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Collatz Rendezvous Model (CRM): A Novel Approach to Agent Synchronization

Vidyashree H. R.∗, Lakshminarayana S., Ajith S.

abstract: The deterministic rendezvous problem is a fundamental challenge in multi-agent systems, requir-
ing to meet at a common location using predefined movement rules. In this paper, we introduced the Collatz
Rendezvous Model (CRM), a novel approach that leverages the well-known Collatz process to guide agents to-
wards synchronization. Each agent follows an independent Collatz sequence, iterating through transformation
rules until they converge at a common value, typically 1. We develop a computational framework to simulate
CRM using Python and Tkinter, providing real-time tracking of agent movements. Through extensive exper-
imentation, we analyze the number of steps required for rendezvous, identifying patterns in synchronization
behaviour based on different initial positions. The study reveals that CRM exhibits deterministic yet unpre-
dictable convergence patterns, making it a unique mathematical tool for modelling agent rendezvous. We also
discuss potential applications in distributed computing, swarm intelligence and self-organizing systems.

Key Words: Collatz Rendezvous Model (CRM), agent synchronization, deterministic rendezvous,
multi-agent systems, Collatz process, computational modelling.
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1. Introduction

1.1. The Rendezvous Problem

Rendezvous problems in game theory involve two or more players attempting to meet in a structured
environment using predefined strategies. These problems are crucial in various applications, including
robotics, search-and-rescue operations and network synchronization. Traditional rendezvous strategies
rely on predetermined movement patterns, probabilistic models or decision-theoretic frameworks to min-
imize the expected meeting time [7, 18]

Definition 1.1: The Rendezvous problem can be described as follows:
Given two or more agents moving within a specified environment (e.g., a graph, a plane or a network),
find a strategy that ensures they meet at the same location in a finite amount of time, despite limited
knowledge about their initial positions or movement capabilities. [18]
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1.2. Variants of the Rendezvous Problem

There are several versions of the problem depending on different constraints:

1. Symmetric vs. Asymmetric Rendezvous:

• Symmetric: Both agents follow the same environment rules and have identical initial condi-
tions.

• Asymmetric: Agents may have different speeds, knowledge or constraints.

2. Deterministic vs. Probabilistic Approaches:

• Deterministic: Agents follow predefined algorithms ensuring rendezvous under all conditions.

• Probabilistic: Agents use random movements or probabilistic strategies to increase the chances
of meeting.

3. Synchronous vs. Asynchronous Rendezvous:

• Synchronous: Agents move at the same time and follow synchronized steps.

• Asynchronous: Agents may move at different times, making coordination harder.

4. Rendezvous in Different Environments:

• Graph-based Rendezvous: Agents move along a network or graph structure.

• Geometric Rendezvous: Agents move in continuous space (e.g., the Euclidean plane).

• Rendezvous with obstacles: The environment contains barriers that complicate movement.

1.3. Challenges in the Rendezvous Problem

The rendezvous problem presents significant challenges, especially in unknown environments, where
agents must meet despite limited initial information. One key difficulty is the lack of a common reference
frame; agents may not know their initial separation or relative positions. This problem is further compli-
cated when asynchronous movement is involved, meaning agents operate on independent time schedules,
making synchronization harder. Obstacles in the environment can also hinder direct movement, requir-
ing complex navigation strategies. Additionally, in dynamic environments, external factors like moving
obstacles or communication delays can affect rendezvous efficiency [1-5]
Another major challenge is designing optimal movement strategies that minimize expected meeting time,
especially under adversarial conditions. If agents follow deterministic paths, an adversary could predict
and disrupt their meeting. The trade-off between exploration and efficiency is crucial, as searching too
broadly increases time, while being too constrained may prevent rendezvous. In asymmetric scenarios,
where one agent has more information or mobility than the other, designing fair and efficient protocols
becomes difficult. Additionally, in practical applications like robotics and sensor networks, energy con-
straints impose further limitations. Addressing these challenges requires blending techniques from game
theory, optimization and distributed computing to ensure reliable and efficient rendezvous [7, 9, 16, 18]

Definition 1.2: The Collatz conjecture:The Collatz conjecture, also known as 3x + 1 problem,
states that any positive integer will eventually reach 1 when iteratively transformed using the rule: if the
number is even, divide it by 2; if odd, multiply by 3 and add 1 [6, 17, 19, 20].
In this paper, we introduce a novel approach based on the Collatz conjecture, a well-known problem in
number theory. By using the Collatz sequence as a movement strategy, players iteratively determine their
positions using the sequence’s recursive transformation rules.

The movement strategy follows:

P (t+ 1) =


P (t)

2
, if P (t) is even

3P (t) + 1, if P (t) is odd
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Despite its apparent simplicity, the Collatz sequence exhibits complex iterative behaviour and has been
studied in various mathematical and computational contexts. In this work, we explore how the Collatz
process can be applied as a deterministic rendezvous strategy for autonomous agents, leading to the
development of the Collatz Rendezvous Model (CRM).

1.4. Collatz Rendezvous Model (CRM)

A Collatz Rendezvous Model is a novel framework that integrates principles from the rendezvous prob-
lem with the mathematical structure of the Collatz Conjecture. It explores how two or more agents can
efficiently meet (rendezvous) using movement rules inspired by the Collatz sequence, a famous unsolved
problem in number theory.

Features of CRM:

1. Rule-based Movements

• Each agent follows a variation of the Collatz function to determine its next position.

• Movements are dynamic and depend on whether the agent’s position follows an ‘even’ or ‘odd’
state.

• This introduces unpredictability yet maintains a structured approach to convergence.

2. Asynchronous and Symmetric Rendezvous

• Agents can move asynchronously (without strict timing constraints) while still achieving ren-
dezvous.

• The approach remains fair by treating agents symmetrically, ensuring equal likelihood of meet-
ing.

3. Efficiency in Search Strategy

• The Collatz-inspired movement strategy avoids redundant searches, minimizing the expected
time to rendezvous.

• The non-linear nature of the sequence helps agents explore more locations efficiently.

4. Graph and Euclidean Space Applications

• CRM can be applied to discrete settings (e.g., graphs, networks) as well as continuous envi-
ronments (e.g., geometric rendezvous)

• The structure adapts well to real-world applications like robotic coordination and network
synchronization.

2. Related Work

The study [3] explores the rendezvous problem where two friends, separated in a building or shopping
mall, must meet as quickly as possible without prior agreement. A simple strategy of randomly choosing
a location at each step results in an expected meeting time if n steps. The rendezvous problem on a line
where two players start at a random distance apart, with an unknown probability distribution but an
expected initial distance bounded by a constant with a maximum velocity 1 is studied in [5].

The paper [1] examines the rendezvous problem where two players move in the plane, aiming to
minimize their first meeting time through cooperation. Here three scenarios are analyzed such as unknown
vector difference, known distance-unknown direction and asymmetric information. The study provides
results for each case, exploring strategies to optimize meeting time under this varying uncertainty [1].
The rendezvous problem is studied on another scenario, randomised initial placement, where one player’s
starting position is chosen equiprobably from a finite set of points including the conditions, known
distance-unknown direction and asymmetric information [2].

The markstart rendezvous search, a new framework where players can leave marks at their start-
ing points, potentially providing crucial information for the rendezvous problems is introduced in [4].
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Symmetric rendezvous on a line becomes more manageable in the markstart setting, while symmetric
rendezvous on a line (with initial distance chosen via a convex distribution) remains easier to analyze in
the original framework. The paper [4] also presents results for markstart rendezvous on complete graphs
and for cases where the players initial distance follows an unknown probability distribution.

The deterministic rendezvous problem in an unknown anonymous connected graph, where two mobile
agents with distinct identifiers must meet at some node, is addressed. The fast deterministic algorithm
is proposed that efficiently guide the agents to a successful rendezvous, despite lacking prior knowledge
of the graph structure [9].

In the geometric scenario, the algorithm ensures that agents with different compasses and units of
length can have rendezvous almost everywhere. A deterministic protocol is proposed in [13], which
ensures gathering in finite time, under the condition that robots share a common orientation. The study
concludes that orientation is as powerful as instantaneous movements for achieving gathering.

The rendezvous problem for two mobile agents with distinct labels navigating an unknown, connected
graph or an unknown connected terrain is investigated in the plane [8]. The paper [14] studies the
gathering problem for mobile agents with distinct identifiers in an unknown, anonymous, connected
network, proving that it is no harder than the rendezvous problem. The deterministic rendezvous problem
is designed for arbitrary startups in rings and general networks, to measure efficiency through the steps
taken from the last agent’s startup until rendezvous. The results establish deterministic rendezvous as
feasible even with arbitrary startup delays [14].

The gathering problem is addressed in [12], in which identical mobile robots in the plane, operating
in Look-Compute-Move cycles without direct communication, must gather at a common point in finite
time without external control. This work considers a weaker setting where robots have no memory of
past cycles, no common coordinate system and no constraints on timing or execution order.

The rendezvous problem in undirected graphs, where two mobile agents with distinct labels starts at
different nodes and must meet, is been examined in [16]. The study distinguishes between two scenarios:
weak, where agents can meet at a node or on an edge and strong, where agents meet at a node and do
not detect encounters on edges. A deterministic polynomial-time algorithm is presented that guarantees
rendezvous with runtime depending on graph size, the smaller agent label and the largest edge traversal
time [16].

The synchronous rendezvous problem is explored in graphs where two mobile robots (A and B)
must meet at the same time and location while facing constraints. Three rendezvous models such as
edge monotonic, node inclusive and blind rendezvous models with different movement restrictions, was
introduced [10].

A new variant called the Deterministic treasure hunt problem is introduced, which extends the ren-
dezvous problem to scenarios where one agent must locate a stationary target. This leads to the study of
strongly universal traversal and exploration sequences, which are enhanced versions of existing universal
sequences used for graph traversal [7].

The paper [11] examines the rendezvous problem for two identical, anonymous mobile robots, A and
B, in an arbitrary undirected graph. Unlike most previous work, where robots have access to the same
nodes and edges, here each robot can only access specific parts of the graph, though they receive full
map in advance. The research explores three variants of the problem, differing in the degree of movement
restrictions imposed on the robots, in both synchronous and asynchronous computational models. For
each variant and model, the feasibility of rendezvous is analyzed and algorithms are proposed whenever
possible.

The paper [18] provides a comprehensive survey of deterministic strategies for the Rendezvous prob-
lem, where two or more mobile agents (robots) must meet in an environment, such as a graph-based
network or a geometric plane. The study primarily focuses on cases where agents cannot see each other
before meeting and cannot leave marks to facilitate navigation. Key algorithmic approaches, complexity
bounds and feasibility conditions are discussed, with an emphasis on deterministic methods that break
symmetry to ensure the successful meeting [18].

The paper [15] investigates deterministic distributed rendezvous for two mobile agents navigating an
infinite path (a graph where nodes are labelled with distinct positive integers). The rendezvous time
is measured as the number of rounds from the earliest agent’s start until the meeting. It is analyzed
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in three different scenarios: exact position knowledge, partial knowledge and minimal knowledge. The
results also extended to finite paths and cycles.

3. Methodology

3.1. Problem Formulation

The Collatz Rendezvous Model is a deterministic rendezvous process where two agents, starting
from different initial positions, follow independent Collatz sequences until they reach a common value.
The objective is to analyze the trajectory of each agent and evaluate the number of steps required for
synchronization.

3.2. Simulation Framework

To implement CRM, we develop a Python-based simulation with a graphical interface using Tkinter.
The framework allows the user to:

• Input the initial values for two agents.

• Compute their trajectories using Collatz iterations.

• Visualize the movement of agents step-by-step.

• Track step count and convergence patterns.

3.3. Pseudocode for CRM

The pseudocode outlines a Collatz Rendezvous Model simulation where two agents follow the Collatz
sequence rules to determine if they can converge to the value 1 simultaneously. The simulation consists
of several key functions:

• Collatz step(n): This function computes the next step in the Collatz sequence. If the number is
even, it is divided by 2; otherwise, it is multiplied by 3 and incremented by 1.

• Simulate rendezvous(agent1, agent2, max steps=10000): This function simulates the movement
of two agents starting from user provided initial values. It initializes step counting and stores the
movement paths of both agents. The algorithm iterates through the sequence, updating each agent’s
value according to the Collatz step function. If both agents reach 1 at the same step, it announces
success and visualizes their paths. If the maximum step count is reached without convergence, it
reports failure and still visualizes the paths.

• Visualize paths(path1, path2, steps): This function extracts and plots the movement trajectories
of both agents. It uses matplotlib to create a graph with labels, legends and a grid to show their
respective paths over time.

• Start simulation(): This function handles user input for initial values of both agents and starts the
simulation by calling simulate rendezvous().

• Tkinter UI setup: A Graphical User Interface (GUI) is designed using Tkinter, which includes
input fields for agent values, a button to start the simulation and a text area to display the stepwise
progress. The event loop ensures smooth user interaction.

Pseudocode:
Input: Initial values for Agent 1 and Agent 2.
Output: Steps taken for rendezvous and visualization of movement.

• Define function collatz step(n):
If n is even, return n/2
Else, return 3n+ 1
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• Define function simulate rendezvous(agent1, agent2, max steps=10000):

1. Initialize steps=0

2. Store initial positions: path1←[agent1], path2←[agent2]

3. Display starting positions: Agent 1=agent1, Agent 2=agent2

4. While steps¡max steps:
If agent1 is not 1:

-Update agent1 using collatz step(agent1)
-Append new agent1 to path1

If agent2 is not 2:
-Update agent2 using collatz step(agent2)
-Append new agent2 to path2

Display step steps+1: Agent 1 =agent1, Agent 2 =agent2
If agent1 ==1 and agent2 ==1:

-Display ‘Both agents reached 1 after steps+1 steps!’
-Call ‘visualize paths(path1, path2, steps+1)’
-Return

Increment steps

5. If max steps reached:
-Display ‘Max steps reached, rendezvous failed’
-Call ‘visualize paths(path1, path2, steps)

• Define function visualize paths(path1, path2, steps):
-Extract x1, y1 from path1
-Extract x2, y2 from path2
-Plot trajectories of Agent 1 and Agent 2
-Add labels, title, legend and grid
-Display the plot

• Define function start simulation():
-Read user input values x1 and x2.
-Clear previous output
-Call simulate rendezvous((x1,), (x2,))

• Setup Tkinter UI:
-Create main window with title ‘Collatz Rendezvous Simulation’
-Create input fields for Agent 1 and Agent 2 initial values.
-Add ‘Start Simulation’ button to trigger ‘start simulation()’
-Create a scrolled text widget for displaying results
-Start the Tkinter event loop
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(a) CRM (18, 35) (b) Graphical representation of CRM (18, 35)

Figure 1: Example: CRM (18, 35)

Figure 1(a) shows an example of two agents with their initial starting points, 18 and 35, meeting at
1, successfully attaining rendezvous through CRM. We observe that both agents A1 and A2 meet at 1 or
attain rendezvous after 20 steps (Figure 1(b)). Likewise, we can represent how multiple agents can meet
by following a deterministic path as Collatz.

4. Results and Analysis

The Collatz Rendezvous Model is tested for various initial values and the results demonstrate how
agents following the independent Collatz sequences eventually synchronize at a common value, typically
1.

4.1. Observations:

• Guaranteed Synchronization: Regardless of initial values, all agent pairs eventually reach a common
meeting point, confirming the deterministic nature of CRM.

• Variable Step Count: The number of steps required for synchronization varies significantly, depend-
ing on whether the starting values are odd or even.

• Intermediate Synchronization Points: Some agent pairs meet at intermediate values before converg-
ing to 1, indicating partial rendezvous before final synchronization

4.2. Synchronization Step Analysis

Table 1 shows that any agent starting from any positive number eventually reach 1 or meets other
agents for attaining Rendezvous.

Initial Values (A1, A2) Steps Taken to Meet Meeting Point
(6, 15) 16 1
(7, 20) 21 1
(12, 27) 51 1
(25, 32) 95 1
(19, 23) 42 1

Table 1: Synchronization Step Analysis
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5. Conclusion

In this study, we introduced the Collatz Rendezvous Model (CRM), a novel approach to agent syn-
chronization based on the iterative rules of the Collatz process. The model explores how agents starting
from different initial values follow their independent Collatz sequences until they synchronize at a com-
mon value, 1. Unlike the traditional methods that rely on predefined paths on randomization, CRM
ensures progressive convergence through a sequence of transformations that guide agents toward a com-
mon meeting point.

The CRM combines elements of number theory, agent-based modelling, and computational mathe-
matics, offering a unique lens to study deterministic yet unpredictable synchronization process. This
framework addresses key challenges such as unknown starting positions, asynchronous movement and
varying agent speeds, making it applicable to both theoretical and real-world rendezvous scenarios.
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