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Combinatorial Interpretations of Somos’s Dedekind η-Function Identities

Umadevi P., Sayinath Udupa N. V. and B. R. Srivatsa Kumar∗

abstract: Michael Somos used computer experimentation via the PARI/GP system to discover a large
number of conjectural identities of the η-function type. He identified around 6200 such identities of varying
levels. He did not provide rigorous proofs for them and they remained conjectural from the standpoint of the
publication of his list. Among these he discovered nearly 15 Dedekind η-function identities. In the present
work, we interpret them combinatorially by showing that they arise as generating functions for suitable colored
partitions with suitable examples.
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1. Introduction

A positive integer n is said to have l colors if there are l distinct copies of n, each corresponding to a
different color and treated as a separate object. Partitions of a positive integer in which parts may appear
in different colors are called colored partitions. For instance, if the integer 1 is allowed to have two colors,
then the colored partitions of 2 are 2, 1r + 1r, 1g + 1g, and 1r + 1g, where the subscripts r (red) and g
(green) indicate the two available colors of 1. An important observation is that (qa; qb)−k

∞ is the generating
function for the number of partitions of n, where all the parts are congruent to a (mod b) having k colors.

For |ab| < 1, Ramanujan’s theta function f(a, b) is defined by

f(a, b) :=

∞∑
n=−∞

an(n+1)/2bn(n−1)/2.

From Jacobi’s triple product identity, it follows that

f(a, b) := (−a; ab)∞(−b; ab)∞(ab; ab)∞.

Ramanujan defined the following special case of f(a, b) [4, p. 36]:

f(−q) := f(−q,−q2) =

∞∑
n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞,

where here and throughout the paper, we utilize the following definition:

(x; q)∞ =

∞∏
k=0

(1− xqk) |q| < 1.

Note that, if q = e2πiτ then f(−q) = e−πiτ/12η(τ), where η(τ) denotes the classical Dedekind η-function
for Im(τ) > 0. A theta function identity which relates f(−q) to f(−qn) is called theta function identity
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of level n. Ramanujan recorded several identities which involve f(−q), f(−q2), f(−qn) and f(−q2n) in
his second notebook [7] and ‘Lost’ Notebook [8]. For example [5, p.206],
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where fn = f(−qn). After the publication of [5], several authors including Baruah [2,3], and Vasuki [17]
have found many modular equations of the above type. In recent years, Michael Somos [9] has made a
remarkable computational contribution to the study of modular forms and theta functions. Using the
powerful number-theoretic capabilities of PARI/GP, a computer algebra system designed for fast compu-
tations in number theory, Somos generated nearly 6,200 distinct theta function identities. These identi-
ties span over various modular levels and involve complex combinations of theta functions, Dedekind eta-
functions, and other modular expressions. Especially , these identities were found experimentally-through
algorithmic exploration and pattern recognition-without accompanying formal proofs. his methodology
exemplifies the expanding role of computational experimentation in mathematics, revealing intricate
structures that challenge traditional proof techniques. Yuttanan [19] has rigorously proved several of So-
mos’s theta identities, especially at levels 4 and 8, which relate to modular transformations and classical
modular forms. His work not only confirms Somos’s findings but also uncovers new partition identities
derived from the q-series expansions of theta functions, offering deep combinatorial insights. Vasuki and
Veeresha [18] have established proofs for all 24 level 14 theta function identities identified by Somos. Fur-
thermore Srivatsa Kumar and Veeresha [10] have obtained partition identities for these theta-function
identities. Srivatsa Kumar and his team have developed a proof of Somos identities of various levels and
one can refer [10,11,12,13,14,15,16]. The concept of colored partitions was first introduced by Agarwal
and Andrews [1]. Further, Huang [6] continued this work on establishing the modular relations be-
tween Göllnitz-Gordan functions. Inspired by the aforementioned contributions, this paper focuses on
the validation of Michael Somos’s theta function identities of level 12 by employing the framework of col-
ored partitions. Specifically, we explore how these identities originally discovered through computational
experimentation can be interpreted and verified using combinatorial techniques rooted in partition theory.

We conclude this section by presenting all fifteen theta function identities of level 12 that form the
foundation of our analysis. In the following section, we translate these analytic expressions into partition-
theoretic language, establishing new identities that count colored partitions under specific constraints.
This approach not only validates the modular identities but also reveals deeper connections between theta
functions and partition theory.
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2. Somos’s η Identities: A Combinatorial View

In this section, we give a combinatorial demonstration for the Somos’s identities of level 12. In sequel,
for simplicity, we adopt the notation

(a1, a2, ..., an; q)∞ =

n∏
j=1

(aj ; q)∞,

and define,
(q±r; qs)∞ = (qr, qs−r; qs)∞,

where r and s are positive integers and r < s. For example, (q2±; q8)∞ means (q2, q6; q8)∞ which is
(q2; q8)∞ (q6; q8)∞.

Theorem 2.1 Let α(n) denote the total number of segments congruent to ±1,±5(mod 12) with 9 colors
and ±3(mod 12) with 6 colors. Let β(n) represent the total number of parts congruent to
±2,±4,+6(mod 12) with 9, 5 and 12 colors respectively. Let γ(n) denote the total number of parts
congruent to ±1,±5(mod 12) with 1 color each and ±2,±3,±4,+5(mod 12) with 12, 6, 9 and 20 colors
respectiverly. Then, we have

α(n) + 8β(n)− 9γ(n) = 0, n ≥ 0.

Proof: On rewriting (1.1) subject to the common base q12, we have

1

(q±1
9 , q±3

6 , q±5
9 ; q12)∞

+
8

(q±2
9 , q±4

5 , q+6
12 ; q

12)∞
− 9

(q±1
1 , q±2

12 , q
±3
6 , q±4

9 , q±5
1 , q+6

20 ; q
12)∞

= 0.

The quotients in the preceding identity can be interpreted as the respective generating functions α(n), β(n)
and γ(n). Accordingly, one may rewrite the above identity in the equivalent form

∞∑
n=0

α(n)qn + 8

∞∑
n=0

β(n)qn − 9

∞∑
n=0

γ(n)qn = 0,

where we set α(0) = β(0) = γ(0) = 1. Upon equating the coefficients of qn on both sides of the above
equation, we are lead to the desired result. 2

Example: The table below illustrates the verification of the case for n = 2 in the Theorem 2.1.

α(2) = 45 : 1y + 1y, 1o + 1o, 1r + 1r, and 6 colors of the similar type, 1y + 1 + o, 1y + 1r, 1y + 1b, 1y + 1br
and 32 more colors of the similar type.

β(2) = 9 : 2w, 2y, and 7 more colors of the similar type.
γ(2) = 13 : 1 + r + 1r, 2w, 2y, and 10 more colors of the similar type.

Theorem 2.2 Let α(n) represent the total number of segments congruent to ±2,+6(mod 12) with 3 and
5 colors respectively. Let β(n) denote the total number of parts congruent to ±1,±5(mod 12) with 6
colors each and ±3(mod 12) with 4 colors. Let γ(n) represent the total number of parts congruent to
±1,±5(mod 12) with 3 colors each, and ±2,±3,±5(mod 12) with 6, 2 and 3 colors respectively. Then,
we have

α(n) + β(n)− 2γ(n) = 0, n ≥ 0.

Proof: On rewriting (1.2) subject to the common base q12, we have

1

(q±2
3 , q+6

5 ; q12)∞
+

1

(q±1
6 , q±3

4 , q±5
6 ; q12)∞

− 2

(q±1
3 , q±2

6 , q±3
2 , q±5

3 , q+6
7 ; q12)∞

= 0.
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The quotients in the above identity represent the generating functions α(n), β(n) and γ(n) respectively.
Thus the previous identity is equivalent to

∞∑
n=0

α(n)qn +

∞∑
n=0

β(n)qn − 2

∞∑
n=0

γ(n)qn = 0,

where we set α(0) = β(0) = γ(0) = 1. Upon equating the coefficients of qn on both sides of the above
equation, we lead to the desired result.

2

Example: The following table confirms the case for n = 2 in the Theorem 2.2.

α(2) = 3 : 2r, 2b, 2m
β(2) = 21 : 1r + 1r, 1g + 1g, 1y + 1y, 1b + 1b, 1o + 10, 1l + 1l, 1r + 1g, 1r + 1y, 1r + 1b

and 12 more colors of the similar type.
γ(2) = 12 : 1r + 1r, 1g + 1g, 1y + 1y, 1r + 1g, 1r + 1y, 1g + 1y, 2r, 2g, 2y, 2m, 2b, 2v.

Theorem 2.3 Let α(n) represent the total number of segments congruent to ±2,±3(mod 12) with 2 and
4 colors respectively. Let β(n) denote the total number of parts congruent to ±1,±5(mod 12) with 1 color
each and ±3,+6(mod 12) with 2 and 12 colors respectively. Let γ(n) represent the total number of parts
congruent to ±1,±5,+6(mod 12) with 2 colors each, and ±2(mod 12) with 1 color. Then we have

α(n) + 2β(n− 1)− γ(n) = 0, n ≥ 1.

Proof: On rewriting (1.3) subject to the common base q12, we have

1

(q±2
2 , q±3

4 ; q12)∞
+

2q

(q±1
1 , q±3

2 , q±5
1 , q+6

12 ; q
12)∞

− 1

(q±1
2 , q±2

1 , q±5
2 , q+6

2 ; q12)∞
= 0.

The quotients in the given identity are seen to correspond to the relevant generating functions α(n), β(n)
and γ(n) respectively. Hence we obtain

∞∑
n=0

α(n)qn + 2

∞∑
n=0

β(n)qn+1 − 2

∞∑
n=0

γ(n)qn = 0,

where we set α(0) = β(0) = γ(0) = 1. Upon equating the coefficients of qn on both sides of the above
equation, we lead to the desired result.

2

Example: To substantiate Theorem 2.3, the following table presents the verification for n = 2

α(2) = 2 : 2r, 2g
β(1) = 1 : 1
γ(2) = 4 : 1r + 1r, 1y + 1y, 1r + 1y, 2.

Theorem 2.4 Let α(n) represent the total number of segments congruent to ±1,±5(mod 12) with 4
colors each, ±2,±4(mod 12) with 2 colors each and ±3,+6(mod 12) with 1 color each. Let β(n) denote
the total number of parts congruent to ±1,±2,±3,±5,+6(mod 12) with 3 colors each. Then we have

3α(n)− 4β(n) = 0, n ≥ 0.
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Proof: On rewriting (1.4) subject to the common base q12, we have

1 +
3

(q±1
4 , q±2

2 , q±3
1 , q±4

2 , q±5
4 , q+6

1 ; q6)∞
− 4

(q±1
3 , q±2

3 , q±3
3 , q±5

3 , q+6
3 ; q12)∞

= 0.

We observe that each quotient in the preceding identity corresponds respectively to the generating func-
tions α(n) and β(n) respectively. Hence we obtain

1 + 3

∞∑
n=0

α(n)qn − 4

∞∑
n=0

β(n)qn = 0,

where we set α(0) = β(0) = 1. Upon equating the coefficients of qn on both sides of the above equation,
we lead to the desired result. 2

Example: The subsequent table demonstrates the validity of Theorem 2.4 for n = 2.

α(2) = 12 : 1r + 1r, 1y + 1y, 1b + 1b, 1g + 1g, 1r + 1y, 1r + 1b, 1r + 1g, 1y + 1b,
1y + 1g, 1b + 1g, 2r, 2y

β(1) = 9 : 1r + 1r, 1y + 1y, 1b + 1b, 1y + 1b, 1y + 1r, 1b + 1r, 2y, 2b, 2r.

Theorem 2.5 Let α(n) denote the total number of segments congruent to ±1,±5(mod 12) with 6 colors
and ±3,±4(mod 12) with 4 colors, and +6(mod 12) with 14 colors. Let β(n) represent the total number
of parts congruent to ±2,+6(mod 12) with 3 and 4 colors respectively. Let γ(n) denote the total number
of parts congruent to ±1,±4 ± 5(mod 12) with 2 color each and ±2,±3(mod 12) with 6 and 4 colors
respectively. Then we have

α(n) + 2β(n)− 3γ(n) = 0, n ≥ 0.

Proof: On rewriting (1.5) subject to the common base q12, we have

1

(q±1
6 , q±3

4 , q±4
4 , q±5

6 , q+6
14 ; q

12)∞
+

2

(q±2
3 , q+6

4 ; q12)∞
− 3

(q±1
2 , q±2

6 , q±3
4 , q±4

2 , q±5
2 ; q12)∞

= 0.

It is observed that the quotients in the above identity correspond to the generating functions α(n), β(n)
and γ(n) respectively. Hence the above identity is equivalent to

∞∑
n=0

α(n)qn + 2

∞∑
n=0

β(n)qn − 3

∞∑
n=0

γ(n)qn = 0,

where we set α(0) = β(0) = γ(0) = 1. Upon equating the coefficients of qn on both sides of the above
equation, we are lead to the desired result.

2

Example: The table below illustrates the verification of the case for n = 2 in the Theorem 2.5.

α(2) = 21 : 1r + 1r, 1y + 1y, 1b + 1b, 1g + 1g, 1w + 1w, 1p, 1p, 1r + 1y, 1r + 1b, 1r + 1g, 1r + 1w, 1r + 1p,
1y + 1b, 1y + 1g1y + 1w, 1y + 1p, 1b + 1g, 1b + 1w, 1b + 1p, 1g + 1w, 1g + 1p, 1w + 1p.

β(2) = 3 : 2r, 2y, 2b.
γ(2) = 9 : 1r + 1r, 1y + 1y, 1r + 1y, 2r, 2y, 2b, 2g, 2w, 2p.

Theorem 2.6 Let α(n) denote the total number of segments congruent to ±2,±3,±4(mod 12) with 12,
3 and 4 colors respectively. Let β(n) represent the total number of parts congruent to ±1,±5(mod 12)
with 3 colors each and ±2,+6(mod 12) with 9 colors, and ±4(mod 12) with 1 color. Let γ(n) denote the
total number of parts congruent to ±1,±5(mod 12) with 8 colors each and ±3(mod 12) with 3 colors.
Then we have

α(n) + 8β(n− 1) + r(n) = 0, n ≥ 1.
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Proof: On rewriting (1.6) subject to the common base q12, we have

1

(q±2
12 , q

±3
3 , q±4

4 ; q12)∞
+

8q

(q±1
3 , q±2

9 , q±4
1 , q±5

3 , q+6
9 ; q12)∞

− 1

(q±1
8 , q±3

3 , q±5
8 ; q12)∞

= 0.

It is observed that the quotients in the above identity correspond to the generating functions α(n), β(n)
and γ(n) respectively. Hence the above identity is equivalent to

∞∑
n=0

α(n)qn + 8q

∞∑
n=0

β(n)qn −
∞∑

n=0

γ(n)qn = 0,

where we set α(0) = β(0) = γ(0) = 1. Upon equating the coefficients of qn on both sides of the above
equation, we are lead to the desired result. 2

Example: The table below illustrates the verification of the case for n = 2 in the Theorem 2.6.

α(2) = 12 : 2r, 2o, 2y, 2b and 8 more colors of the similar type.
β(1) = 3 : 1r, 1y, 1b
γ(2) = 32 : 1r + 1r, 1y + 1y, and 6 colors of the similar type,1r + 1 + y, 1r + 1b and 26 colors of the

similar type.

Theorem 2.7 Let α(n) denote the total number of segments congruent to ±2(mod 12) with 2 color,
+6(mod 12) with 4 color. Let β(n) represent the total number of parts congruent to ±1,±5,+6(mod 12)
with 2 colors each and ±2,±3(mod 12) with 4 colors each. Let γ(n) denote the total number of parts
congruent to ±1,±5(mod 12) with 4 colors each and ±3(mod 12) with 8 colors. Then we have

α(n) + 4β(n− 1)− γ(n) = 0, n ≥ 1.

Proof: On rewriting (1.7) subject to the common base q12, we have

1

(q±2
2 , q+6

4 ; q12)∞
+

4q

(q±1
2 , q±2

4 , q±3
4 , q±5

2 , q+6
2 ; q12)∞

− 1

(q±1
4 , q±3

8 , q±5
4 ; q12)∞

= 0.

It is observed that the quotients in the above identity correspond to the generating functions α(n), β(n)
and γ(n) respectively. Hence the above identity is equivalent to

∞∑
n=0

α(n)qn + 4q
∞∑

n=0

β(n− 1)qn+1 −
∞∑

n=0

γ(n)qn = 0,

where we set α(0) = β(0) = γ(0) = 1. Upon equating the coefficients of qn on both sides of the above
equation, we are lead to the desired result. 2

Example: The table below illustrates the verification of the case for n = 2 in the Theorem 2.7.

α(2) = 2 : 2r, 2o
β(1) = 2 : 1r, 10
γ(2) = 10 : 1r + 1r, 1o + 1o, 1w + 1w, 1b + 1b, 1r + 1o, 1r + 1w, 1r + 1b,

1o + 1w, 10 + 1b, 1w + 1b

Theorem 2.8 Let α(n) denote the total number of segments congruent to ±2(mod 12) with 6 color,
+6(mod 12) with 4 color. Let β(n) represent the total number of parts congruent to ±2(mod 12) with
4 color and ±4,+6(mod 12) with 2 colors each. Let γ(n) denote the total number of parts congruent to
±1,±5(mod 12) with 3 colors each and ±3(mod 12) with 2 color. Then we have

α(n) + 3β(n− 1)− γ(n) = 0, n ≥ 1.
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Proof: On rewriting (1.8) subject to the common base q12, we have

1

(q±2
6 , q+6

4 ; q12)∞
+

3q

(q±2
4 , q±4

2 q+6
2 ; q12)∞

− 1

(q±1
3 , q±3

2 , q±5
3 ; q12)∞

= 0.

It is observed that the quotients in the above identity correspond to the generating functions α(n), β(n)
and γ(n) respectively. Hence the above identity is equivalent to

∞∑
n=0

α(n)qn + 3q

∞∑
n=0

β(n− 1)qn+1 −
∞∑

n=0

γ(n)qn = 0,

where we set α(0) = β(0) = γ(0) = 1. Upon equating the coefficients of qn on both sides of the above
equation, we are lead to the desired result. 2

Example: The table below illustrates the verification of the case for n = 2 in the Theorem 2.8.

α(2) = 6 : 2r, 2o, 2b, 2w, 2v, 2p
β(1) = 0 :
γ(2) = 6 : 1r + 1r, 1o + 1o, 1b + 1b, 1r + 1o, 1r + 1b, 1o + 1b

3. Conclusion

In the present investigation, we have established the validity of eight of Somos’s level-15 identities
by constructing explicit combinatorial interpretations. These interpretations not only provide a deeper
insight into the algebraic structure underlying the Somos sequences but also illustrate the intrinsic con-
nections between partition theory and recurrence relations. Furthermore, analogous combinatorial formu-
lations can be systematically derived for the remaining identities by employing the framework of colored
partitions. The detailed exploration of these additional cases, while following similar principles, is left to
the interested reader.
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