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Certain Aspects of Analytic Function Subclasses Associated with Laguerre Polynomials
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ABSTRACT: In this research article, two novel subclasses of analytic functions denoted by Ri.y and Ciqq
are defined through subordination involving Laguerre polynomials. The initial coefficients of the functions
belonging to these classes are determined and the corresponding Fekete- szegé inequalities are derived. In
addition, analogous results are obtained for the inverse function h~!. As an application to the main results,
we examine their connection with the Polya- Eggenberger distribution.
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1. Introduction and Preliminaries

Consider the class 2 of analytic functions in the open unit disk © such that {¢ € € : [{| < 1}
normalized by the expansion

h(¢)=C+ Y act (eD (1.1)
k=2

Functions in A that are injective in © form a subclass & of normalized univalent functions. By the Koebe
one quarter theorem, every h € G has an inverse h~! analytic in a disk of radius atleast 1/4. This inverse
is expressed as

1(€) = h7H(€) = € — 26 + (263 — ¢3)€° — (5e3 — Beacs + ca)€' + ... (1.2)

Denote by B the class of analytic functions with R(r(¢)) > 0 in the Taylor series representation

r(Q) =1+ _mnl* ((€D) (1.3)
k=1

Two analytic functions g and h in ® are said to be subordinate to each other denoted by g < h if there
exists a Schwarz function ¢(¢) satisfying the conditions ¢(0) = 0 and ¢(¢) < 1 such that [§]

9(¢) = h(p(()) ¢(€D.

If g is univalent in ®, then subordination relation is equivalent to

g(0) =h(0) and g¢g(D) C h(D).
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The concept of generalized subclasses of analytic functions was introduced by Ma and Minda [6] in 1992
through the use of subordination as follows

¢h'(¢)
h(¢)

S () ={heA: <¥(¢) (C€D)}

and

¢h”(¢)
h'(¢)

In these definitions ,the comparison function ¥(¢) is analytic in the unit disk © satisfying the conditions
¥(0) = 1 and ¢'(0) > 0 . This transforms © onto a domain that is starlike with respect to 1 and
symmetric about the real axis. Different selctions of the comparison function 1 give rise to numerous
Ma-Minda type subclasses of starlike and convex functions which have been widely examined in the lit-
erature. [4,7,17]

The determination of the initial coefficients ¢y and c3 is a well-known problem in Geometric Function
Theory. Two fundamental tools in this direction are the Fekete-szegd inequality and the Hankel deter-
minant. The sth Hankel determinant was first introduced by Pommerenke [13] as follows,

Cly)={heA:1+

<) (CeD)}.

Ck Cl+1 Ck+2 T Ch+s—1
Ck+1 Ck+2 Ck+3 ce Ck+s
H ) = Ck+2 Ck+3 Ck+4 te Ck+s+1 . (1_4)
Ckt+s—1 Ckt+s Ck+s+1  °°  Cp42(s—1)

Noor [11] studied the asymptotic behavior of Hy r(h) as k — oo, while Pommerenke [14] highlighted its
applications in detecting singularities. Later, numerous researchers investigated the Hankel determinant
for distinct subclasses of 2 [1,9,10,15].

For different choices of s and k, we get the Hankel determinant as

1 (&)

Hy(e)=| . @ |=ci—} (15)
and
C C
H272(C) = Ci Cz = C2C4 — Cg. (16)

The functionals Hy1(c) and Hj2(c) reduce to the Fekete-Szegd inequality (v = 1) and the Hankel
determinant respectively which are well-known results in this field.
The Fekete-Szego functional

les —vea|, vecC (1.7)

was introduced in the study of univalent functions by Fekete and Szego, this provides valuable information
about the growth and distortion of analytic mappings. Sharp bounds for this functional have been
established for several subclasses of & and later was extended to bi-univalent classes. This inequality
serves as a refinement of the classical Bieberbach conjecture and remains central in coefficient theory.
Recently, considerable interest has been focused on developing subclasses of analytic functions with
geometric properties through the use orthogonal polynomials and special functions. In this context, we
employ the Laguerre polynomial Ly (A, 7) which satisfies the differential equation

ny" +(1+A—n)y +ry=0

where 14+ A > 0,n € R and & > 0 [5]. The solution of this differential equation is said to be the
generalized Laguerre polynomial, written as Eg(q). Applications of Laguerre polynomials arise in several
branches of mathematical physics notably in solving the Helmholtz equation in paraboloidal coordinates
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and examining electromagnetic waves propagation. The generating function of Laguerre polynomial [16]

is given by
—=2¢

e’} =4
=S LMok = S 1.
GA(Q,() kZ:O k(q)< (1 — C))\+1 ( 8)
and the recurrence relation of Laguerre polynomial is given by
2k+14+X—g¢ kE+ A
Lhia(g) = k—HQQ(Q) + msﬁq(@ for k>1 (1.9)
with the initial terms as
2 A+ 1A +2
@ =18@=1+ g ad @=L (2 CTUAED )

The recurrence relation of the Laguerre polynomial when A = 0 becomes L?(q) = Lx(q).

Motivated by the work of the researchers in this field and using the concept of subordination between two
analytic functions, we introduce two novel subclases R;.4 and Cj,q satisfying the following subordination
conditions.

Definition 1.1 Let 0 <n <1 and h € A. Then h € Riqq(G,1n,() if the following condition is satisfied

/ 1-n
wor| S| <o, e (L.11)
Note that y
Rivy(G10) = Riny(6.0.0) = e 2 1 < 6r(0.0). (ce@)
and

Riag(G.Q) = Ripg(G.1,0) = {h € A 1'(¢) < GA(0.0), (C€D)}.

Definition 1.2 Let 0 <n <1 and h € A. Then h € Ciqq(G,n, () if the following condition is satisfied

wor|i+ Gl <o cen (112)
Note that i
Ciog(6:0) = Ciog(6:0.0) = fh e 1:1 4 8 < Gr(@.0). (CeD)
and

Cik;g(G7<) = Cl*ag(Gv 17() = {h eA: h/(C) = G/\(%C)v (C € 9)}

The primary objective of this research article is to determine the coefficient estimates and derive bounds
for the Fekete-szegd functional |c3 — vc3| with respect to both real and complex values of the parameter
v. Furthermore, coefficient inequalities are obtained for the inverse function h~! associated with the
considered classes. An application of the results is also provided in connection with the Polya- Eggenberger
distribution.

To investigate further, we are in need of the following lemmas:

Lemma 1.1 [2] Let r € B be of the form (1.3). Then Vk € N,

il < 2 (1.13)
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Lemma 1.2 [3] Let r € B be of the form (1.3). If v is any complex number then we have
lrs — vra| < max{1,|v|} (1.14)
Lemma 1.3 [6] Let r € B be of the form (1.3).If v is any real number then we have

—4v+2 v<0,
lrg —vra| < {2 0<v<l, (1.15)
v — 2 v>1.

2. Coefficient Estimates and Fekete- Szeg6 Inequalities

Theorem 2.1 Let h of the form (1.1) belong to the class Riag(G,n,¢). Then we have,

2\91\
11+ 7]

|C3| S 2|'i_1| | maX{l,
n

|c2| <

(2.1)

}. (2.2)

Proof: Let h € Riqg(G,n, (). Then there exists a Schwarz function ¢(¢) analytic in the unit disk ®, such

@t+n)n-1g g2
2(1 +1)2 g1

that -
4 -
wor[ e = ewson e (23)
Consider a function r € P. By the subordination principle and the Schwarz function ¢(¢), we have
r(¢) = iiig =14 7rC+ 7+ reta® + ... (2.4)
i+ e+t
= »(¢) = T Tl (2.5)
2 3
:%g+(%—%)g%(%—%rm—%‘"’)cu.... (2.6)

Using the representation of Gx(g, ¢(())
GA(4:9(¢)) = 1+ 910(¢) + g20°(O) + .-
=14+ gr¢+[gire +gori]C? + ... (2.7)

where g1 = £3(q), 92 = £7(q) and g3 = £3(q).
On the other hand, from (1.1), we can expand the left- hand side of (2.3) as

¢h' (<€)
h(¢)

]ln:1+(1+n)02<+(2+n)[63_ (1_77)63}@

| .
3+n)
6

+ [6cs — 6(1 —n)eaes + (1 —1)(2 — )] + ... (2.8)

Comparing coefficients of ¢ and ¢? in (2.7) and (2.8), we deduce the following

(1 +m)c2 =gim (2.9)

1—n)c3
(24 n)(cs — %) = gira + gori (2.10)
= oo = % (2.11)

C3 —

9 (TQ_ ((2+n)(77—1)91 _92>

(2+n 2(1+n)? 7

r%). (2.12)
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We may write c3 as

g1
= —_ )\
C3 (2+77(T2 17"1)

where
@H+nm=—1g1 _ g

2(14n)? o
Using Lemma 1.1 and Lemma 1.2, the required result is obtained.

A =

Theorem 2.2 Let h of the form (1.1) belong to the class Ciog(G,1n,¢). Then we have

(2.13)

(2.14)

(2.15)

(2.16)

|ca| < g1
|91 92
1,12(n—1)g1 — =] ¢.
| 3| = 3‘2 I max ) (77 )gl 71
Proof: Let h € Ciqq(G, 1, (). Then there exists a Schwarz function ¢({) analytic in the unit disk ©, such
that .
% -n
T I
h(¢)
From, (1.1) we have
¢h” (¢)

6k [H ] 14 26C 1 B2 — m)es — 41— )SIC

+[8(1 = )3 = 18(1 = n)eacs — 4(3 — 2n)eq]CP +

h(¢)

Using (2.7) and (2.17) in (2.16) and by comparing the coefficients of ¢ and (2, we obtain

2co = g171

[3(2 —n)es —4(1 — 77)03] =g172 + 927'%'

= oy o (t0-m-2))

The desired result is a consequence of Lemmas 1.1 and 1.2.

The following results establish the Fekete- Szego inequality for the subclasses Riqq(G, 17, () and Ciaq(G,n, ¢)

considering both real and complex values of the parameter v.

Theorem 2.3 Suppose that h € A is in the class Riag(G,n,() . Then for every complex number v, the

following inequality holds

n+2v—-1)g1 g2
2(1+v)? 91

les — ch| <

2
(2|‘(_J:| )max{l,‘( il
n

Proof: From (2.11) and (2.12), we get

b

|91|
(2+mn)

les — vea| = |72 — Aor?|

where
C+n)m+2v-1)g g9

)
METTR0T g

Applying Lemma 1.2 to (2.21) yields

24+nn+2v—1)g1 go
2(1 +v)? g1

2 |91]
c3 —vey| < max < 1,
lea 2l < (2+n) {

|

(2.20)

(2.21)

(2.22)

(2.23)
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Theorem 2.4 Let h € Riaq(G, 1, () then for any real v the following condition is satisfied

—2(24n)(n+2v—1)g?+2(14+1)2(292+91) v < —2(1+n)% (91 —g2)—(2+n)(n—1)g3

g1(1+n)2 Y= 2(241)g2
2 2g —2(1+n)%(91—92)—(2+n)(n—1)g3 2(1+n)?(g1+92)— 2+n) (n—1)g?
c3—vcy| < <2+1n) ) 2(2+n)g1 t<v< 2(2+n)93 !
2024 (i2v=)gf =214 2gate1) ), 5 204 (91402) = 2bm(n=Dgf
g1(1+n)? 2(2+n)g?
(2.24)
Proof: The desired condition follow directly from applying Lemma 1.3 to (2.21). O

Theorem 2.5 Suppose h € A is in the class Ciq4(G, 1, ). Then for every complex number v, the following
inequality holds

|91] { ’(77—8(1—V))91 92 }
c3 — ve 3o — 5y max 1, |—== — == 5. 2.25
| 3 2‘ 3( ) 4 m ( )
Proof: From (2.18) and (2.19), we get
2 |91
- =———|ra — A 2.26
|cs — veg 52— |2 — Aari] (2.26)
where
—8(1—
Ny — (m—8(1-v)g1 g2 (2.27)
4 g1
Applying Lemma 1.2 to (2.26) yields the required result. O
Theorem 2.6 Let h € Ciqq(G,1,() then for any real v the following condition is satisfied
— (=291 +8(1—-n)gi—4g: o —4lg1— 92)+8(1 n)g;
g1 ) —
s —véd| < 3(229177) 4= g2)+8<1 “n)g? <v< W—;& (2.28)
(v—2)g1— 8;1 n)g; —4g> v > (91+92);8(1 77)91
Proof: The desired condition is obtained by applying Lemma 1.3 to relation (2.26). O

3. Coefficient Inequalities for h~!

Theorem 3.1 Let h € Riag(G, 1, () be given by (1.1) and let the inverse of h be expressed as
W) =h""(&) =€+ bt
k=2

which represents the analytic continuation of ®. The inverse function of h is valid for €] < ro, where
ro > (the Koebe radius). Then for any complex parameter v, the following inequalities are satisfied:

2g1]

~ 14|
ds| < g {1"(2+77)(3+7])91_92
2+ 7] 2(1+mn)? 9

|da| < (3.1)

} (3.2)
} (3.3)

and
2+n)B+na —2v g2

)
2(1+mn)? [}

|ds — vd3| < |291 | max{l,
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Proof: Since [(£) = h™1(£) is the inverse of h, we may write

e =h (e =+ idksk. 3.4
By definition of the inverse function, _
h™H(R(€)) = h(h™H(€)) =€ (3.5)
— p! (5 + i ck£k> =¢. (3.6)
ps

On expansion we get
€+ (c2+d2)&% + (3 + 2coby + d3)E% + -+ - =

|
A%
—
e
-
~—

Comparing the coefficients we obtain

d2 = —C2,

dg = —C3 — 262d2 = 26% — d3.

Substituting for ¢z and ¢3 from (2.11) and (2.12) in (3.8) and (3.9) we get

dy = (Ig_;’;;) (3.10)
_—q _(@C+rmBEng g2
t= gty (- (e - 2)) (10

The estimate of ds follows directly from Lemma 1.1. To obtain the bound for d3, we apply Lemma 1.2 |

which gives
91|
|d3| < max 17
2+ 7]

For any complex number v, we have

@+n)B+mo g2
2(1 +mn)? [}

). (3.12)

|91 C+mB+ngn—2v g
|d3 — vd3| < 5 ro — 501 3 — Z )2 (3.13)
2+ 1] (1+n) 91
Using Lemma 1.2, we get the desired result. O

Theorem 3.2 Let h € Ciqq(G,1,() be given by (1.1) and let the inverse of h be expressed as
(oo}
1) =11 () =6+ 3 byet
k=2

represents the analytic continuation of ®. The inverse function of h is valid for |£| < ro, where rg > i
(the Koebe radius). Then for any complex parameter v the following inequalities are satisfied

|da| < |g1] (3.14)

(4=n)g — zj‘} (3.15)

|ds| < 193] max{l,
312 =]

and
(44 —n)+3v2—n)g g2
4 g1

|91 {
ds — vd?| < max < 1,
‘ 2| 3|2 _,’7|

}. (3.16)
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Proof: The proof is akin to Theorem 3.1 and subtituting the values of ¢z and ¢z from (2.18) and (2.19)
n (3.8) and (3.9) , we get
—o1r

dy = =% (3.17)

dy = 3(2_73177) (m - ((4 — g1 — i)r%). (3.18)

The upper bound of ds is the direct consequence of Lemma 1.1. Furthermore, employing Lemma 1.2 in
connection with (3.18) produces the necessary bound for ds.
For the case where v is a complex parameter, it can further be deduced

and

44 =) +3v2+na 92
ds — vd3| < l91] r —( — == )2 3.19
Substituting Lemma 1.2 into the relation (3.19) yields the required result. O

4. Application of the Pdlya—Eggenberger Distribution

The Pdlya—Eggenberger distribution, introduced by Eggenberger and Pélya in 1923 [12], generalizes
the binomial law through an urn model with reinforcement. Motivated by its structural similarity to other
discrete distributions such as the Poisson and binomial, we now introduce the corresponding analytic series
expansion that will be used in defining subclasses of analytic functions.

Definition 4.1 Let a > 0 and t > 0. The Pdlya-Eggenberger distribution series is defined by

P(a,t,¢) = figﬁi ko (e, (4.1)

k=0

where (a)y = ala+1)---(a+ k — 1) denotes the rising factorial (Pochhammer symbol).
Equivalently the coefficient sequence is given by

(@

1 t* k>0

ap =
1. For a = 1, the sequence reduces to the binomial-type series

tk
ap — E

2. The normalized form of this series is written as

=¢+> m¢  w= %%tk 5= Z—tk

3. This Pélya-Eggenberger distribution series serves as an analogue to the Poisson distribution series
and provides a rich framework for investigating coefficient bounds and subordination results in
analytic and bi-univalent function theory.

We introduce E*(t,()h(C) : A — 2L, defined by
E*h(¢) = P(a,1,¢) + h(¢)
= ¢+ monct (4.2)

k=2
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where v = %%tk In this context, the symbol * represents the Hadamard (or convolution) product

between two holomorphic functions.
We now introduce the subclasses Riqq(G,7,n,¢) and Ciaq(G, v, 1, (), which are given by

Rlag(Ga/yvnu C) = {h‘ eA: Eh e Rlag(Gvnv C)} (43)

and

Clag(G>7777’<) = {h cA:E°h ¢ Rlag(G7nv C)} (44)

where the classes Riqq (G, 1, () and Ciaq(G, 1, () are those described in Definitions 1.1 and 1.2,
respectively.

Proceeding in the same manner as in Theorems 1.1 and 1.3, we can derive coefficient estimates and de-
termine the Fekete - Szeg6 functional for the subclasses Riqq(G, 7,1, () and Cio4(G,7,m, ). These results
follow directly by employing the estimates obtained for the subclasses Riqq(G,7,n,{) and

Clag (Ga R/ C)

Theorem 4.1 Let 0 < n <1 and let E®h be defined as in (4.2). If h € Riag(G,v,n,C), then the initial
coefficients satisfy the following estimates:

2|91|
11+ nly2

lglllm{1
12 4+ 7|3 ’

and for any v € €, the Fekete-Szego functional satisfies the inequality

lea] <

m=1)2+mg _ g2

cal <
lesl < ST ER

} (4.6)
}. (4.7)

g {1 ‘ ((n=1) +2v3)2+n)g1 g2
|2+ 773 ’ 2(1+n)%3 9

les — vl <

Proof: Since h € Rio4(G,v,1,¢), by (4.3) we have

ap ey [SE R _
(EHO)T | S | =6ataete). (e ) (49)
From (4.2), it follows that
a 171-m _
(BR[| =14 (U mmend + 2+ )baes =+ o3 1e?
+ B 6,0, — 60— mrvacaraes — (1 = )@= I+ (49)

6
Substituting (2.7) and (4.9) in (4.8) and then equating coefficients of ¢ and ¢2, we obtain

o= AL (4.10)

(1+n)72

and

C3 —

91 ( L ((n—l)(2+n)91 3 92)

@+m\ 201+ 1)? " 7“1) (4.11)

Combining (4.10) and (4.11),

Lemmas 1.1 and 1.2 lead to the desired result. O
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Theorem 4.2 Let h € Riqq(G,v,¢,n) then for any real v the following condition is satisfied

—2((n=1)734+2v73) (24+n)g; +2(292+91) (14+n) 73

g1(1+1)3 VS
2 291
e —vey| < Ty . L. s < v < o
2((=1)v5+2v73)(241) 91 —2(292+91) (1+n) 75 v>
91(1+1)%+3 V=2

where

—2(g2 — 91) (A + 1) — 2+ n)(n - Dgirs
2(2 + n)v393

2(g2 + g) (1 +1)%*3 — 2+n)(n—Dgirs
2(2 + )39t ‘

1 =

M2 =

(4.13)

(4.14)

(4.15)

Proof: The proof of this theorem is a direct consequence of the application of Lemma 1.3 to the equation

(4.12) to obtain the desired result.

O

Theorem 4.3 Let 0 < n <1 and let E*h be defined as in (4.2). If h € Cio9(G,7,m, (), then the initial

coefficients satisfy the following estimates

|Cg| S @
72|
l91] { 92 }
c3| £ ———— max <1, -1 - =
| 3| = 3‘2 _nh/3 (77 )gl a

and for any v € €, the Fekete - Szego functional satisfies the inequality

les — ved| < }

—1)4+2 2 —
g1 max{l’ ‘ ((n =143 + 3;/( Mg g2
312 = nlvs 43 9

Proof: Since h € Ciqq(G, v, 7,¢) by (4.4) we have

()P |1+ S
From (4.2), it follows that

¢(Eh(())"

1-n
(ETh(O)) } = 1+ 27562C + [3(2 = m)yscs — 4(1 — m)35)¢?

(B P |1+

+[8(1 — n)y3c3 — 18(1 — n)y2cayscs — A(3 — 2n)yacalC + .. ..

Substituting (2.7) and (4.20) in (4.19) and equating coefficients of ¢ and (2, we obtain

cy — g1r1
0 = ——
272

g1 g2\ o
3= |(r—(1— —=r
e —77)73< ’ (( o 91> 1>
Combining (4.21) and (4.22) we get

9 o (40— mys +3v(2—n)vs)gr g2
3(2 = n)vs ( ’ ( 43 91)

and

7«5)

c3 — vCh =

By Lemmas 1.1 and 1.2, the desired result is obtained.

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)
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Theorem 4.4 Let h € Ciqq(G,7,(,n), then for any real v the following condition is satisfied

—(4(n=1)75+3v(2=1)73) 97 +2(292+91)75

) v <3
9 9173
C3 — VC%' S ﬁ s 13 S 174 S Ha (424)
(4(n=1)75+3v(2-1)73)97 ~2(292+91)73 U >
9173 V= e
where
s = — o2 — 9175 — 41— m)3ed (4.25)
3(2 —n)ysgi
4 2 —4(1 — )22
L = Mozt gy — 40— n)rzer (4.26)

3(2 = n)ysgi

Proof: The proof of this theorem is a direct consequence of the application of Lemma 1.3 to the equation
(4.23) to determine the desired result. o

5. Conclusion

Based on the investigations into the novel subclasses R;qq and Cjqy which was defined by
subordination to Laguerre polynomial we have successfully established upper bounds for the initial co-
efficients co and c3 and derived the corresponding Fekete-Szegd inequalities for functions within these
classes. Furthermore, analogous estimates were obtained for the coefficients of the inverse function h~!.
While the determination of the absolute sharpness of these bounds remains an open question for future
work the obtained coefficient estimates were directly connected to parameters of the Pélya-Eggenberger
distribution thereby demonstrating the probabilistic significance of the R;,, and Cjqy function classes.
This work therefore not only introduces and characterizes new subclasses in geometric function theory
but also reveals a novel and meaningful bridge between analytic functions and discrete probability theory.
The established bounds provide a rigorous foundation for further exploration into extremal problems and
the exact coefficient behavior within these Laguerre-associated function classes.
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