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Power Domination on Semi-Strong Product of Graphs

Huldah Samuel, Haajira M.* Sathish Kumar K.

ABSTRACT: An electrical power system can be monitored efficiently by placing the measurement device
called Phase Measurement Unit (PMU) in the power network which can be effectively done by identifying the
locations where the devices have to be placed, giving rise to the power domination (PD) concept in graphs.
A set of vertices S C V' that monitors every vertex in the graph G = (V, E) according to the rules of power
domination is called as the power dominating set (PD-set). The power domination number (PD-number) of a
graph G denoted by v, (G), is the minimum number of vertices that are required to power dominate the entire
graph. In this paper, we investigate the bounds for the semi-strong product (SSP) of two general graphs in
terms of the power domination number 7,(G). Also, we establish the exact bounds for certain graphs based
on their orders and PD-numbers.

Key Words: Domination, power domination, product graphs, semi strong product, power domina-
tion number.

Contents
1 Introduction 1
2 Preliminaries 2
3 General Bounds on SSP of Graphs 2
4 Results on SSP of Certain Graph Classes 6
5 Application and Conclusion 9

1. Introduction

Let G = (V, E) be an undirected, finite and loopless graph, with the vertex set V' = V(G), and the
edge set E = E(G). Given a vertex a of a graph G , N(a) denotes the open neighbourhood of a € V(G)
[2]. If Na] equals N(a)U {a}, then NJa] is said to be the closed neighbourhood of the vertex a. For
S C V(G), the set N(S) = |J N(a) is called its open neighbourhood and the set N[S] = N(S)U S is

s

a
called its closed neighbourhooed. The problem of monitoring the electrical power systems was introduced
by Baldwin [1], asks for minimum number of PMUs to be placed for adequate monitoring of the systems.
This problem of minimizing the monitoring devices in a power system was proposed as a graph based
approach by Haynes and Hedetenemi [9)].

Graph products have been a topic of interest in graph theory as it has various application in real
life such as finding paths or routes in networks and for determining the Shannon capacity of graphs
[15]. Among various products, the cartesian, strong, direct and lexicographic products are explored very
frequently in the literature [8,16]. Specifically [11] builds on the foundational work providing exact
values for v(G) of small grids. The PD in cartesian product of two paths were presented by Dorfling and
Henning in the paper [5]. Gravier et al. found the domination number of the direct product of paths [7].
Further the lower bound for the strong product of paths, the PD-number for the direct product of two
graphs and the PD-number for an arbitrary lexicographic product was investigated by Dorbec et al. [4].

The concept of SSP, initially denoted as strong tensor product where Garman et al.[6] studied the
fundamental properties and explored its behaviour within the framework of graph embeddings on ori-
entable surface. Kevin J McCall, in his dissertation [14] explored the non topological properties such
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as distance, domination number, matching, weiner index, colouring and clique. The investigation of the
basis number of the SSP for different types of graphs is presented in [12,13]. Two conjectures on the
SSP of paths and cycles and the upper bound for the domination number of SSP of any two graphs were
presented in [3]. An important property of the SSP is that, it is neither associative nor commutative
unlike cartesian, direct and strong products. This was shown by taking an example of (P <1 Py) X Py
and Py X (P > Py) [6].The SSP is structurally sparser than the strong product and denser than the
cartesian product.

The study of PD-number of SSP of graphs is primarily motivated by its potential applications in
network monitoring and its contribution to the broader field of structural graph theory. Investigating the
graph parameters for graph products is a central theme helping to understand the how the structure of
the individual factors influences the structure of the resulting graph. In this paper we discuss, the general
bounds and the PD-number of certain classes of graphs obtained by performing the operation SSP.

2. Preliminaries

Definition 2.1 A set D C V is a dominating set if every vertex in V, is either an element of D or
is adjacent to at least one element of D. The number of elements in the set with least cardinality
among all such dominating sets is known to be the domination number and is denoted by ~(G) [10].

Definition 2.2 Given a graph G, a set S C V is called a PD-set if every vertex in the graph is
monitored by the below stated rules:
i) Domination step: All vertices in G, except the non-neighbours of vertices in the S are monitored,
ii) PD step (or) Propagation step: If all the neighbours of a vertex a € S, except for single vertex
b, are monitored, then b becomes monitored by a. In this case we see that a propagates to b. The
PD-number depicted as 7,(G), is the least cardinality among all such PD-sets. The PD-set with
least cardinality is said to be 7,-set.

Definition 2.3 If the set D is dominating and the subgraph induced by D is connected, then D is
called a connected dominating set (CD-set) and the connected domination number of the graph G
is denoted as .(G) is the set with minimum cardinality among all such CD-sets.

3. General Bounds on SSP of Graphs

Definition 3.1 The SSP of G and H denoted by G 1 H is a graph where V(G <1 H)=V(G)xV(H) is
the set of vertices which are ordered pairs, and the set of edges is defined as follows: (u1,v1)(ug,v2) €
E(G H) if ug =ug and v1 ~ve € H or ug ~ug € G and vy ~ ve € H.

Note that, |V(G <t H)| = |V(G)||[V(H)| and |E(G = H)| = 2|E(G)||E(H)| + |E(G)||V(H)|. Let u
be a vertex in G and v be a vertex in H. In the SSP of G <1 H, a set of vertices V(G) x {v} are
called horizontal fiber and {u} x V/(H) are called vertical fiber.

v, UnPz Uz, Uz
Vi U1y Uz, Vg
.—.
Uy Uz

Figure 1: G = Ko, H = K
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Example 3.1 We illustrate the construction of the operation SSP by considering the Figure 2. Let
G = P4 be a path with m = 4 vertices with vertex set V(Py) = {u1,ug,u3,us} and H = C,, with n =4
vertices and the vertex set V(Cy) = {v1,v9,v3,v4}. Since |V (G > H)| = |V(G)||V(H)]|, the total vertices
in Pyoxi Cy is V(Pyx1Cy) = 4 x 4 =16. We aim to join the vertices according to the two rules.

Rule 1: Join the vertices if u; = uy and v; ~ vy € H

Rule 2: Join the vertices if u; ~uo € G and v1 ~ vy € H

Note that the Rule 1 facilitates |V (G)| copies of H and the Rule 2 facilitates the formation of edges
produced by direct product.

Figure 2: Construction of SSP for Py and Cy

Let us consider the vertex (u1,v1) € Py < Cy, we see from the figure that the vertex (uq,v1) is joined
with the vertices (u1,v2), (u1,v4) according to the rule 1 and (ug, v2), (u2, v4) by rule 2. Similarly we join
other vertices in the graph. We also see that the SSP is not commutative.

Note: For any two graphs G and H,

G O H denotes cartesian product, G X H denotes strong product, G x H denotes direct product.
Ehorizontalfivers denotes the edges which forms copies of H over each vertex of G, that is for any two
distinct vertices (u1,v1) and (ug,vs), the first components are equal (w13 = ug) and second components
are adjacent v1ve € E(H).

Theorem 3.1 For any two graphs G and H, v,(G x H) < v,(G< H) < ~,(GR H)

Proof: Let E(G x H) = {(u1,v1), (ua,v2)|u; ~ ug and v; ~ va} be the edge set of the direct product.
The set of edges of SSP and strong product is defined as E(G 1 H) = Enorizontalfivers J E(G x H)
and E(GX H) = E(G O H)U E(G x H) respectively. As FE(G x H) C E(G = H), any PD-set of
G x H must be a PD-set of G 1 H. This brings out the fact that v,(G x H) < 7,(G > H). Similarly,
E(G >~ H) C E(GK H). Hence, any PD-set of G > H is evidently a PD-set of G X H, shows that
(G > H) <7, (GXH). U

Remark 3.1 The above theorem depicts the relationship between the PD-numbers of direct product,

SSP and strong product respectively.

Theorem 3.2 Let G and H be two graphs with order m and n respectively. If v(G) # 1 and v(H) # 1
then 7 (G > H) < v(G)y(H).

Proof: Let the set of vertices of G be V(G) = {ui,us,...un} and that of graph H be V(H) =
{v1, v2,...v,}. By the definition of SSP, G <t H has the set of vertices to be V(G =< H) = V(G) x V(H)
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and the set of edges as E(G <1 H) = {(u;,v;)(uj,v;)|u; = uj and v; ~v; € H or u; ~ u; € G and v; ~
v; € H}. Consider the minimum dominating set of G as Dg = {u1,us,...,u, : p < m} and v(G) # 1.
Let the minimum dominating set of H be denoted as Dy = {v1,v2,...,v, : ¢ < n} and v(H) # 1. We
denote the PD-set of G 1 H to be Dg X Dy = {(ug,v) : a = 1,2,--+ ;p and b = 1,2,--- ,q where
p < m,q < n}. To prove equality, consider that, suppose Dg x Dy is not a minimum PD-set, then there
exists at least a set, say (Dg x D) —1, with cardinality less than D¢ x Dy which is the v,-set of G 1 H.
In this case, this set initially dominates vertices associated to it in accordance with the rules of SSP, but
since these dominated vertices are adjacent to more than one vertex, it is not possible to proceed further
to propagation step. This shows that the vertices in (Dg x Dp)—1 is not sufficient to power dominate the
entire graph. Suppose if we select the v,-set to be Dg x Dy, these vertices can dominate all the vertices
except the vertices in the horizontal fiber corresponding to the vertex in Dg X Dy. It is evident that the
remaining vertices can be power dominated in the propagation step. Note that this is the minimum power
dominating set for G 1 H. Thus Dg x Dy is the v,-set of G >1 H, implying (D¢ x Dg) = v(G)y(H).
The proof for inequality can be referred from Theorem 4.2. The equality holds if we consider G = C,,
and H = C,,. By combining the above arguments, we conclude that 7, (G < H) < ~v(G)v(H). m

Theorem 3.3 If G is a graph with m > 3 vertices and if H is a graph with n > 3 vertices and v(H) = 1
then v,(G > H) < 2v(G).

Proof: Let G be a graph with the vertex set V(G) = {u; : 1 < i < m where m > 3} and let H be
any graph with V(H) = {v; : 1 < j < n and v(H) = 1. The - set of H contains only a vertex
say {v1} as y(H) = 1, denoted by Dy = {v1}. Let the minimum dominating set of G be denoted by
D¢g = {u1,uz,...,up : p < m}. According to the definition of SSP, V(G) x V(H) = V(G > H) forms
the set of vertices and the set of edges be E(G > H) = {(u;,v;)(uj,v;)|u; = u; and v; ~v; € H or u; ~
u; € G and v; ~ v; € H}. Note that V(G < H) = mn. Consider the minimum PD-set of G > H to be
D¢ x Dg. To prove the upper bounds, we consider the following cases:

Case(i): If u; € V(G) —v(G) is not adjacent to u;:

Suppose that, the graph G in which a vertex u; € V(G) — v(G) is not adjacent to any other u; €
V(G) —v(G). In this case, the vertices in Dg X Dy initially dominates every vertex in G <t H except
for the vertices in the horizontal fiber corresponding to v; € H. The rest of the unmonitored vertices
are power dominated by the vertices in Dg X Dy in the power domination step. Thus Dg X Dy =
Y(G)y(H) = v(G).1 < 29(G) vertices are sufficient.

Case(ii): u; € V(G) —v(G) is adjacent to u;:

Suppose that, in graph G the vertices v;,v; € V(G) — 7(G) are adjacent, the vertices in Dg x Dy
initially dominates every vertex in G 1 H except the horizontal fiber corresponding to v;. It is clear that
the already dominated vertices cannot power dominate the remaining vertices. Thus we have to choose
additional vertices to power dominate the entire graph. Therefore, Dgx Dy = {v(G)y(H)+~(G)y(H)} =
27(G). Hence we get 7,(G > H) < 29(G). In the following Figure 3, note that v(G1) = 1,v(H1) =
1,7(G2) = 1,v(H3) = 1 and Gy <1 Hy shows equality whereas G5 i<t Hy shows strict inequality. O

Theorem 3.4 Let G be a graph with v(G) = 1. Let H be a graph with n > 3 vertices and y(H) # 1. If
~v(H)-set is connected then v,(G < H) = vy(H).

Proof: Let the vertices of a graph G be V(G) = {uy,us,...un} and let the vertices of graph H be
V(H) = {v1,v2,...v,}. By the definition of SSP, V(G = H) = V(G) x V(H) and E(G =< H) =
{(uws, vi)(uj,v)|u; = uj and v; ~ v; € H or u; ~ u; € G and v; ~ v; € H} are the set of vertices
and edges respectively. We also note that the considered graph G has only a vertex in its dominating
set, say Dg = {u1} since v(G) = 1. Let Dy be the minimum dominating set of H with vertices
Dy = {v1,v2,...,v4 : ¢ < n}. Consider the PD-set of G >t H as S = {{u1} x {v1,v2,...,v4 : ¢ < n}}.
The vertices in the set S = {(u1,v4) : 1 < ¢ < n} dominates initially all the vertices in V(G 1 H) except
the vertices in the corresponding horizontal fiber, which is power dominated in the propagation step.
Note that, there is no set with elements less than |S| can power dominate all the vertices in G < H.
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H; v H, vy
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Figure 3: v,(G1 > Hy) = 2(G1) and v,(G2 < Ha) = 1 < 2v(Gs)
Hence S = Dg x Dy = {(u1,v1), (u1,v2),..., (u1,v4) : ¢ < n} is the required minimum PD-set. Thus
1p(G b H) = (H). 0

Theorem 3.5 Let G be a graph with v(G) =1 and H be a graph with n > 3 vertices and v(H) # 1. If
~v(H)-set is not connected then v,(G > H) < ~v.(H).

Proof: Let G be a graph with order m > 2 with vertex set V(G) = {u1,uz,...un,} and v(G) = 1. Let
H be any graph of order n > 3 with vertex set V(H) = {v1,vs,...,v,}. We know that, G > H has
V(G)x V(H) =V (G H) and E(G > H) = {(u;,v;)(uj,v;)|u; = uj and v; ~v; € H or u; ~ uj €
G and v; ~ v; € H} as the set of vertices and edges respectively. Since |y(G)| = 1, consider the vertex
in the minimum dominating set denoted as Dg = {u1}. Also the minimum dominating set of H to be
Dy ={v1,v2,...,94 : ¢ < n} such that v(H) is not connected. To prove the equality, let us assume that
Dg x D = {ui} x {v1,v2,...,vq : ¢ <n} = {(ur,v1), (u1,v2),...,(ui,vq) : ¢ <n}. This set dominates
all the vertices in G 1 H except the vertices in the horizontal fiber corresponding to u; in the domination
step. Suppose if G = K, or at least one u; ~ u; : u;,u; € V(G) — v(G) then the remaining vertices
cannot be power dominated by any of the dominated vertices as the degree of these vertices exceeds 1.
Hence we add at least v.(H) additional vertices in Dg X Dy to power dominate the entire graph. Thus
vp(G > H) < v.(H). Now for strict inequality, consider G such that no vertices of u;, € V(G) —v(G) is
adjacent to u; € V(G) —v(G). In this case, the vertices in Dg x Dy initially dominates all the vertices
except the vertices in the horizontal fiber corresponding to u; in G <t H. But since no u; € V(G) —v(G)
is adjacent to u; € V(G) — v(G), it is clear that the remaining vertices can be power dominated by the
already dominated vertices in Dg X Dg. Hence, v,(G <t H) = Dg X Dy = v(H) < ~v.(H). This proves
(G 5 H) < u(H). 0

Corollary 3.1 For any two graphs G and H, v(H) < v,(G < H) < v.(H).

Theorem 3.6 If G is a trivial graph (K1) and H be any graph with order n, then v,(G > H) = ~,(H).

Proof: Let G be a trivial graph with a vertex say {u;} and H be any graph of order n > 2 with vertex
set V(H) = {v1,v2,...v,}. Since K1 >t H 2 H, we have V(G) copies of H. Here |V (G)| = 1, therefore
one copy of H is present in the construction of SSP. Hence v, (H) vertices are sufficient to power dominate
the entire graph. Thus, v,(G > H) = ~,(H). O
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Remark 3.2 If G = K; and H be any graph with order n > 2, we have v(G <1 H) = vy(H).

Theorem 3.7 Let G be any graph with order m and H be a trivial graph. Then, v,(G > H) = m.

Proof: Let G be any graph with order m > 1 and {uy, ug, -+ , U, } be the vertex set. Let H be a trivial
graph with vertex say {v;}. From the construction of SSP, we obtain o(G) = m isolated vertices that is
G > K1 = Ky (). Thus m vertices are required to dominate the entire graph. Hence, 7,(G > H) = m.

O

Remark 3.3 From the above stated theorem a similar proof can be derived for proving v( G >t H) =
m.

4. Results on SSP of Certain Graph Classes

Theorem 4.1 Let G = K,,, and H = K,, be two complete graphs with m > 1 and n > 2 vertices respec-
tively. Then

(G H) = {2 o =3

1 ifm=1,2.
Proof: Let G be a graph with V(G) = {u,usa,...,un} and let H be a graph with vertex set V(H) =
{v1,v2,...,v,}. For m = 1, according to the definition of SSP we have G < H = H. We know that
~p(K) = 1. Therefore, v,(G < H) = v,(H) = 1.

If m =2, then D = {ug,v1} is a y,-set for G <1 H because the vertices V(G <1 H) — {(u2,v1)}
are dominated initially, and the vertex (ug,v1) is dominated in the PD step (propagation step). So
V(G H) =v,(H) = 1.

Now, we deal with m > 3.

Suppose, if we choose any one vertex {(u;,v1)}, where 1 < ¢ < m — 1 in V(G < H) for the minimum
power dominating set of G b H, then at the domination step, this vertex will dominate all the vertices
in the graph except the vertices in horizontal fiber corresponding to the vertex {u;,v1}. Note that,
the graph depicting the SSP of two complete graphs, has every vertex in G is adjacent to every other
vertex in H except the vertices in the same horizontal fiber. Therefore, no vertices in the horizontal fiber
corresponding to {u;, v1} can power dominate in the propagation step. So, v, (K, > K,,) > 2. Further,
if we choose any one vertex from the same horizontal fiber {(u;+1,v1) : 1 < i < m — 1} in addition,
then the remaining vertices in V(G 1 H) — N|(u;,v1)] are power dominated by chosen vertex. Therefore
D = {(ui,v1), (¢it1,v1)} is the minimum PD-set as the vertices in D can power dominate the entire
graph. Hence, v,(G < H) = 2. O

Remark 4.1

If n =1, in the above theorem, then the graph obtained by performing the semi strong product is
collection of vertices which are isolated. Since, there are m-isolated vertices, v, (K, > K,,) = m.

Theorem 4.2 Let P, and P, be two graphs with m > 2 and n = 2k + 1,k > 1 vertices, respectively.
Then, vp(Pp > Py) <[] 4 [2] - 1.

Proof: Let the vertices of a graph P, be V(P,,) = {ui,ua,...,un} and let the vertices of graph
P, be V(P,) = {v1,v2,...,v,}. By the definition of SSP P,, <t P,, the vertex set V (P, <1 P,) =
V(Py) x V(P,) and the edge set E(P,, b P,) = {(u;,vi)(uj,v;)|u; = u;j and v; ~ v; € P, or u; ~ u; €
P,, and v; ~ vj € P,}. Here note that V(P,, > P,,) = mn and E(P,, > P,)) = 2(m—1)(n—1)+m(n—1) =
3m(n — 1) — 2(n — 1). To construct the minimum PD-set for (P, <1 P,), the below cases are under
consideration:

Case (i): Let m = 2 and n = 3. In this case, D = {(ug,v2)} is a v,-set for P,, > P, since the vertices
(u1,v1), (u1,v3), (ug,v1), (uz,v3) are dominated initially and the remaining vertex (u1,vq) of Py < Ps is
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power dominated by (ug,v2). Hence, v,(Ps > P3) = 1.

Case (ii): When m > 3 and n = 3, the set D = {(ug;—1,v2) : 1 <4 <[]} is a y,-set for P, > Ps
since the vertices (wm—1,v1), (Um, 1), (Um+1,01), (Um—1,03), (Um, v3), (Um+1,v3) are dominated initially
and the rest of the vertices of P, < P3 are power dominated by {(us;—1,v2) : 1 < i < [%]}. Hence,
Vp(Prm >4 P3) = [%]

Now we deal with general case: When m >4 and n=2k+1, k > 2.

Consider the set D = S1 U S UT, where Sy = {(ug,vsj-1) : 1 < j < [251]},

Sy = {(ugi—1,0n-1):1<i < nglj} and

T = {(uz,vn,1)| if min{d((uz,vgj,l),(uQ,vn)),d((u;;i,l,vn,l),(ul,vn,l))} > 3}. Here T = 0, if

min{d((uz,vsj-1), (u2,vn)),d((ugi—1,vn-1), (u1,v5-1)) } < 3. By the definition of power domination,
note that the vertices of (P, 1 P,,) are dominated and hence power dominated by the elements contained
in the sets Sy, S and T. Also note that, this is a minimum power dominating set and [ 251] + | L] +
1 < [5]+ [%] — 1 vertices are required to power dominate all the vertices of P, > P,. Hence,

9p(P < Pa) = D] < [2]+ 3]~ 1. -

Theorem 4.3 Let P,, and P, be two graphs with m > 2 and n = 2k, k > 1 vertices respectively. Then
Vp(Prn >4 Py) = [5].

Proof: Let the vertices of a graph P, be V(P,,) = {u1,us,...,u,} and let the vertices of graph P,
be V(P,) = {v1,v2,...,0,}. By the definition of SSP, P,, > P, has the vertex set V (P, <1 P,) =
V(Pp,) x V(P,) and the edge set E(Py, > P,) = {(u;, v;)(uj,vj)|u; = u; and v; ~ v; € P, or u; ~ uj €
P,, and v; ~ v; € P,}. To construct the minimum PD-set for (P,, b P,), we consider the following
cases:

Case(i): When m > 2 and n = 2, the set D = {(ug,v1)} is a 7, set for P, v P,. Initially
{(u1,v2), (uz,v2), (us,v2)} are dominated and subsequently the remaining vertices are power dominated
in the propagation steps. = ~,(P, < P,) =1

Case(il): When m =2 and n = 2k, k > 1

In this case, D ={(ug,vsi—1): i = 1,2,...,n/3 if n =0mod 3; i = 1,2,...,[n/3] if n = 2mod3} and
D = {(ua,vp), (ug,v3;-1) : 1 =1,2,...,|n/3] if n = 1mod3}. It is clear that [n/3] vertices are sufficient
to power dominate the entire graph.

Case(iil): We now deal with the general case where m > 3 and n = 2k, k > 2. In this case, we discuss
the PD-set in following three sub cases.

Sub case(i): When n = 0 mod 3, consider the set S ={(uz2,v3;—1): ¢ = 1,2,...n/3} in the domination
step, the vertices in S dominates 3n — (2n/3) vertices of P, <1 P,, and the remaining vertices are power
dominated subsequently by the already dominated vertices. This proves, v, (P, > P,) = n/3

Sub case(ii): When n = 1 mod 3, consider the set S ={(ug2,v3;—1) U (u2,v;) : 4 = 1,2,...|n/3],j = n}.
These vertices initially dominates 3n — |n/3| + 1 vertices and the remaining vertices are subsequently
power dominated in the propagation steps. In this case, v, (P, > P,) = |n/3] +1 = [n/3].

Sub case(iii): When n = 2 mod 3, we choose the set S ={(uz,v3;,-1): i = 1,2,...[n/3]}. The set D
dominates 3n — 2[n/3] vertices in the domination step and the remaining vertices are power dominated
in the propagation steps.

Hence, combining all the above cases, we can easily conclude that the obtained PD-set S is the minimum
PD-set which power dominates all the vertices of V (P, > B,). Thus, v,(P,, > P,) = [n/3]. O

Theorem 4.4 Let G = P, be a path of order m > 3 wvertices and H = K,, be a complete graph with
order n > 2. Then, v,(P,, > K,,) = [m/3].

Proof: Let the vertices of a graph G = P, be V(P,,) = {u1,us,...,un} and let the vertices of graph
H = K, be V(K,) = {v1,v2,...,0,}. By the definition of SSP P, > K, the vertex set V(P,, < K,,) =
V(Py,) x V(P,) and the edge set E(P,, > K,,) = {(u;,v;)(uj,v;)|u; = u; and v; ~ v; € K, or u; ~ u; €
P, and v; ~v; € K, }.
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Uz

L1
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Figure 4: Hlustration of v, (P, > P,) with n = 2k and n = 2k + 1 respectively

The minimum PD-set of V(P,, < K,,) is found by considering the following cases:

Case(i): When m = 0 mod 3, let the PD-set be S = {(us;—1,v1) : 4 =1,2,...m/3}. Here, D dominates
mn — 2(m/3) vertices initially. Note that all the vertices except {(u;,v1) : 1 # 3k —1,k=0,1,...,m/3}
are dominated in the first step and the remaining vertices are power dominated in the propagation step.
Case(ii): When m = 1 mod 3, let the power dominating set be D = {(ugi—1,v1) U (um,v1) : i =
1,2,...,|m/3]|}. At the first step, mn—2|m/3] vertices of (P,, > K,,) are dominated. At the propagation
step, 2| m/3| vertices are power dominated. Thus, mn—2|m/3]|+2|m/3] = mn shows that all the vertices
are power dominated.

Case (iii): When m = 2 mod 3, consider the set S = {(ugi—1,v1) : 4 =1,2,...,[m/3]}. It is clear that
these vertices are sufficient to dominate and power dominate the entire graph. Combining the above
three cases, it can be easily verify that the obtained power dominating set S is a minimum PD-set for
P,, > K,,. Hence, v,(P,, =< K,,) = [m/3]. O

Theorem 4.5 Let G(= Sy,) and H(= S,,) be star graphs with n > 2 and m > 2 vertices, respectively.
Then, vp(Sp > Sp) = 1.

Proof: Let the vertices of a graph G = S, be V(S,,) = {u1,usa, ..., uy,} with u; as the central vertex
and let the vertices of graph H = S,, be V(S,,) = {v1,v2,...,v,} with v; as the central vertex. By the
definition of SSP, S, 1 S, has the set of vertices V(S,, > .S,,) = V(Sy,) x V(S,,) and the set of edges
E(Sm >a Sp) = {(ui, vi)(uj,v5)|us = uj and v; ~ v; € S, or u; ~ u; € Sy, and v; ~ v; € S, }. Let
D = {(u1,v1)} be the vy,-set of S,, > S,,. It is clear from the construction that (ui,v1) is adjacent to
every vertex of Sy, < S, except {(u;,v1) : 2 < i < n}, therefore mn — (n — 1) = mn —n + 1 vertices
are dominated at the domination step. The remaining (n — 1) vertices, {(u;,v1) : 2 < i < n} are power
dominated in the power domination step, hence monitoring the entire graph.

Thus v, (Sm >4 Sy,) = 1. O

Theorem 4.6 Let K, and P, be two graphs with n > 3 and m > 3 vertices, respectively. Then

[5]+1 ifm=4k+ 2, where k > 1

[2] otherwise.

Vp(Kn > Pr) = {

Proof: Let the vertices of a graph K,, be V(K,,) = {u1,us,...,u,} and let the vertices of graph P, be
V(Pn) = {v1,v2,...,vn}. By the definition of semi strong product K,, <1 P,,, the vertex set V (K, <
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P,,) =V(K,)xV(P,) and the edge set E(K,, > Py,) = {(u;, vi)(u;,v;)|u; = u; and v; ~ vj € Py, or u; ~
uj € K,, and v; ~ v; € Py}. The minimum PD-set of this graph can be concluded from the following
cases:

Case (i): When m =4k, k > 1

The ,-set S can be obtained by choosing the vertices S = {(uz, v4i—2), (u2,v4i-1) : 1 < i < F}. Note
that the set S dominates the entire graph. Thus, 2(F) = § = [ 5] vertices are sufficient for this case.
Case(ii): When m =4k + 1,k > 1

In this case, the number of vertices in V (K, > P,,) differs from the case (i). Therefore, the above PD-set,
S as in case (i) is not sufficient to power dominate all the vertices in (K, < Py, ), since the propagation
step cannot power dominate any of the vertices as the adjacency of every monitored vertex is greater than
1. Hence the yp—set, S = {(U27U4i_2), (’U,Q,’U4z'_1) 01 S ) S L%J} @] {(u2,vn)}. That iS, 2(%) +1= [%1
Case(iil) When m =4k + 2,k > 1

In this case, select the vertices {(u2,v4i—2), (u2,v45-1) : 1 <4 < [F]}, (u2,vn—1) and (uz,vy,) in V (K, >
Py,) to construct the minimum PD-set. That is, 2(%¢) +2 = [ ] 4 1 required to power dominate the
entire graph.

Case (iv): When m =4k + 3,k > 1

The 7,-set in this case is same as the 7,-set in case (i). Therefore, 2(Z5) = [2] vertices are needed to
power dominate the entire graph.

Combining the above cases, we obtain the theorem. O

Remark 4.2 From Theorem 4.6, we also note that (K, > Py,) = v, (K, > Py,).

Theorem 4.7 Let G = P,, and H = C,, be path with m > 3 and cycle with n = 2k + 1 where k > 1
vertices, respectively. Then,

-

-
I3 @IS cof3

—

ifm>3,n=3,
ifm=3,n=2k+1wherek >1,
21 —=1 ifm>4,n=2k+ 1 wherek > 2.

'Yp(Pm > Cn) =

-

_
+

-

Proof: Let the vertices of a graph G = P,, be V(P,,) = {u1,uz,...,un} let the set of vertices of
H = (C,) be V(C,) = {v1,v2,...,v,}. By the definition of SSP P,, X C,,, the vertex set V(P,, X C,) =
V(Py,) x V(C,,) and the edge set E(P,, X Cp) = {(us, vi)(uj,v;)|u; = u; and v; ~v; € Cp or u; ~ u; €
P, and v; ~v; € Cy}.

Case(i): When m > 3 and n = 3. Consider the set S = {(ug;i_1,v2) : 1 < i < [%]}. It is clear that
these vertices are not sufficient to power dominate the entire graph except the case where m = 3k, k > 1.
Therefore we select one more vertex to power dominate the entire graph, thus S = {(us;—1,v2) : 1 <4 <
L5 ] } U{(u3m,ve)} for the case where m # 3k, k > 1. Hence, in both the cases, we observe that this is
minimum set which power dominates the given graph (P, > C,). Thus v, (P, > C3) = [ %]

Case (ii): When m = 3,n = 2k + 1 where k > 1. The v,-set of (P3 > C,,) denoted by D is considered to
be D = {(ug,v3i—1): 1 <i < %} ifn=3kwhere k> 1and D = {(uz,v3;-1) : 1 <7 < | 5] U (uz,vn-1)}
This proves v,(P3 > Cy,) = [%].

We now deal with the general case where m > 4,n =2k + 1,k > 2.

Let us consider the v,-set, S = Py UP,. When m = 3k, k > 2, we select Py = {(ugi—1,vn-1):1<i < 2}
and when n = 3k where k is odd, we select P, = {(u2,vs3;-1) : 1 <4 < §}. Otherwise, we choose
Pr= {(ugi—1,vn-1) : 1 <0 < [F] U (Ugm,vn-1)} and Py = {(ug,v3;-1) : 1 <4 < [ 5] U (u2,v0-1)}-
Therefore, by the above argument we get the v,-set of (P, > C,,) to be [ ]+ [%]. But we observe that
the vertex (ug,v,—1) is common for both P; and P;. Thus, the minimum PD-set of (P, > C,,) reduces

to [%] +[5] — 1. Hence, the theorem. O

5. Application and Conclusion

Large scale infrastructure networks such as telecommunication systems and sensor networks can often
be modeled as products of smaller graphs. The SSP defines a specific complex connection pattern that
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may accurately model a large network built from a layered network of rings or paths connected in a grid
like fashion. Studying ~,(G pa H) provides a theoretical basis for determining the least number of sources
needed to monitor the entire system. In this article, we have attempted to find the PD-number for certain
combinations of basic graphs. The comparison table of 4(G) as found in [3,14] and ~,(G) investigated in
this paper are listed below:

Graphs v(@G) Yp(G)
G H < 29(G)v(H) < Y(G)v(H)
m n ) .
R - [@_‘ {E—‘ [g—‘ + {g—‘ —1, if [V(H)| is odd,
4113 [4 , if [V (H)| is even.
3
1, iftm=1,2
K, < K, 2
2, ifm>3
Sp><xH,n>2 H#K,; v (H) v(H)
KnNHaH#KlanZ]- ”Yt(H) S’YC(H)
Sy S, 2 1

Power domination on SSP of grids, chordal and bipartite graphs are not yet characterized which are
avenues for future research. Few problems to work on, are suggested below.

Question 1: To characterize the graphs for which v,(G > H) = 7,(G) + v,(H) and determine whether
such equality implies structural constraints.

Question 2: Characterization of graphs with equal domination and PD-numbers are still open.
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