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Certain Aspects of Analytic Function Subclasses Associated with Laguerre Polynomials
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abstract: In this research article, two novel subclasses of analytic functions denoted by Rlag and Clag
are defined through subordination involving Laguerre polynomials. The initial coefficients of the functions
belonging to these classes are determined and the corresponding Fekete- szegö inequalities are derived. In
addition, analogous results are obtained for the inverse function h−1. As an application to the main results,
we examine their connection with the Pòlya- Eggenberger distribution.
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1. Introduction and Preliminaries

Consider the class A of analytic functions in the open unit disk D such that {ζ ∈ C : |ζ| < 1}
normalized by the expansion

h(ζ) = ζ +

∞∑
k=2

ckζ
k, ζ ∈ D (1.1)

Functions in A that are injective in D form a subclass S of normalized univalent functions. By the Koebe
one quarter theorem, every h ∈ S has an inverse h−1 analytic in a disk of radius atleast 1/4. This inverse
is expressed as

l(ξ) = h−1(ξ) = ξ − c2ξ
2 + (2c22 − c3)ξ

3 − (5c23 − 5c2c3 + c4)ξ
4 + . . . (1.2)

Denote by P the class of analytic functions with ℜ(r(ζ)) > 0 in the Taylor series representation

r(ζ) = 1 +

∞∑
k=1

rkζ
k (ζ ∈ D) (1.3)

Two analytic functions g and h in D are said to be subordinate to each other denoted by g ≺ h if there
exists a Schwarz function φ(ζ) satisfying the conditions φ(0) = 0 and φ(ζ) < 1 such that [8]

g(ζ) = h(φ(ζ)) ζ ∈ D.

If g is univalent in D, then subordination relation is equivalent to

g(0) = h(0) and g(D) ⊂ h(D).
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The concept of generalized subclasses of analytic functions was introduced by Ma and Minda [6] in 1992
through the use of subordination as follows

S∗(ψ) =
{
h ∈ A :

ζh′(ζ)

h(ζ)
≺ ψ(ζ) (ζ ∈ D)

}
and

C(ψ) =
{
h ∈ A : 1 +

ζh′′(ζ)

h′(ζ)
≺ ψ(ζ) (ζ ∈ D)

}
.

In these definitions ,the comparison function ψ(ζ) is analytic in the unit disk D satisfying the conditions
ψ(0) = 1 and ψ′(0) > 0 . This transforms D onto a domain that is starlike with respect to 1 and
symmetric about the real axis. Different selctions of the comparison function ψ give rise to numerous
Ma-Minda type subclasses of starlike and convex functions which have been widely examined in the lit-
erature. [4,7,17]
The determination of the initial coefficients c2 and c3 is a well-known problem in Geometric Function
Theory. Two fundamental tools in this direction are the Fekete-szegö inequality and the Hankel deter-
minant. The sth Hankel determinant was first introduced by Pommerenke [13] as follows,

Hs,k =


ck ck+1 ck+2 · · · ck+s−1

ck+1 ck+2 ck+3 · · · ck+s

ck+2 ck+3 ck+4 · · · ck+s+1

...
...

...
. . .

...
ck+s−1 ck+s ck+s+1 · · · ck+2(s−1)

 . (1.4)

Noor [11] studied the asymptotic behavior of Hs,k(h) as k → ∞, while Pommerenke [14] highlighted its
applications in detecting singularities. Later, numerous researchers investigated the Hankel determinant
for distinct subclasses of A [1,9,10,15].
For different choices of s and k, we get the Hankel determinant as

H2,1(c) =

∣∣∣∣ 1 c2
c2 c3

∣∣∣∣ = c3 − c22 (1.5)

and

H2,2(c) =

∣∣∣∣ c2 c3
c3 c4

∣∣∣∣ = c2c4 − c23. (1.6)

The functionals H2,1(c) and H2,2(c) reduce to the Fekete-Szegö inequality (ν = 1) and the Hankel
determinant respectively which are well-known results in this field.
The Fekete-Szegö functional

|c3 − νc22|, γ ∈ C (1.7)

was introduced in the study of univalent functions by Fekete and Szegö, this provides valuable information
about the growth and distortion of analytic mappings. Sharp bounds for this functional have been
established for several subclasses of S and later was extended to bi-univalent classes. This inequality
serves as a refinement of the classical Bieberbach conjecture and remains central in coefficient theory.
Recently, considerable interest has been focused on developing subclasses of analytic functions with
geometric properties through the use orthogonal polynomials and special functions. In this context, we
employ the Laguerre polynomial Lk(λ, τ) which satisfies the differential equation

ny′′ + (1 + λ− n)y′ + ry = 0

where 1 + λ > 0, n ∈ R and k ≥ 0 [5]. The solution of this differential equation is said to be the
generalized Laguerre polynomial, written as Lλ

k(q). Applications of Laguerre polynomials arise in several
branches of mathematical physics notably in solving the Helmholtz equation in paraboloidal coordinates
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and examining electromagnetic waves propagation. The generating function of Laguerre polynomial [16]
is given by

Gλ(q, ζ) =

∞∑
k=0

Lλ
k(q)ζ

k =
e

−λζ
1−ζ

(1− ζ)λ+1
(1.8)

and the recurrence relation of Laguerre polynomial is given by

Lλ
k+1(q) =

2k + 1 + λ− q

k + 1
Lλ
k(q) +

k + λ

k + 1
Lλ
k−1(q) for k ≥ 1 (1.9)

with the initial terms as

Lλ
0 (q) = 1,Lλ

1 (q) = 1 + λ− q and Lλ
2 (q) =

q2

2
− (λ+ 2)q +

(λ+ 1)(λ+ 2)

2
. (1.10)

The recurrence relation of the Laguerre polynomial when λ = 0 becomes L0
k(q) = Lk(q).

Motivated by the work of the researchers in this field and using the concept of subordination between two
analytic functions, we introduce two novel subclases Rlag and Clag satisfying the following subordination
conditions.

Definition 1.1 Let 0 ≤ η ≤ 1 and h ∈ A. Then h ∈ Rlag(G, η, ζ) if the following condition is satisfied

[h′(ζ)]η
[
ζh′(ζ)

h(ζ)

]1−η

≺ Gλ(q, ζ), (ζ ∈ D). (1.11)

Note that

R∗
lag(G, ζ) = R∗

lag(G, 0, ζ) =
{
h ∈ A :

ζh′(ζ)

h(ζ)
≺ Gλ(q, ζ), (ζ ∈ D)

}
and

R∗∗
lag(G, ζ) = R∗

lag(G, 1, ζ) =
{
h ∈ A : h′(ζ) ≺ Gλ(q, ζ), (ζ ∈ D)

}
.

Definition 1.2 Let 0 ≤ η ≤ 1 and h ∈ A. Then h ∈ Clag(G, η, ζ) if the following condition is satisfied

[h′(ζ)]η
[
1 +

ζh′′(ζ)

h′(ζ)

]1−η

≺ Gλ(q, ζ), (ζ ∈ D) (1.12)

Note that

C∗
lag(G, ζ) = C∗

lag(G, 0, ζ) =
{
h ∈ A : 1 +

ζh′′(ζ)

h′(ζ)
≺ Gλ(q, ζ), (ζ ∈ D)

}
and

C∗∗
lag(G, ζ) = C∗

lag(G, 1, ζ) =
{
h ∈ A : h′(ζ) ≺ Gλ(q, ζ), (ζ ∈ D)

}
.

The primary objective of this research article is to determine the coefficient estimates and derive bounds
for the Fekete-szegö functional |c3 − νc22| with respect to both real and complex values of the parameter
ν. Furthermore, coefficient inequalities are obtained for the inverse function h−1 associated with the
considered classes. An application of the results is also provided in connection with the Polya- Eggenberger
distribution.
To investigate further, we are in need of the following lemmas:

Lemma 1.1 [2] Let r ∈ P be of the form (1.3). Then ∀ k ∈ N,

|rk| ≤ 2 (1.13)
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Lemma 1.2 [3] Let r ∈ P be of the form (1.3). If ν is any complex number then we have

|r3 − νr22| ≤ max{1, |ν|} (1.14)

Lemma 1.3 [6] Let r ∈ P be of the form (1.3).If ν is any real number then we have

|r3 − νr22| ≤


−4ν + 2 ν ≤ 0,

2 0 ≤ ν ≤ 1,

4ν − 2 ν ≥ 1.

(1.15)

2. Coefficient Estimates and Fekete- Szegö Inequalities

Theorem 2.1 Let h of the form (1.1) belong to the class Rlag(G, η, ζ). Then we have,

|c2| ≤
2|g1|
|1 + η|

(2.1)

|c3| ≤
|g1|

|2 + η|
max

{
1,

∣∣∣∣ (2 + η)(η − 1)g1
2(1 + η)2

− g2
g1

∣∣∣∣}. (2.2)

Proof: Let h ∈ Rlag(G, η, ζ).Then there exists a Schwarz function φ(ζ) analytic in the unit disk D, such
that

[h′(ζ)]η
[
ζh′(ζ)

h(ζ)

]1−η

= Gλ(q, φ(ζ)), (ζ ∈ D). (2.3)

Consider a function r ∈ P . By the subordination principle and the Schwarz function φ(ζ), we have

r(ζ) =
1 + φ(ζ)

1− φ(ζ)
= 1 + r1ζ + r2ζ

2 + rzeta
3 + . . . (2.4)

=⇒ φ(ζ) =
r1ζ + r2ζ + r3ζ3 + . . .

2 + r1ζ + r2ζ2 + . . .
(2.5)

=
r1
2
ζ +

(r2
2

− r21
4

)
ζ2 +

(r31
8

− 1

2
r1r2 −

r3
2

)
ζ3 + . . . . (2.6)

Using the representation of Gλ(q, φ(ζ))

Gλ(q, φ(ζ)) = 1 + g1φ(ζ) + g2φ
2(ζ) + . . .

= 1 + g1r1ζ + [g1r2 + g2r
2
1]ζ

2 + . . . (2.7)

where g1 = Lλ
0 (q), g2 = Lλ

1 (q) and g3 = Lλ
2 (q).

On the other hand, from (1.1), we can expand the left- hand side of (2.3) as

[h′(ζ)]η
[
ζh′(ζ)

h(ζ)

]1−η

= 1 + (1 + η)c2ζ + (2 + η)

[
c3 −

(1− η)

2
c22

]
ζ2

+
(3 + η)

6
[6c4 − 6(1− η)c2c3 + (1− η)(2− η)c32]ζ

3 + . . . . (2.8)

Comparing coefficients of ζ and ζ2 in (2.7) and (2.8), we deduce the following

(1 + η)c2 = g1r1 (2.9)

(2 + η)(c3 −
(1− η)c22

2
) = g1r2 + g2r

2
1 (2.10)

=⇒ c2 =
g1r1

(1 + η)
(2.11)

c3 =
g1

(2 + η

(
r2 −

(
(2 + η)(η − 1)g1

2(1 + η)2
− g2
g1

)
r21

)
. (2.12)
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We may write c3 as

c3 =
g1

(2 + η
(r2 − λ1r1) (2.13)

where

λ1 =
(2 + η)(η − 1)g1

2(1 + η)2
− g2
g1
.

Using Lemma 1.1 and Lemma 1.2, the required result is obtained. 2

Theorem 2.2 Let h of the form (1.1) belong to the class Clag(G, η, ζ). Then we have

|c2| ≤ |g1| (2.14)

|c3| ≤
|g1|

3|2− η|
max

{
1,

∣∣∣∣2(η − 1)g1 −
g2
g1

∣∣∣∣}. (2.15)

Proof: Let h ∈ Clag(G, η, ζ).Then there exists a Schwarz function φ(ζ) analytic in the unit disk D, such
that

[h′(ζ)]η
[
1 +

ζh”(ζ)

h′(ζ)

]1−η

= Gλ(q, φ(ζ)), (ζ ∈ D) (2.16)

From, (1.1) we have

[h′(ζ)]η
[
1 +

ζh”(ζ)

h′(ζ)

]1−η

=1 + 2c2ζ + [3(2− η)c3 − 4(1− η)c22]ζ
2

+ [8(1− η)c32 − 18(1− η)c2c3 − 4(3− 2η)c4]ζ
3 + . . . . (2.17)

Using (2.7) and (2.17) in (2.16) and by comparing the coefficients of ζ and ζ2, we obtain

2c2 = g1r1 (2.18)

[3(2− η)c3 − 4(1− η)c22] = g1r2 + g2r
2
1. (2.19)

=⇒ c3 =
g1

3(2− η)

(
r2 −

(
2(η − 1)g1 −

g2
g1

)
r21

)
The desired result is a consequence of Lemmas 1.1 and 1.2. 2

The following results establish the Fekete- Szegö inequality for the subclassesRlag(G, η, ζ) and Clag(G, η, ζ)
considering both real and complex values of the parameter ν.

Theorem 2.3 Suppose that h ∈ A is in the class Rlag(G, η, ζ) . Then for every complex number ν, the
following inequality holds

|c3 − νc22| ≤
|g1|

(2 + η)
max

{
1,

∣∣∣∣ (2 + η)(η + 2ν − 1)g1
2(1 + ν)2

− g2
g1

∣∣∣∣}. (2.20)

Proof: From (2.11) and (2.12), we get

|c3 − νc22| =
|g1|

(2 + η)
|r2 − λ2r

2
1| (2.21)

where

λ2 =
(2 + η)(η + 2ν − 1)g1

2(1 + ν)2
− g2
g1

(2.22)

Applying Lemma 1.2 to (2.21) yields

|c3 − νc22| ≤
|g1|

(2 + η)
max

{
1,

∣∣∣∣ (2 + η)(η + 2ν − 1)g1
2(1 + ν)2

− g2
g1

∣∣∣∣} (2.23)

2
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Theorem 2.4 Let h ∈ Rlag(G, η, ζ) then for any real ν the following condition is satisfied

|c3−νc22| ≤


−2(2+η)(η+2ν−1)g21+2(1+η)2(2g2+g1)

g1(1+η)2
, ν ≤ −2(1+η)2(g1−g2)−(2+η)(η−1)g21

2(2+η)g21
2g1

(2+η)
,
−2(1+η)2(g1−g2)−(2+η)(η−1)g21

2(2+η)g21
≤ ν ≤ 2(1+η)2(g1+g2)−(2+η)(η−1)g21

2(2+η)g21
2(2+η)(η+2ν−1)g21−2(1+η)2(2g2+g1)

g1(1+η)2
, ν ≥ 2(1+η)2(g1+g2)−(2+η)(η−1)g21

2(2+η)g21
.

(2.24)

Proof: The desired condition follow directly from applying Lemma 1.3 to (2.21). 2

Theorem 2.5 Suppose h ∈ A is in the class Clag(G, η, ζ). Then for every complex number ν, the following
inequality holds

|c3 − νc22| ≤
|g1|

3(2− η)
max

{
1,

∣∣∣∣ (η − 8(1− ν))g1
4

− g2
g1

∣∣∣∣}. (2.25)

Proof: From (2.18) and (2.19), we get

|c3 − νc22| =
|g1|

3(2− η)
|r2 − λ3r

2
1| (2.26)

where

λ3 =
(η − 8(1− ν))g1

4
− g2
g1

(2.27)

Applying Lemma 1.2 to (2.26) yields the required result. 2

Theorem 2.6 Let h ∈ Clag(G, η, ζ) then for any real ν the following condition is satisfied

|c3 − νc22| ≤


−(ν−2)g1+8(1−η)g2

1−4g2
g1

, ν ≤ −4(g1−g2)+8(1−η)g2
1

g1
2g1

3(2−η) ,
−4(g1−g2)+8(1−η)g2

1

g1
≤ ν ≤ 4(g1+g2)+8(1−η)g2

1

g1
(ν−2)g1−8(1−η)g2

1−4g2
g1

, ν ≥ 4(g1+g2)+8(1−η)g2
1

g1
.

(2.28)

Proof: The desired condition is obtained by applying Lemma 1.3 to relation (2.26). 2

3. Coefficient Inequalities for h−1

Theorem 3.1 Let h ∈ Rlag(G, η, ζ) be given by (1.1) and let the inverse of h be expressed as

l(ξ) = h−1(ξ) = ξ +

∞∑
k=2

bkξ
k

which represents the analytic continuation of D. The inverse function of h is valid for |ξ| ≤ r0, where
r0 >

1
4 (the Koebe radius). Then for any complex parameter ν, the following inequalities are satisfied:

|d2| ≤
2|g1|
|1 + η|

(3.1)

|d3| ≤
|g1|

|2 + η|
max

{
1,

∣∣∣∣ (2 + η)(3 + η)g1
2(1 + η)2

− g2
g1

∣∣∣∣} (3.2)

and

|d3 − νd22| ≤
|g1|

|2 + η|
max

{
1,

∣∣∣∣ (2 + η)(3 + η)g1 − 2ν

2(1 + η)2
− g2
g1

∣∣∣∣} (3.3)
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Proof: Since l(ξ) = h−1(ξ) is the inverse of h, we may write

l(ξ) = h−1(ξ) = ξ +

∞∑
k=2

dkξ
k. (3.4)

By definition of the inverse function,

h−1(h(ξ)) = h(h−1(ξ)) = ξ (3.5)

=⇒ h−1

(
ξ +

∞∑
k=2

ckξ
k

)
= ξ. (3.6)

On expansion we get

ξ + (c2 + d2)ξ
2 + (c3 + 2c2b2 + d3)ξ

3 + · · · = ξ. (3.7)

Comparing the coefficients we obtain

d2 = −c2, (3.8)

d3 = −c3 − 2c2d2 = 2c22 − d3. (3.9)

Substituting for c2 and c3 from (2.11) and (2.12) in (3.8) and (3.9) we get

d2 =
−g1r1
(1 + η)

(3.10)

d3 =
−g1

(2 + η)

(
r2 −

(
(2 + η)(3 + η)g1

2(1 + η)2
− g2
g1

)
r21

)
. (3.11)

The estimate of d2 follows directly from Lemma 1.1. To obtain the bound for d3, we apply Lemma 1.2 ,
which gives

|d3| ≤
|g1|

|2 + η|
max

{
1,

∣∣∣∣ (2 + η)(3 + η)g1
2(1 + η)2

− g2
g1

∣∣∣∣). (3.12)

For any complex number ν, we have

|d3 − νd22| ≤
|g1|

|2 + η|

∣∣∣∣r2 − (
(2 + η)(3 + η)g1 − 2ν

2(1 + η)2
− g2
g1

)
r21

∣∣∣∣. (3.13)

Using Lemma 1.2, we get the desired result. 2

Theorem 3.2 Let h ∈ Clag(G, η, ζ) be given by (1.1) and let the inverse of h be expressed as

l(ξ) = h−1(ξ) = ξ +

∞∑
k=2

bkξ
k

represents the analytic continuation of D. The inverse function of h is valid for |ξ| ≤ r0, where r0 >
1
4

(the Koebe radius). Then for any complex parameter ν the following inequalities are satisfied

|d2| ≤ |g1| (3.14)

|d3| ≤
|g1|

3|2− η|
max

{
1,

∣∣∣∣(4− η)g1 −
g2
g1

∣∣∣∣} (3.15)

and

|d3 − νd22| ≤
|g1|

3|2− η|
max

{
1,

∣∣∣∣ (4(4− η) + 3ν(2− η))g1
4

− g2
g1

∣∣∣∣}. (3.16)
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Proof: The proof is akin to Theorem 3.1 and subtituting the values of c2 and c3 from (2.18) and (2.19)
in (3.8) and (3.9) , we get

d2 =
−g1r1

2
(3.17)

and

d3 =
−g1

3(2− η)

(
r2 −

(
(4− η)g1 −

g2
g1

)
r21

)
. (3.18)

The upper bound of d2 is the direct consequence of Lemma 1.1. Furthermore, employing Lemma 1.2 in
connection with (3.18) produces the necessary bound for d3.
For the case where ν is a complex parameter, it can further be deduced

|d3 − νd22| ≤
|g1|

3|2− η|

∣∣∣∣r2 − (
4(4− η) + 3ν(2 + η)g1

4
− g2
g1

)
r21

∣∣∣∣. (3.19)

Substituting Lemma 1.2 into the relation (3.19) yields the required result. 2

4. Application of the Pólya–Eggenberger Distribution

The Pólya–Eggenberger distribution, introduced by Eggenberger and Pólya in 1923 [12], generalizes
the binomial law through an urn model with reinforcement. Motivated by its structural similarity to other
discrete distributions such as the Poisson and binomial, we now introduce the corresponding analytic series
expansion that will be used in defining subclasses of analytic functions.

Definition 4.1 Let a > 0 and t > 0. The Pólya-Eggenberger distribution series is defined by

P (a, t, ζ) =

∞∑
k=0

(a)k
k!

(tζ)k, ζ ∈ D, (4.1)

where (a)k = a(a+ 1) · · · (a+ k − 1) denotes the rising factorial (Pochhammer symbol).
Equivalently the coefficient sequence is given by

ak =
(a)k
k!

tk, k ≥ 0

1. For a = 1, the sequence reduces to the binomial-type series

ak =
tk

k!
.

2. The normalized form of this series is written as

P̃ (ζ) = ζ +

∞∑
k=2

γkζ
k, γk =

1

S

(a)k
k!

tk, S =

∞∑
k=2

(a)k
k!

tk,

3. This Pólya–Eggenberger distribution series serves as an analogue to the Poisson distribution series
and provides a rich framework for investigating coefficient bounds and subordination results in
analytic and bi-univalent function theory.

We introduce Ea(t, ζ)h(ζ) : A → A, defined by

Eah(ζ) = P̃ (a, t, ζ) ∗ h(ζ)

= ζ +

∞∑
k=2

γkckζ
k (4.2)
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where γk = 1
S

(a)k
k! t

k. In this context, the symbol ∗ represents the Hadamard (or convolution) product
between two holomorphic functions.
We now introduce the subclasses Rlag(G, γ, η, ζ) and Clag(G, γ, η, ζ), which are given by

Rlag(G, γ, η, ζ) =
{
h ∈ A : Ech ∈ Rlag(G, η, ζ)

}
(4.3)

and
Clag(G, γ, η, ζ) =

{
h ∈ A : Ech ∈ Rlag(G, η, ζ)

}
(4.4)

where the classes Rlag(G, η, ζ) and Clag(G, η, ζ) are those described in Definitions 1.1 and 1.2,
respectively.
Proceeding in the same manner as in Theorems 1.1 and 1.3, we can derive coefficient estimates and de-
termine the Fekete - Szegö functional for the subclasses Rlag(G, γ, η, ζ) and Clag(G, γ, η, ζ). These results
follow directly by employing the estimates obtained for the subclasses Rlag(G, γ, η, ζ) and
Clag(G, γ, η, ζ).

Theorem 4.1 Let 0 ≤ η ≤ 1 and let Eah be defined as in (4.2). If h ∈ Rlag(G, γ, η, ζ), then the initial
coefficients satisfy the following estimates:

|c2| ≤
2|g1|

|1 + η|γ2
(4.5)

|c3| ≤
|g1|

|2 + η|γ3
max

{
1,

∣∣∣∣ (η − 1)(2 + η)g1
2(1 + η)2

− g2
g1

∣∣∣∣} (4.6)

and for any ν ∈ C, the Fekete-Szegö functional satisfies the inequality

|c3 − νc22| ≤
g1

|2 + η|γ3
max

{
1,

∣∣∣∣ ((η − 1)γ22 + 2νγ3)(2 + η)g1
2(1 + η)2γ22

− g2
g1

∣∣∣∣}. (4.7)

Proof: Since h ∈ Rlag(G, γ, η, ζ), by (4.3) we have

[(Eah(ζ))′]η
[
ζ(Eah(ζ))′

(Eah(ζ))

]1−η

= Gλ(q, φ(ζ)), (ζ ∈ D). (4.8)

From (4.2), it follows that

[(Eah(ζ))′]η
[
ζ(Eah(ζ))′

(Eah(ζ))

]1−η

= 1 + (1 + η)γ2c2ζ + (2 + η)[γ3c3 −
1− η

2
γ22c

2
2]ζ

2

+
(3 + η)

6
[6γ4c4 − 6(1− η)γ2c2γ3c3 − (1− η)(2− η)γ32c

3
2]ζ

3 + . . . (4.9)

Substituting (2.7) and (4.9) in (4.8) and then equating coefficients of ζ and ζ2, we obtain

c2 =
g1r1

(1 + η)γ2
(4.10)

and

c3 =
g1

(2 + η)γ3

(
r2 −

(
(η − 1)(2 + η)g1

2(1 + η)2
− g2
g1

)
r21

)
(4.11)

Combining (4.10) and (4.11),

c3 − νc22 =
g1

(2 + η)γ3

(
r2 −

(
(η − 1)(2 + η)g1

2(1 + η)2
− g2
g1

)
r21

)
(4.12)

Lemmas 1.1 and 1.2 lead to the desired result. 2
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Theorem 4.2 Let h ∈ Rlag(G, γ, ζ, η) then for any real ν the following condition is satisfied

|c3 − νc22| ≤


−2((η−1)γ2

2+2νγ3)(2+η)g2
1+2(2g2+g1)(1+η)2γ2

2

g1(1+η)2γ2
2

, ν ≤ µ1

2g1
(2+η)γ3

, µ1 ≤ ν ≤ µ2

2((η−1)γ2
2+2νγ3)(2+η)g2

1−2(2g2+g1)(1+η)2γ2
2

g1(1+η)2γ2
2

, ν ≥ µ2

(4.13)

where

µ1 =
−2(g2 − g1)(1 + η)2γ22 − (2 + η)(η − 1)g21γ

2
2

2(2 + η)γ3g21
(4.14)

µ2 =
2(g2 + g1)(1 + η)2γ22 − (2 + η)(η − 1)g21γ

2
2

2(2 + η)γ3g21
. (4.15)

Proof: The proof of this theorem is a direct consequence of the application of Lemma 1.3 to the equation
(4.12) to obtain the desired result. 2

Theorem 4.3 Let 0 ≤ η ≤ 1 and let Eah be defined as in (4.2). If h ∈ Clag(G, γ, η, ζ), then the initial
coefficients satisfy the following estimates

|c2| ≤
|g1|
|γ2|

(4.16)

|c3| ≤
|g1|

3|2− η|γ3
max

{
1,

∣∣∣∣(η − 1)g1 −
g2
g1

∣∣∣∣} (4.17)

and for any ν ∈ C, the Fekete - Szegö functional satisfies the inequality

|c3 − νc22| ≤
g1

3|2− η|γ3
max

{
1,

∣∣∣∣ ((η − 1)4γ22 + 3ν(2− η)γ3)g1
4γ22

− g2
g1

∣∣∣∣}. (4.18)

Proof: Since h ∈ Clag(G, γ, η, ζ) by (4.4) we have

[(Eah(ζ))′]η
[
1 +

ζ(Eah(ζ))′′

(Eah(ζ))′

]1−η

= Gλ(q, φ(ζ)), (ζ ∈ D). (4.19)

From (4.2), it follows that

[(Eah(ζ))′]η
[
1 +

ζ(Eah(ζ))′′

(Eah(ζ))′

]1−η

= 1 + 2γ2c2ζ + [3(2− η)γ3c3 − 4(1− η)γ22c
2
2]ζ

2

+ [8(1− η)γ32c
3
2 − 18(1− η)γ2c2γ3c3 − 4(3− 2η)γ4c4]ζ

3 + . . . . (4.20)

Substituting (2.7) and (4.20) in (4.19) and equating coefficients of ζ and ζ2, we obtain

c2 =
g1r1
2γ2

(4.21)

and

c3 =
g1

3(2− η)γ3

(
r2 −

(
(1− η))g1 −

g2
g1

)
r21

)
(4.22)

Combining (4.21) and (4.22) we get

c3 − νc22 =
g1

3(2− η)γ3

(
r2 −

(
(4(1− η)γ22 + 3ν(2− η)ν3)g1

4γ22
− g2
g1

)
r21

)
(4.23)

By Lemmas 1.1 and 1.2, the desired result is obtained. 2



Certain Aspects of Analytic Function Subclasses Associated with Laguerre Polynomials 11

Theorem 4.4 Let h ∈ Clag(G, γ, ζ, η), then for any real ν the following condition is satisfied

|c3 − νc22| ≤


−(4(η−1)γ2

2+3ν(2−η)γ3)g
2
1+2(2g2+g1)γ

2
2

g1γ2
2

, ν ≤ µ3

2g1
3(2−η)γ3

, µ3 ≤ ν ≤ µ4

(4(η−1)γ2
2+3ν(2−η)γ3)g

2
1−2(2g2+g1)γ

2
2

g1γ2
2

, ν ≥ µ4

(4.24)

where

µ3 =
−4(g2 − g1)γ

2
2 − 4(1− η)γ22g

2
1

3(2− η)γ3g21
(4.25)

µ4 =
4(g2 + g1)γ

2
2 − 4(1− η)γ22g

2
1

3(2− η)γ3g21
. (4.26)

Proof: The proof of this theorem is a direct consequence of the application of Lemma 1.3 to the equation
(4.23) to determine the desired result. 2

5. Conclusion

Based on the investigations into the novel subclasses Rlag and Clag which was defined by
subordination to Laguerre polynomial we have successfully established upper bounds for the initial co-
efficients c2 and c3 and derived the corresponding Fekete-Szegö inequalities for functions within these
classes. Furthermore, analogous estimates were obtained for the coefficients of the inverse function h−1.
While the determination of the absolute sharpness of these bounds remains an open question for future
work the obtained coefficient estimates were directly connected to parameters of the Pólya-Eggenberger
distribution thereby demonstrating the probabilistic significance of the Rlag and Clag function classes.
This work therefore not only introduces and characterizes new subclasses in geometric function theory
but also reveals a novel and meaningful bridge between analytic functions and discrete probability theory.
The established bounds provide a rigorous foundation for further exploration into extremal problems and
the exact coefficient behavior within these Laguerre-associated function classes.
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