this paper, we coalesce two singular graphs and study the kernel eigenspace
of G1 ◦G2, and based on this analysis, determine the core and noncore vertices of the coalesced graph.
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1. Introduction

A simple graph G is a graph with no multiple edges and loops. The total number of vertices in G,
denoted by o(G), is called the order of G . In this paper, we consider finite simple undirected graph. The
adjacency matrix A of a graph G with n vertices v1, v2, · · · , vn is an n × n matrix with ijth entry as 1
if vi and vj are adjacent, and 0 otherwise. The nullity of the adjacency matrix of a graph G is called
nullity of G. If the nullity η of G is greater than or equal to 1 then G is called singular graph. In this
case, 0 is an eigenvalue of the adjacency matrix. The eigenvectors corresponding to the eigenvalue 0 are
obtained by solving the system of linear equation (AX = 0). If v is a vertex in G, then the null spread of
v is defined as η(G)− η(G− v). Null spread of a vertex lies between −1 and 1. Null spread of a noncore
vertex is either 0 or −1. Also, null spread of a core vertex is always 1. Noncore vertex is called Fiedler
vertex or F-vertex or Core forbidden vertex. In [1,3], noncore vertex with null spread −1 is called upper
core-forbidden vertex and noncore vertex with null spread 0 is called middle core-forbidden vertex.

The concepts of nullity, kernel eigenspaces, and core vertices have been extensively studied in spectral
graph theory. Sciriha laid much of the foundation by characterizing singular graphs [8], analyzing graphs
with nullity one [7], and investigating maximal core sizes [9]. Her work on extremal non-bonding orbitals
[6] further emphasized the role of graph nullity in mathematical chemistry.

Building on these foundations, Kim and Shader [4] analyzed Fiedler and Parter vertices in acyclic
matrices, while Edholm et al. [2] explored vertex and edge spread in relation to zero forcing number, max-
imum nullity, and minimum rank, highlighting the interplay between structural and spectral properties
of graphs.

Several studies have focused on the spectral effects of graph operations. Ali et al. [1] examined coales-
cence with respect to Fiedler and core vertices, establishing important connections between coalescence
and spectral characteristics. Varkey and Rajan contributed further by investigating the spectrum and
energy of both coalesced singular graphs [11] and singular graphs more broadly [10]. Applications to

∗ Corresponding author.
2020 Mathematics Subject Classification: 05C50, 15A18.

Submitted November 06, 2025. Published February 03, 2026

1
Typeset by BSPMstyle.
© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.79934


2 Reeja S. B., John K. Rajan, Sreekumar K. G.

fullerene structures were also demonstrated by Fowler et al. [3], where the spectral properties of singular
graphs were linked to conduction phenomena.

Together, these works underscore the importance of singular graphs in both theoretical and applied
contexts. However, the specific effect of coalescence on the kernel eigenspace and the classification of
vertices into core and noncore categories has not been fully resolved. The present paper addresses this gap
by establishing detailed conditions under which the kernel eigenspace of the coalesced graph decomposes
as a direct sum of the eigenspaces of the components, or properly contains them, while confirming the
preservation of core and noncore vertices across the operation.

2. Preliminaries

In this section, we start with the formal definition of core and non-core vertices of a singular graph,
as introduced in [1], [5], [6], [7].

Definition 2.1 Let G be a singular graph of n vertices v1, v2, · · · , vn with nullity η ≥ 1 and B be a basis
of its kernel eigenspace. If the vertices in G are relabeled in such a way that all the vectors in B are of
the form X = (xv1 , xv2 , · · · , xvm , 0, 0, · · · , 0), where xv1 , xv2 , · · · , xvm are nonzero in at least one kernel
eigenvector in B, then the vertices v1, v2, · · · , vm are called core vertices, and vm+1, vm+2, · · · , vn are
called noncore vertices.

The distinction between core and noncore vertices plays a fundamental role in determining how the
nullity of a graph changes under vertex deletion and, more generally, under graph operations such as
coalescence. In particular, the concept of null spread provides a measure of this change and allows us
to classify vertices according to their contribution to the kernel eigenspace. Using this framework, the
following result describes how the nullity behaves when two singular graphs are coalesced at vertices with
different null spreads.

Theorem 2.2 [1] If G1, G2 are two singular graphs with nullity η1, η2, respectively, then

1. the nullity of the coalescence G1 ◦G2 of G1 and G2 with respect to noncore vertices with null spread
zero is η1+ η2.

2. the nullity of the coalescence G1 ◦G2 of G1 and G2 with respect to noncore vertices with null spread
zero and null spread −1 (or vice versa) is η1 + η2.

3. the nullity of the coalescence G1 ◦G2 of G1 and G2 with respect to noncore vertices with null spread
−1 is η1+ η2+ 1.

4. the nullity of the coalescence G1◦G2 of G1 and G2 with respect to a core vertex in G1 and a noncore
vertex (null spread 0 or −1) in G2 is η1 + η2 − 1

3. Kernel Eigenspace of Coalescence of Singular Graphs

Let G1, G2 be two singular graphs with vertex sets {v1, v2, · · · , vn} and {u1, u2, · · · ,
um}, having nullities η1, η2, respectively. The vertex labels of G1 ◦ G2 are the same as those of G1

and G2, except for the coalesced vertex. If the vertices vi ∈ G1 and uj ∈ G2 are used for coalescing,
then the coalesced vertex in G1 ◦ G2 is labeled as vi. Thus, the vertex set of G1 ◦ G2 are labeled as
v1, v2, · · · , vi, vi+1, · · · , vn, u1, u2, · · · , uj−1, uj+1, · · · , um. Let A1, A2, and A be the adjacency matri-
ces of G1, G2, G1 ◦ G2, respectively. Furthermore, let E1, E2, and E represent their respective kernel
eigenspaces. Suppose G1 and G2 each have at least one noncore vertex. Our aim is to determine the
kernel eigenspace, E of G1 ◦G2 with respect to noncore vertices using E1 and E2. For this purpose, we
consider the subspaces E

′

1, E
′

2 of R(n+m−1):

• E
′

1 is an η1 dimensional subspace of R(n+m−1) in which the last (m− 1) entries of each vector are
zero and the first n entries coincide with those of the corresponding vector in E1.
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• E
′

2 is an η2 dimensional subspace of Rn+m−1 in which the first n entries of each vector are zero and
the remaining (m− 1) entries coincide with the first (m− 1) entries of the corresponding vector in
E2.

Throughout the paper we use the notation Ok to denote a column vector of length k whose entries
are all zero.
The following example illustrates this relation clearly and also leads to the next theorem.

Example 3.1 In Figure 1, G1 and G2 are singular graphs and G1 ◦G2 is the coalescence of G1 and G2

with respect to noncore vertices v3 and u3 with null spread 0.

v1

v2v3

v4

v5 v6

G1

u1u4

u2 u3

G2

u4

v3
u2

u1

v1

v5
v6v2

v4

G1 ◦G2

core vertex

noncore vertex

Figure 1: G1 ◦G2 with respect to the noncore vertices having null spread 0

A1 =


0 0 1 1 1 0
0 0 1 1 1 0
1 1 0 1 0 0
1 1 1 0 1 0
1 1 0 1 0 1
0 0 0 0 1 0

, A2 =


0 0 1 1
0 0 1 1
1 1 0 1
1 1 1 0

, A =



0 0 1 1 1 0 0 0 0
0 0 1 1 1 0 0 0 0
1 1 0 1 0 0 1 1 1
1 1 1 0 1 0 0 0 0
1 1 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 1 1 0


Using the direct method for finding kernel eigenvector, we obtain
E1 = span{(−1, 1, 0, 0, 0, 0)T }, E2 = span{(−1, 1, 0, 0)T }, and
E = span{(−1, 1, 0, 0, 0, 0, 0, 0, 0)T , (0, 0, 0, 0, 0, 0,−1, 1, 0)T }.
As noted earlier in this section, construct the subspace E

′

1 and E
′

2 of R9 using E1 and E2, respectively.
Thus, E

′

1 = span{(−1, 1, 0, 0, 0, 0, 0, 0, 0)T }, and E
′

2 = span{(0, 0, 0, 0, 0, 0,−1, 1, 0)T },
Hence, we conclude that E = E

′

1 ⊕ E
′

2.

Theorem 3.2 If G1 ◦G2 is the coalescence of two singular graphs G1 and G2, with nullities η1 and η2,
respectively, with respect to noncore vertices having null spread 0, then the kernel eigenspace E of G1 ◦G2

satisfies E = E
′

1 ⊕ E
′

2.
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Proof: Without loss of generality, assume that v1, v2, · · · , vN and u1, u2, · · ·uM are core vertices of G1

and G2, respectively. All other vertices of G1 and G2 are noncore vertices. We take the noncore vertices
vn with null spread zero from G1 and um with null spread zero from G2 to construct G1 ◦ G2. There
is no loss of generality in making this choice. For convenience, the adjacency matrices A1 and A2 are
represented as block matrices, each consisting of 9 blocks. Thus we have

A1 =

P1 P2 S1

PT
2 P3 S2

ST
1 ST

2 0

, A2 =

Q1 Q2 T1

QT
2 Q3 T2

TT
1 TT

2 0

,
where P1 is an N × N matrix, P2 is an N × (n − N − 1) matrix, P3 is an (n − N − 1) × (n − N − 1)
matrix, S1 is an N × 1 matrix , S2 is an (n − N − 1) × 1 matrix. Q1 is an M × M matrix, Q2 is an
M × (m−M − 1) matrix, Q3 is an (m−M − 1)× (m−M − 1) matrix, T1 is an M × 1 matrix, T2 is an
(m−M − 1)× 1 matrix.

The adjacency matrix A can be represented as a block matrix such that A =


P1 P2 S1 0 0
PT
2 P3 S2 0 0

ST
1 ST

2 0 TT
1 TT

2

0 0 T1 Q1 Q2

0 0 T2 QT
2 Q3

.
Since G1 has N core vertices, the last n−N components of every vector in E1 are zero. Let

[
X

On−N

]
be

an arbitrary vector in E1, where X is a column vector with N entries.

Then,


X

On−N−1

0
OM

Om−M−1

 =

 X
On−N

Om−1

 ∈ E, since A


X

On−N−1

0
OM

Om−M−1

 = 0. Thus, we get

E
′

1 =

{ X
On−N

Om−1

 ∣∣∣∣∣
[

X
On−N

]
∈ E1

}
⊂ E. (3.1)

Since G2 has M core vertices, last (m−M) components of every vector in E2 are zero. Let

[
Y

Om−M

]
be

an arbitrary vector in E2, where Y is a column vector with M entries.

Then,


ON

On−N−1

0
Y

Om−M−1

 =

 On

Y
Om−M−1

 ∈ E, since A


ON

On−N−1

0
Y

Om−M−1

 = 0. Thus, we get

E
′

2 =

{ On

Y
Om−M−1

 ∣∣∣∣∣
[

Y
Om−M

]
∈ E2

}
⊂ E (3.2)

.
From (3.1) and (3.2), we get E

′

1, E
′

2 ⊂ E. Also, E
′

1 + E
′

2 ⊆ E. By Theorem 1.1, dimE = η1 + η2 =
dimE

′

1 + dimE
′

2. Hence E = E
′

1 ⊕ E
′

2. 2

Theorem 3.3 If G1 ◦G2 is the coalescence of two singular graphs G1 and G2, with nullities η1 and η2,
respectively, with respect to noncore vertices having null spread 0, then all core vertices of G1 and G2

remain core vertices of G1 ◦G2 and all noncore vertices of G1 and G2 remain noncore vertices of G1 ◦G2.

Proof: Using Definition 2.1 and Theorem 3.2, we can directly prove this theorem. 2

We now explore how E,E1, and E2 are related when coalescing noncore vertices of G1 and G2 having
null spread 0 and −1. The following example illustrates the connection and provides insight for the
subsequent theorem.
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Example 3.4 In Figure 2, G1 and G2 are singular graphs and G1 ◦G2 is the coalescence of G1 and G2

with respect to noncore vertex v3 with null spread 0 and noncore vertex u4 with null spread −1.

v1

v2v3

v4

v5 v6

G1

u4 u5

u6u1

u2

u3

G2

v1

v5v6

v4

v3

v2

u3

u5
u6

u2

u1

G1 ◦G2

core vertex

noncore vertex

Figure 2: G1 ◦G2 with respect to noncore vertices having null spread 0 and null spread −1

Here, E1 = span{(−1, 1, 0, 0, 0, 0)T },
E2= span{(−1, 1, 0, 0, 0, 0)T , (−1, 0, 1, 0, 0, 0)T } and
E = span{(−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , (0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0)T , (0, 0, 0, 0, 0, 0,−1, 0, 1, 0, 0)T }.
Construct the subspaces E

′

1 , E
′

2 of R11 using E1, E2, respectively. Thus
E

′

1 = span{(−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T }
E

′

2 = span{(0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0)T , (0, 0, 0, 0, 0, 0,−1, 0,−1, 0, 0)T },
dimE

′

1 + dimE
′

2 = dimE.
Thus, we get E

′

1 ⊕ E
′

2 = E.

The above example leads to the following theorem.

Theorem 3.5 If G1 ◦ G2 is the coalescence of two singular graphs G1 and G2 with nullities η1 and η2
respectively, with respect to noncore vertices having null spreads 0 and −1 (or vice versa), then the kernel
eigenspace E of G1 ◦G2 satisfies E = E

′

1 ⊕ E
′

2.

Proof: The proof follows the same steps as those in Theorem 3.2. 2

Theorem 3.6 If G1 ◦ G2 is the coalescence of two singular graphs G1 and G2 with nullities η1 and η2
respectively, with respect to non-core vertices having null spreads 0 and −1 (or vice versa), then all core
verices of G1 and G2 remain core vertices in G1 ◦ G2, and all noncore vertices of G1 and G2 remain
noncore vertices in G1 ◦G2.
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Proof: Using Definition 2.1 and Theorem 3.5, we can directly prove this theorem. 2

Example 3.7 Consider the singular graphs G1 and G2 in the Example 3.4. G1 ◦ G2 is the coalescence
of G1 and G2 with respect to noncore vertices v6 and u6 with null spread −1.

u1

v1 v5

v2v3

v6

v4 u5

u3

u2
u4

G1 ◦G2

core vertex

noncore vertex

Figure 3: G1 ◦G2 with respect to noncore vertices having null spread −1

By applying the direct method to find the kernel eigenvectors, we obtain E1 = span{(−1, 1, 0, 0, 0, 0)T }
E2 = span{(−1, 1, 0, 0, 0, 0)T , (−1, 0, 1, 0, 0, 0)T }
E = span{(−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , (0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0)T , (0, 0, 0, 0, 0, 0,−1, 0, 1, 0, 0)T ,

(0, 0, 1, 0,−1, 0, 0, 0, 0,−1, 1)T }.
Construct the subspace E

′

1 , E
′

2 of R11 using E1, E2, respectively. Thus,
E

′

1 = span{(−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T },
E

′

2 = span{(0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0)T , (0, 0, 0, 0, 0, 0,−1, 0,−1, 0, 0)T }
This implies E

′

1 + E
′

2 ⊂ E
Since E

′

1 ∩ E
′

2 = {0}, we get E ⊃ E
′

1 ⊕ E
′

2.

Theorem 3.8 If G1 ◦ G2 is the coalescence of two singular graphs G1 and G2, with nullities η1 and
η2, respectively, with respect to noncore vertices having null spread −1, then the kernel eigenspace E of
G1 ◦G2 satisfies E ⊃ E

′

1 ⊕ E
′

2.

Proof: The proof for obtaining E
′

1 +E
′

2 ⊆ E follows the same steps as in the proof of Theorem 3.2. By
Theorem 1.1, we have dimE = η1 + η2 + 1 = dimE1 + dimE2 + 1. Additionally, E

′

1 ∩ E
′

2 = ϕ. Thus, it
follows that E ⊃ E

′

1 ⊕ E
′

2. 2

When noncore vertices with null spread −1 are identified, the dimension of E
′

1 ⊕ E
′

2 is one less than the
dimension of E. Consequently, some noncore vertices in G1 and G2 become core vertices in the graph
G1 ◦G2. The following theorem describes the preservation of vertex roles from G1 and G2 in G1 ◦G2.

Theorem 3.9 If G1 ◦ G2 is the coalescence of two singular graphs G1 and G2 with nullities η1 and η2,
respectively, with respect to noncore vertices having null spread −1, then all core vertices of G1 and G2

remain core vertices in G1 ◦G2.

Proof: Using Definition 2.1 and Theorem 3.8, we can directly prove this theorem. 2

In the final part of this section, we define the subspaces E
′′

1 and E
′′

2 of Rn+m−1 using subspaces
W1 ⊂ E1 and W2 ⊂ E2, respectively, where:

• W1 consists of all vectors in E1 with the entry corresponding to a core vertex vi equal to zero.

• W2 consists of all vectors in E2 with the entry corresponding to the core vertex uj equal to zero.
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The subspaces E
′′

1 and E
′′

2 are defined as follows:

• E
′′

1 is an η1 − 1 dimensional subspace of Rn+m−1 in which the first n entries of each vector are the
same as those of the vectors in W1 and the last m− 1 entries are zero.

• E
′′

2 is an η2−1 dimensional subspace of Rn+m−1 in which the first n entries of each vector are zero,
and the last m− 1 entries are obtained from W2 by removing the entry corresponding to the core
vertex uj .

We present an example to illustrate the nature of the vertices in the coalesced graph G1 ◦G2, obtained
by identifying the noncore vertex and core vertex.

Example 3.10 Consider the same graphs G1 and G2 in the Example 3.4. In Figure 4, G1 ◦ G2 is the
coalescence of G1 and G2 with respect to noncore vertex u6 with null spread −1 and core vertex v3.

v1

v3 v2

v4

v5 v6 u2

u6

u5

u1

u4

G1 ◦G2

core vertex

noncore vertex

Figure 4: G1 ◦G2 with respect to noncore vertex with null spread −1 and core vertex

Here, E1 = span{(−1, 1, 0, 0, 0, 0)T }
E2= span{(−1, 1, 0, 0, 0, 0)T , (−1, 0, 1, 0, 0, 0)T }
E = span{(−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , (0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0)T }
Then, as noted earlier in this section, we construct the subspace W2 of E2. Thus we get

W2 = span{(−1, 1, 0, 0, 0, 0)T }. Hence E
′′

2 = span{(0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0)T }.
Using E1 we get E

′

1= span{(−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T }.
Also dimE

′

1 + dimE
′′

2 = dimE. Hence we get E
′

1 ⊕E
′′

2 = E.

The above example gives rise to the following theorem.

Theorem 3.11 If G1 ◦ G2 is the coalescence of two singular graphs, G1 with nullity η1 and G2 with
nullity η2, with respect to a noncore vertex in G1 and a core vertex uj in G2, then the kernel eigenspace,

E of G1 ◦G2 satisfies E = E
′

1 ⊕ E
′′

2 .

Proof: Let the vertices v1, v2, . . . , vN and u1, u2, . . . , uM represent the core vertices of G1 and G2, re-
spectively. All remaining vertices in both graphs are considered noncore. To form the coalesced graph
G1 ◦ G2, we identify a noncore vertex vn of G1 with a core vertex uj of G2; this choice does not affect
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generality. The adjacency matrix A1 of G1 can be expressed in block form, similar to its representation
in the proof of Theorem 3.2:

A1 =

P1 P2 S1

PT
2 P3 S2

ST
1 ST

2 0

 .

Likewise, the adjacency matrix A2 of G2 can be partitioned as

A2 =


Q1 T1 Q2 Q3

TT
1 0 TT

2 TT
3

QT
2 T2 Q4 Q5

QT
3 T3 QT

5 Q6

 ,

where Q1 is a (j−1)× (j−1) matrix, Q2 is a (j−1)× (M − j) matrix, Q3 is a (j−1)× (m−M) matrix,
Q4 is a (M − j) × (M − j) matrix, Q5 is a (M − j) × (m − M) matrix, Q6 is a (m − M) × (m − M)
matrix, and T1, T2, T3 are column matrices of corresponding orders.

The adjacency matrix A of the coalesced graph G1 ◦G2 is then

A =


P1 P2 S1 0 0 0
PT
2 P3 S2 0 0 0

ST
1 ST

2 0 TT
1 TT

2 TT
3

0 0 T1 Q1 Q2 Q3

0 0 T2 QT
2 Q4 Q5

0 0 T3 QT
3 QT

5 Q6

 .

Since G1 contains N core vertices, every vector in its kernel eigenspace E1 has its last (n − N)

components equal to zero. Hence, an arbitrary vector in E1 can be represented as

[
X

On−N

]
, where X is

an N × 1 column vector.

Then


X

On−N−1

0
OM

Om−M−1

 =

 X
On−N

Om−1

 ∈ E
′

1, since A


X

On−N−1

0
OM

Om−M−1

 = 0. Hence,

E
′

1 = span

{ X
On−N

Om−1

 ∣∣∣∣∣
[

X
On−N

]
∈ E1

}
⊂ E (3.3)

.
Consider the subspace W2 of E2 which contains all vectors in E2 having jth entry zero. Since G2 has M

core vertices, the last m−M entries of every vector in E2 are zero. Let


Y1

0
Y2

Om−M

 be an arbitrary vector

in W2 , where Y1 is a column matrix with (j − 1) entries, Y2 is a column matrix with (M − j) entries.

Then


ON

On−N−1

0
Y1

Y2

Om−M

 =


On

Y1

Y2

Om−M

 ∈ E, since A


ON

On−N−1

0
Y1

Y2

Om−M

 = 0. Hence,

E
′′

2 = span

{
On

Y1

Y2

Om−M


∣∣∣∣∣


Y1

0
Y2

Om−M

 ∈ E2

}
⊂ E (3.4)
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From (3.3) and (3.4), E
′

1, E
′′

2 ⊆ E and E
′

1 + E
′′

2 ⊆ E. By Theorem 2.2, dim(E) = η1 + η2 − 1 =
dim(E

′

1) + dim(E
′′

2 ). Hence, E = E
′

1 ⊕ E
′′

2 . 2

Theorem 3.12 If G1 ◦G2 is the coalescence of two singular graphs G1 and G2 with respect to a noncore
vertex in G1 and a core vertex uj in G2, then all core vertices in G1 remain core vertices in G1 ◦G2 and
all noncore vertices in G1 and G2 remain noncore vertices in G1 ◦G2.

Proof: Using Definition 2.1 and Theorem 3.11, we can directly prove this theorem. 2

4. Conclusion

In this paper, we studied the structure of the kernel eigenspace of the coalescence of two singular
graphs under different conditions on the null spread of the involved vertices. We established that when
the coalescence is taken with respect to noncore vertices having null spread 0, the kernel eigenspace of the
resulting graph decomposes as the direct sum of the vector spaces constructed from the corresponding
eigenspaces, and the classification of core and noncore vertices is preserved. A similar preservation of
eigenspaces and vertex classification was obtained when the coalescence is taken with respect to noncore
vertices having null spreads 0 and −1 (or vice versa).When the coalescence is performed with respect
to noncore vertices having null spread −1, we determined a relation of the kernel eigenspaces of the
graphs and that of the coalesced graph, and proved that the coalesced graph preserves the roles of core
vertices. Furthermore, when a noncore vertex of one graph is coalesced with a core vertex of the other,
we established a relation among the eigenspaces, and verified that noncore vertices remain unchanged in
the coalesced graph.Overall, these results provide a detailed characterization of how kernel eigenspaces
and the classification of core and noncore vertices behave under coalescence. They offer insight into the
algebraic structure of singular graphs and open further directions for investigating spectral properties of
more general graph operations. Since singular graphs and their nullities have interpretations in molecular
orbital theory, particularly in the study of nonbonding orbitals, the present result may be applied to
construct or analyze molecular structures with desired spectral characteristics.
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