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A Unified Approach to Half-Companion Sequences in Diophantine Triples with Centered
(4m+-2)-Gonal Numbers
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ABSTRACT: In this study, we develop a framework for generating generalized half-companion sequences
linked to Diophantine triples that embed centered (4m+2)-gonal numbers across diverse ranks and structural
configurations. We further examine the potential extension of these triples into Diophantine quadruples for
specific ranks, employing a customized algebraic algorithm to facilitate the analysis. The investigation unveils
a spectrum of intriguing numerical phenomena, which are systematically explored and illustrated through
MATLAB-driven simulations and Python Programming.
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1. Introduction

Number theory serves as the foundational philosophy of mathematics and deals with the essential
properties of numbers that underpin every act of quantifying, labeling, and measuring. It is a highly
specialized branch of pure mathematics where the constraints of seeking only integer solutions create
intense complexity and focus. Among its most historically significant and enduring challenges are Dio-
phantine equations, a compelling subject that traces its lineage back to the propositions of Diophantus
of Alexandria regarding the construction of specific sets of numbers 2, = 11—6, Oy = %, Q3 = %, Q= %
adhering to the constraint,

Qi =n*—1, Vi j=1,234,wherencQ

Beyond the classical framework, extensive research has focused on constructing specific sequences of
integers. Formally, a Diophantine h-tuple is defined as a sequence of integers {u1,ug, ...up} governed by
the property D(k), which means that the product of two distinct elements,uy, and u,,, when summed
with k equals a perfect square. That is,

UkUm + K = 62

where k,m € {1,2,...h} with k # m.

Research has subsequently extended this concept to polynomial rings. Specifically, a special Dio-3
tuple is formed from three distinct polynomials {d;,ds,d3} with integer coefficients and the property
D(k) if dpdy + dp + dy + k =, where 1 < p # ¢ < 3 and p, ¢ € Z always results in a perfect square for all
pairwise combinations, where & itself is a non-zero integer or a polynomial with integer coefficients.
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Initial research focused on characterizing the extension properties of well-known Diophantine families.
The foundational work on the extensibility of Diophantine triples by Bugeaud et.al. [1] has often focused
on specific parametric families to support the general conjectures concerning D(1) quadruples. A signif-
icant result was achieved regarding the family of triples that contain consecutive integers. Specifically,
it has been conclusively proven that for any integer k > 2, if a D(1)- quadruple is formed by extending
the triple {k — 1,k + 1,16k® — 4k} by a fourth positive integer element 'd’, then d must take one of
only two prescribed values: d = 4k or d = 64k® — 48k3 + 8k. This precise determination of the only two
possible extensions has far-reaching consequences when combined with established theoretical results.
When considered in conjunction with the work of Fujita on the nature of Diophantine extensions, this
finding demonstrates unequivocally that all Diophantine quadruples of the form {k — 1,k + 1,¢,d} are
regular. This regularity confirms that the largest element, d, is uniquely determined by the preceding
three elements {k — 1,k + 1, ¢} via the smallest possible extension formula, strongly supporting the con-
jecture that all Diophantine quadruples are regular.

Although the classical D(1) problem yields regularity for certain families, the literature also explores
generalizations to different constants. The D(4) — m—tuple is a set of m positive integers for which the
product of any two elements increased by four is a perfect square. Extending this line of inquiry, Baci¢
and Filipin [2] specifically addressed the question of whether a D(4)—quintuple can exist. By investigat-
ing the extensibility of a general D(4)-pair {a,b}, their work provided strong evidence and theoretical
results supporting the widely held conjecture that there does not exist a D(4)—quintuple. This reinforced
the notion that the limitations on the size of Diophantine tuples are not restricted to n = 1, but apply
broadly to other square constants as well. To move toward a more general understanding of these tuples,
research has focused on the necessary conditions for their existence, irrespective of the constant n. Zhang
and Grossman [3] provided a significant generalized framework by considering a triple of integers {a, b, ¢}
and establishing the necessary and sufficient conditions for the existence of an integer n such that {a, b, c}
constitutes a D(n)—triple. This work provides a fundamental structural characterization, detailing pre-
cisely what relationships must hold among the elements of a three-tuple for it to satisfy the Diophantine
property for some constant n. These main results were then applied through several illustrative examples
to demonstrate their implications for both Diophantine triples and their extension to quadruples.
Building upon the initial classification of D(1)-triples of Fibonacci numbers, the analysis was extended
to other constants. A separate, yet highly significant, stream of research involves restricting the elements
of the tuples to terms from well-known number sequences. In this vein, He, Luca, and Togbe (2016)
[4] provided a complete characterization of Diophantine triples of Fibonacci Numbers. Specifically, they
determined that for a given pair of Fibonacci numbers {Fy,,, Fo, 12}, the only possible third Fibonacci
number, Fy, that can complete a D(1)-triple is k = 2n +4 (for n > 1) or k = 2n — 2 (for n > 2),
with the singular exception of k = 1 when n = 2. Rihane, Hernane, and Togbhé [5] specifically charac-
terized the D(4)-Diophantine triples of Fibonacci numbers. They focused on a specific pair of terms,
{Fan+6,4F2n+4}, and proved that the only third Fibonacci number, Fj, that completes this pair to a
D(4)— triple is k = 2n (for n > 1), with the exception of k¥ = 1 when n = 1. This specialized find-
ing further confirms that even when the constant n is varied to 4, the constraints imposed by sequence
membership are strong. Mihai Cipu, Yasutsugu Fujita, and Takafumi Miyazaki [6] focuses on improving
the known upper bounds for the number of ways a Diophantine triple {a,b,c} can be extended to a
Diophantine quadruple {a,b, ¢,d} by adjoining an element d greater than max{a, b, c}.The long-standing
conjecture is that this extension should be unique (corresponding to the 'regular’ extension d*. The
authors utilize powerful number theory techniques, including the study of systems of Pellian equations
and Baker’s theory on linear forms in logarithms, and they also establish much tighter bounds (in some
cases proving uniqueness) under specific conditions on the elements of the triple.

Earp-Lynch et.al [7] address the characterization of Diophantine m-tuples, a set of m distinct positive
integers {a1,...,am} such that a;a; + ¢ is a perfect square for all i # j. Specifically, they extend the
work of Bacic and Filipin on D(4)-Diophantine triples by characterizing the solutions of Pellian equa-
tions that correspond to D(1?)-Diophantine triples subject to certain divisibility requirements. Their
primary methodological tool involves employing the resulting characterization in tandem with bounds on
linear forms in logarithms of algebraic numbers. This combined approach allows them to fully classify
specific families of D(9)- and D(64)-Diophantine triples whose elements are defined by Fibonacci num-
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bers, specifically those taking the forms {Fa, 18, 9F5, 14, Fi } and {Fay, 412, 16 Fo, 16, Fi }, where F; denotes
the i-th Fibonacci number. Although previous research established classifications for D(q)-Diophantine
triples related to Fibonacci numbers, a crucial parallel area of inquiry involves the extensibility of these
sets—specifically, whether a triple can be extended to a quadruple. Kouessi Norbert Adédji et.al [8]
investigates the Diophantine triple {a, b, c} under strict constraint b = 3a. The authors show that triples
satisfying this condition cannot be extended to an irregular Diophantine quadruple, leading to the corol-
lary that any quadruple containing {a, 3a} must be regular. This finding provides a significant structural
constraint, demonstrating that specific initial conditions, such as b = 3a, impose regularity on the result-
ing Diophantine quadruples, a result that holds for similar conditions like b = 8a.

Investigating the extensibility and regularity of Diophantine triples naturally leads to the study of
D(n)-tuples with negative parameters. While the standard definition uses a positive integer ¢ (or n),
researchers have extensively studied D(—k)-tuples. For example, Nikola Adzaga [9] establishes a general
structural result: for any positive integer k, if {k,k + 1,¢,d} is a D(—k)-quadruple with ¢ > 1, it must
be d = 1. The methods employed are highly advanced, combining Baker’s linear forms in logarithms and
the hypergeometric method with recurrence arguments and integral points on hyperelliptic curves. In
addition, subsequent research has focused on solidifying specific claims within this area. Ad’edji, K.N
et.al[10] confirms a long-standing conjecture about the structure of the D(—k)-quadruple {k, k+ 1,¢,d},
proving that the unique solution (¢,d) = (1,4k + 1) holds for the infinite family of parameters where k
takes the form k =% — 1 (for [ > 3).

The previous works established both general structural constraints on Diophantine quadruples (such
as the regularity imposed by b = 3a) and confirmed conjectures regarding D(—k)-tuples. Shanmuga
Priya et.al[11] extends the investigation by focusing on constructive methods and specialized sequences.
The authors generate the generalized half companion sequence from a specific Diophantine triple that
incorporates centered triacontagonal numbers, examining the sequence’s properties. Furthermore, they
return to the theme of extensibility, analyzing the possibility of extending these specialized 3-tuples to
quadruples for certain ranks using an algebraic algorithm, with the results and patterns demonstrated
computationally. This transition highlights a shift from purely theoretical proofs and classifications to
the study of sequences derived from specific number forms and the use of computational tools in Dio-
phantine analysis. In this study, a generalized half companion sequence of Diophantine triple is produced
by incorporating centered polygonal numbers and further, their maximality is checked using Python.

2. Preliminaries

The mathematical concept of centered k-gonal numbers has its origins in ancient Greece, specifically
with the Pythagoreans in the 6th century BCE. Driven by their philosophical belief that ”all is number,”
they developed the idea of figurate numbers, which represented integers through geometric arrangements
of dots.The earliest focus was on standard polygonal numbers (like squares and triangles), which were
constructed by adding L-shaped layers, or gnomons. The idea of a centered figure naturally followed,
modifying the structure by beginning with a single central dot and surrounding it with complete concen-
tric layers of the k-sided polygon.

Although Greek figures such as Nicomachus of Gerasa documented the geometric properties of these
number sequences, precise mathematical formalization, including the general formula C,, (b) = 1+m.Tp_1,
was a later development. This formula relates centered b-gonal numbers to triangular numbers 7,1, and
was thoroughly explored during the Renaissance and modern eras by influential number theorists such
as Pierre de Fermat and Leonhard Euler.

Definition 2.1: The B*" centered p-gonal number, denoted by C,(B) is given by
_pb? 4 b+ 2
i

where B = b+ 1 is also known as rank such that b € W and p > 3 is the number of sides of the polygon.
Also, b = 0 yields the central dot.
When g = 4m+ 2, then it results in centered (4m + 2)-gonal number of rank B = b+ 1, which is given by

Cam2(B) = (2m + 1)b* + 2m + 1)b+ 1 (2.1)

Cu(B)
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Hexagonal Decagonal

Figure 1: Examples for Centered (4m+2)-gonal number

3. Half Companion Sequences of Diophantine Triples

This section presents the sequence of Diophantine triples derived from distinct ranks of centered
(4m + 2)-gonal numbers.

Theorem 3.1:

Let Cymi2(B), Cymi2(B + h) be the two centered (4m + 2)-gonal numbers with B = b+ 1 and
b€ W, then [(11, 72, 2m + 2n2 — (2m + 1)h2 + h), (02, 201 + 212 — (2m + 1)h% + h, 31 + 612 — (4m +2)h? +
2h), (2m1 + 212 — (2m + 1)h2 + h, 3n1 + 612 — (4m + 2)h? + 2k, 100, + 1512 — (12m + 6)h* + 6h), ...] forms
the half companion sequence of Diophantine triples generated by 71 = Cumi2(B),n2 = Cami2(B + h)
with the property D((2m + 1)b%h + (2m + 1)bh? + (2m + 1)bh + m2h? + h), where b,m € W with m > 1.

Proof:
Let 11 and 72 be the centered (4m + 2)-gonal numbers of the ranks B and B + h, respectively with
B=b+1and b€ W, then

m = Cuamya(B) = (2m+1)b* + (2m +1)b+1 (3.1)
2 = Cumie(B+h)=02m+1)(b+h)*+(2m+1)(b+h)+1

where b,m € W and m > 1.

mng = 4b*m? 4 8b3m? + 4b?m? + 4b*h2m? + 4b*hm? + 8b>hm?
+ 126%hm? + 4bhm?* + 4b*m + 8b3m + 8b>m + 4bm + 4b*h*m
+ 4b*h*m 4 2h®m + 8b3hm + 12b%hm, + 8bhm + 2hm + b* + 23
+ 3b% + 2b + b*h? + bh* + h? + 2b°h + 3b*h + 3bh + h + 1 (3.3)

It is observed that 1112 + (2m + 1)b2h + (2m + 1)bh? + (2m + 1)bh + m2h? + h is a perfect square. Thus,
(n1,m2) form a Diophantine pair with the property D((2m+1)b2h+ (2m+1)bh? + (2m+1)bh+m?2h%+h).
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To extend this to a Diophantine triple, it is necessary to find 13 € Z, such that the following constraints
hold with assumptions Q1 = 51 + 1161 and Qs = 51 + 1201, where $1,01 € Z ..

mns + (2m + Dbk + (2m + 1)bh* + (2m + 1)bh + m?h* +h = QF (3.4)
nans + (2m + Dbk + (2m + 1)bh* + (2m + 1)bh + m?h*> +h = QF (3.5)

The following pellian equation is resulted from (3.4) and (3.5),
B = (2m + 1)b?h + (2m + 1)bh* + (2m + 1)bh + m?h? + h + m120%
Taking §; = 1 as a fundamental solution of pellian equation, the value of 8, is derived as follows:
B = (2m+1)b* + (2m + )b+ (2m + 1)bh + (m + 1)h + 1 (3.6)
Utilizing (3.6) in @y = 81 + md1,
Q= (4m + 2)b* + (4m + 2)b+ (2m + 1)bh + (m + 1)h + 2 (3.7)

With the help of (3.1) and (3.7), 3 can be determined as below.

ns = (8m44)b* + (8m +4)b+ (8m + 4)bh + (2m + 1)h* 4 (4m + 3)h + 4 (3.8)
=>1n3 = 2[C4m+2(B) + C4m+2(B + h)] — (2m + 1)h2 +h
=n3 = 2m+2p— 2m+ 1R +h (3.9)

Thus, (11,72,n3) forms a Diophantine triple. Now, 1y € Z; is derived from 72,73 with the following
constraints with I'y = a3 + 1271 and 'y = a1 + n37v1.-

nona + (2m + Vb2 h + (2m + 1)bh? + (2m + 1)bh + m?*h* +h = T% (3.10)
m3ns + (2m + Dbk + (2m + 1)bh* + (2m + 1)bh + m*h* +h = T (3.11)

The above equations lead to the pellian equation of the form af = (2m + 1)b*h + (2m + 1)bh? + (2m +
1)bh + m?h? + h + nam3yi. Applying the fundamental solution, the value of a; = (4m + 2)b% + (4m +
2)b + (6m + 3)bh + (2m + 1)h? + (3m + 2)h + 2. This will further lead to the value of I'; as

[y = (6m + 3)b* + (6m + 3)b + (10m + 5)bh + (4m + 2)h? + (5m + 3)h + 3

As a result, 74 is obtained as,

ne = (18m +9)b* + (18m + 9)b + (24m + 12)bh + (8m + 4)h? + (12m + 8)h + 9
=n1 = 3Cumi2(B)+6Cuni2(B+h) — (4m+2)h* +2h
=1y = 3m+6m— (4m +2)h* + 2h

Hence, (n2,73,m4) becomes a Dio-triple. Similarly, the Diophantine triple (13, 74, 75) can be constructed
by producing 75 from ns,n4, which is given by

ns = 10C4m12(B) + 15Cums2(B + h) — (12m + 6)h? + 6h
ns = 10m; + 15m5 — (12m + 6)h? + 6h

Proceeding in this way, s, 77, ... are generated. Thus, {(n1,72,13), (M2,M3,M4), (13,74, M5), ...} forms the
half companion sequence.

Theorem 3.2:

Let Cymi2(B — h), Cami2(B + h) be the two centered (4m + 2)-gonal numbers with B = b+ 1 and
b e W, then {Cl, CQ, 2(1 + 25 — (Sm + 4)h2}, {CQ, 2¢1 + 2{2 — (8m—|—4)h2, 3¢+ 6(2 — (16m + 8)h2}, {261 +
205 — (8m +4)h?%, 3¢ + 6(a — (16m + 8)h2,10¢; + 15¢ — (48m + 24)h?}, ... represents the half companion
sequence of Diophantine triples generated by (1 = Cypi2(B — h), (o = Cymi2(B + h) with the property
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D((2m — 3)(2m + 1)h?), where b,m € W with m > 1 and b > h.

Proof:
Assign ¢; and (» as centered (4m + 2)-gonal numbers of ranks B — h and B + h, respectively, where
B=b+1and be W, then

(i = Cymia(B—h)=0Cm+1)(b—h)?>+2m+1)(b—h)+1 (3.12)
o = Cums2(B+h)=0Cm+1)(b+h)?>+2m+1)(b+h)+1 (3.13)

where b,m € Zy with m > 1 and b > h.

CiCo = 4b*m? + b + 4mb* + 4h*m? + 4mh* + ht + 20° + h26% — 20h% — 3b%h% + 4b3m?
+ 8mb3 — 4h3m? — 126%°h*m? — 12mb*h? + 4h*b*m? — 4b*m?>h — 4mb*h + 3b°
+ 8mb? — 120m2h? + 4m?b® + 4m>h + 462 hm 4+ 4m>b? — 4m>h?
+ 4bm — 8bmh? + 4bh>m? + 2b 4+ h? + 4m2b*h + 4mh*b® + 1

This (¢ turns out to be a perfect square using the property D((2m — 3)(2m + 1)h?). Thus, {(1, G}
becomes a Diophantine pair. To extend this to a Diophantine triple, a positive integer (3 € Z, is found
such that it satisfies the system of equations (;(z + D((2m — 3)(2m + 1)h?) = QF with the assumption
of linear forms Q; = B1 + (;61, where i = 1,2. Elimination of (3 from the system generates a Pellian
equation. To solve this, a fundamental solution of the Pellian equation is applied. As a result, Q; is
obtained as Q; = (4m + 2)b% + (4m + 2)b — (2m + 1)h — (4m + 2)bh + 2. This will also help in finding (3
as,

€ (8m + 4)b* + (8m + 4)b + 4 (3.14)
=G = 20 +20 — (8m +4)h? (3.15)

Hence, (¢1,¢2,(3) is a Dio-triple. Using a similar approach, {4 and (5 are produced from the pairs {(s, (3}
and {3, (4}, respectively.

G4 = 3G +6¢— (8m+4)h?
G = 10¢; + 15¢ — (48m + 24)h?

Thus, each ¢; can be derived from the pair {{;_1,(;—2}, where i = 6,7,8,....). Through the systematic
application of this governing principle, every Diophantine triple {¢;, (i1, Ci+2}(for i = 1,2, ....) is obtained
so that the half companion sequence {(1, (2,21 + 2¢o — (8m + 4)h?},{(2,2¢1 + 2¢a — (8m + 4)h?,3¢; +
6Co — (16m + 8)h2}, {2¢1 +2¢ — (8m + 4)h2,3¢; + 62 — (16m + 8)h2,10¢; + 15¢s — (48m + 24)h2}, ... is
formed.

4. Non-existence of Quadruples

This section provides the theoretical framework establishing the maximal extent (non-extendibility) of
Diophantine triples derived from the base pairs {11, 72} and {(1, (2}. Crucially, these non-extensions are
determined by a dual-condition analysis using the distinct D(x)— properties, where x = (2m + 1)b*h +
(2m + 1)bh? + (2m + 1)bh + m?h? + h and k = (2m — 3)(2m + 1)h? respectively.

Theorem 4.1:

Let 11,72, 13 be defined as in (3.1),(3.2) and (3.8) respectively. Then, the Diophantine triple {n1, 72,73}
is non-extendible to quadruple under the property D((2m+1)b*h+ (2m+1)bh? + (2m+1)bh+m?2h? + h)
for all values of b € W and m,h € Z; with 1 <m <2000 and 0 < h < 2000.

Proof:
By theorem 3.1, it is proved that {ni,n2,n3} forms D(N)- triple , where N = (2m + 1)b*h + (2m +
1)bh? + (2m + 1)bh + m?h? + h and b € W,m,h € Z,,m > 1 . To find whether this is extendable,
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it is required to find some 7y € Z, such that the following conditions are kept with the assumptions
Qj = ﬂl +77j51, where ] = 1,2,3.

mm+N = Q2 (4.1)
mno+N = Q32 (4.2)
mmo+ N = 032 (4.3)

Removing 7y from (4.1) and (4.3), yields a pellian equation of the form 82 = N + 1;736? for which the
fundamental solution {81, 1} is applied so that 5, can be evaluated as

Bi = (4m + 2)b* + (4m + 2)b+ (2m + 1)bh + (m + 1)k + 2

This will give rise to the value of Q; as Q; = (6m + 3)b% + (6m + 3)b + (2m + 1)bh + (m + 1)h + 3. Using
all the known values in (4.1), it is found that

no = (18m + 9)b* + (18m + 9)b + (12m + 6)bh + (2m + 1)h* + (6m + 5)h + 9 (4.4)

The above equation must satisfy (4.2). To verify that, three cases must be taken into account.
Case(i): b > h. Suppose that b = h + 1, then

mno + N = 256m2h* + 256mh* + 960m2h3 + 1281m2h? + 144m? + 980mh> + 1416mh? + 216m
+64h* + 250h% + 388h + 720m>h + 912mh + 279h + 81 (4.5)

Case (ii): b = h. Now,

mno + N = 256h*m + 64h* + 340h3m + 90h® + 210h*m + 81h?
+m2h? + 60hm + 33h + 256h*m? + 320h>m? 4+ 96h*m? + 9 (4.6)
Case(iii): b < h. Assume b = h — 1,then
nono + N = 256m2h? 4 256mh* — 320m>h3 — 300mh® + 188mh?* + 64h* — 70h>
+70h? 4+ 97m?h? — 60mh — 27h + 9 (4.7)

A straightforward computational check (e.g., via Python Programming Software) confirms that equations
(4.5), (4.6) and (4.7) are non-perfect squares for all 1 < m < 2000 and 0 < h < 2000. Thus, there exists
no g € Z such that {9y, 12,13, 1m0} forms a quadruple for all values of m, b, h € Z, with m, h € [1,2000].

Theorem 4.2:

Let (1, (2, (3 be defined as in (3.12),(3.13) and (3.14) respectively. Then, no quadruples can be formed
from the Diophantine triple {(1, (2,3} with the property D((2m — 3)(2m + 1)h?) for all positive integer
values of m, b, h with b > h, 1 < m < 2000 and 0 < h < 2000.

Proof:

According to theorem 3.2, {(1,(2, (3} is a Dio-triple with the property D((2m — 3)(2m + 1)h?), where
m,b,h € N with b > h. Let the positive integer (y be determined from the following system of equations
by considering the linear forms Qi = 1 + (01, where k =1,2,3.

Gilo+ (2m —3)2m+1)h? = 02 (4.8)
Glo+ (2m —3)2m+1)h? = Q3 (4.9)
GCo+ (2m —3)(2m +1)h? = QF (4.10)

By a similar procedure as in theorem 4.1, ( is determined as
Co = (6m + 3)b% + (6m + 3)b — (12m + 6)bh + (2m + 1)h? — (6m + 3)h + 9

This value of {y must satisfy (4.9). This verification requires a complete evaluation of two possible cases:
b > h and b = h. Python software analysis confirmed that the expression (2o + (2m — 3)(2m + 1)h? is
never a perfect square when b is either h + 1 or h for m, h € [1,2000].



8 S. SHANMUGA PRivA, G. JANAKI

5. Numerical Verification

To validate the theoretical results, a computational verification of Theorems 3.1 and 3.2 was conducted
utilizing MATLAB software. Representative outputs from this analysis, which confirm the theorems, are
tabulated in Tables 1 and 2.

m | h b | (m,m2,n3) (112,13, 714) (13,14, 715) D(N)
1 (7,19,50) (19,50,131) (50,131,343) D(11)

11 2| (19,37,110) (37,110,275) (110,275,733) D(26)
3| (37,61,194) (61,194,473) (194,473,1273) | D(47)
4] (61,91,302) | (91,302,725) | (302,725,1963) | D(74)
1| (11,31,80) (31,80,211) (80,211,551) | D(20)

o | 1| 2] (B161,180) | (61,180451) | (180451,1201) | D(45)
3| (61,101,320) | (101,320,781) | (320,781,2101) | D(80)
4 | (101,151,500) | (151,500,1201) | (500,1201,3251) | D(125)
Table 1: A few representative cases of Theorem 3.1

m | h|b| (¢,¢,G) (CHEN®)) (G35 €4, G5) D(x)
1 (1,19,28) (19,28,93) (28,93,223) D(-3)

Ll 2] (sTTe) (37,76,219) (76,219,553) | D(—3)
3| (19,61,148) | (61,148,399) | (148,399,1033) | D(-3)
4| (37,91,244) | (91,244,633) | (244,633,1663) | D(—3)
1| (1,31,44) (31,44,149) (44,149,355) | D(5)

o | 1| 2] (1161,124) | (61,124,359) | (124,359,905) | D(5)
3| (31,101,244) | (101,244,659) | (244,659,1705) | D(5)
4 | (61,151,404) | (151,404,1049) | (404,1049,2755) | D(5)

Table 2:

Illustrative examples of Theorem 3.2

—o— (N, Nz N3)
—o— Nz, Nz, N4}
~&— (N, N, N}

Figure 2: Scattered plot of Diophantine triples generated by Cypy2(B) & Cypmi2(B + h).



A UNIFIED APPROACH TO HALF-COMPANION SEQUENCES IN DIOPHANTINE TRIPLES WITH Clpm2(B) 9

6. Conclusion

This study concludes by providing a generalized framework for the half-companion sequence of Dio-

phantine triples that incorporate centered (4m+2)-gonal numbers of ranks B, B+h, B—h, where B = b+1.
More critically, the investigation computationally defined the limits of their extensibility: a comprehen-
sive search utilizing Python programming software definitively established that the generated triples do
not extend to quadruples with distinct properties D((2m + 1)b2h + (2m + 1)bh? 4+ (2m + 1)bh +m2?h% + h)
and D((2m — 3)(2m + 1)h?) across the parameter space where m, h ranges from 1 to 2000.

10.

11.
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