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Evaluating Centrality-Based Key Node Identification and Performance Optimization in
Barabasi-Albert Wireless Sensor Networks

Suneela Kallakunta

ABSTRACT: This analysis focuses on examining the relevance of the centrality measures within the context
of wireless sensor networks (WSNs) using the Barabdsi-Albert Model with 100 and 150 nodes. The centrality
measures included in this work comprise Degree centrality (DC), Betweenness centrality (BC), Closeness
centrality (CC), Eigenvector centrality (EVC) and Katz centrality (KC). The analysis addresses these measures
to evaluate the ways they improve the performance of WSNs through key node identification. The analysis
highlights the centrality measures and their role in WSNs’ effectiveness, offering insights into such utilisation in
routing and overall sensing reliability. Further, the complex interrelations among measures of centrality have
been analysed through correlation techniques of different rigour, such as Pearson, Kendall, and Spearman. The
focus on the individual metrics has provided an understanding of the centrality measures to explain further
the net outcome of the performance of the network. This study addresses the interconnected developments of
WSNs and offers interventional measures to enhance performance in different circumstances.

Key Words: Graph Theory, network optimization, complex networks, node importance, routing
efficiency.
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1. Introduction

The invention of WSNs is a pioneering creation of contemporary civilisation that enables the collection
of data with the use of distributed sensor nodes. This network integrates different techniques to enable
an efficient collection of data from different parts of a system to observe and measure different aspects of
a phenomenon in a system. WSNs consist of a network of sensors that collaboratively monitor and assess
the condition of the environment, the state of infrastructures, and several other important parameters.
This is done to gather information that is useful to a wide range of disciplines. WSNs and their use in
infrastructure are important and valuable [1,2]. The use of WSNs enables the achievement of new goals
that are important to engineer and scientists for the deeper exploration of certain fundamentals and their
applications. Understanding system behaviour in different scales, coupled with the use of WSNs to observe
certain phenomena, improves system dynamics. WSNs create a wide range of theoretical and practical
opportunities, and as a result extend the areas of environmental observation, health care, advanced
industry, smart cities, precision farming, automated disaster mitigation, and military observation [3,4].
An example of an advantage of WSNs is their decentralised structure. This advantage permits multiple
deployments of WSNs. Such deployments rigidify the set of measurements of almost any measurement
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system, thereby weakening the influence of disturbance factors. This improved system monitoring makes
significant advancements and practical uses possible in many areas [5]. An example of an advancement
of WSNs is that they offer new opportunities for measurement and observation of phenomena. This puts
their use toward the border of our knowledge of systems exhibiting dynamics. The use of WSNs can
be a fundamental change for several branches of technology to push the performance of high-precision
sensor systems even further. A significant feature of WSNs amid this modern paradigm is the term
significant nodes [6,7]. These nodes are a marvel in the advancement of sensing technologies, as their
use in different fields can transform entire fields. The immeasurable capabilities integrated with the
communication and measurement of the surfaced phenomena are unimaginably precise. To emphasize
the importance of significant nodes in enhancing the performance and functionality of a WSN, we propose
their identification through distinct centrality measures.

The information in this article covers the outcome of the centrality measures of degree, betweenness,
closeness, eigenvector, and Katz centrality centrality on WSNs based on the Barabési-Albert Model
with 100 and 150 nodes. The central nodes of the network are of primary concern as they perform the
most critical functions in optimizing the network’s performance, routing the network, and enhancing the
accuracy of the sensors of the entire network. This paper aims to clarify the measures of centrality that
are more prominent and dominant in the relation as their centrality and performance are streamlined with
the network performance toward the use of correlation methods such as Pearson, Kendall, and Spearman
correlation.

2. Centrality Measures In WSNs

The focal point of centrality metrics in WSNs rests in their contribution to the optimisation of net-
work functionality, uninterrupted data flow, and overall refined effectiveness regarding the node’s sensing
capabilities. Centrality metrics help to understand the analysis of the importance and the relationship
of the individual nodes in the structural design of WSNs. Centrality measures enable the networks to
optimally position the nodes that are critical to the sensing and transmission of data, therefore improving
the efficiency of the network. Centrality measures are central to the analysis of the WSNs that determine
the data transmission and processing routes [8,9]. Central to the problem are the routing protocols with
the maximally optimised energy expenditure and data transfer delay that are defined as the predominant
concerns of sustainable data transfer.

On the other hand, centrality measures are used to determine critical nodes that are fundamental to
the strengthening of the WSNs. The appropriate placement and ensured connectivity of the described
critical nodes provide the network with a heightened resilience to failures and disturbances, consequently
improving the overall network reliability [10,11]. Maximising energy consumption in geo-sensor net-
works (GSNs) makes centrality measures a necessity. Optimising operational energy efficiency requires
centrality-based strategic node placements [12]. These nodes are classified as central or peripheral.
Although all nodes in a network can be interconnected, only specific nodes are capable of node config-
uration. These central nodes can be considered vital hubs in the network, serving as entry/exit points
from the distributed sensors. They serve as the focal points of information capture and dissemination,
and information transceivers and receivers, amplifying the network functionality. Centrality measures
are valuable in the allocation of resources in WSNs and in the allocation of energy or bandwidth to
the focal nodes. Researchers focus on the nodes with high centrality, which improves the effectiveness
of the resources, resulting in improved sensing performance [12,13]. Centrality measures improve the
flexible traits of the network and enhance the adaptive behaviours of the network. These centrality
measures ensure that the nodes with high central impact retain central positions, and they can still
be optimally placed for new operational or environmental scenarios [11, 13]. Also, centrality measures
improve the optimal development of diverse routes. Optimally placed nodes with high centrality in the
network improve the flow of information and the crossing links of the network, improving overall network
communication. Incorporating centrality metrics in WSNs further illustrates the importance of funda-
mental centrality metrics to improve the utility of the networks in terms of energy, data reliability, and
adaptability, among other parameters. Employing these techniques, the fundamental utility of WSNs
in environmental and health-related monitoring, industrial automation, smart cities, and other equally
complex fields will be significantly enhanced.



EVALUATING CENTRALITY-BASED KEY -+ IN BARABASI-ALBERT WIRELESS SENSOR NETWORKS 3

Centrality measures in graph theory, which are employed in this study to identify the most critical
nodes, include [14,15]:

2.1. Degree centrality

Degree centrality allocates a value to a node in a network based on its connections as a measure of
its value to the network. Each node with a higher degree centrality value possessed more connections to
other nodes, thus indicating a higher ‘dominance’ or ‘importance’ within the network.

The degree centrality of a node v; is given by

DC = el Ae (1)

where A is the adjacency matrix of a network, e; is the ith standard basis vector (the ith column of the
identity matrix), and e is the vector of all entries one.

2.2. Betweenness centrality

Betweenness centrality is the set of connections formed because of its resources. The users with the
highest BC scores are those riding the most significant number (or the highest average) of the shortest
paths between users on the network. Such users are referred to as ‘bridge’ or ‘focal nodes’ in the network.
These users are pivotal in the distribution and redistribution of the resources and information that flow
across the various boundaries of the network. Moreover, their presence greatly enhances the overall
network communication efficiency. The network possesses the most excellent control over its entire
connectivity and redundancy.

The betweenness centrality of a node v is given by

BOWw) =Y 74 (2)
. . 01]
i#]
where 0;;(v) is the number of shortest paths from node i to node j that pass through v and o;; is the
total number of shortest paths from node ¢ to node j.

2.3. Closeness centrality

Within networks, ‘closeness centrality’ determines how quickly a given node can interact with other
nodes. This node-to-network method involves broadcasting to every other node and averaging the dis-
tance. Imagine other nodes cluster around a node having high ‘closeness centrality’. The time required
to engage with every other node is reduced, and the ’closeness’ node is easily accessible. These nodes are
also known as periphery nodes specialized for communication. This streamlines the network and adds
redundancy, as users are directed toward the focal nodes, resulting in enhanced overall performance.

The closeness centrality of a node 7 is given by

N -1
el De

where N is the total number of nodes and D is the distance matrix.

cC(i) = (3)

2.4. Eigenvector centrality

Eigenvector centrality is an analytical technique in social network analysis that characterises the im-
portance of a node in a network with respect to other pivotal nodes to which it is connected. Unlike simpler
metrics of connectivity, it assesses the breadth and depth of the connections to a node. An eigenvector
central node is tied to other nodes of similarly high centrality and is thus not merely well-connected, but
well-connected enough to dominate the network. This technique demonstrates the extraction of the most
central nodes in the network, thereby identifying the nodes that control their structural and functional
operational parameters.

The eigenvector centrality of a node 7 is given by
1
EVC=X,= ——— AX, 4, 1=1,2,3,--- 4
i HAXzfln i—1 ( )

where X is the unit column vector.
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2.5. Katz centrality

In social network analysis, the importance of each node is evaluated through Katz centrality, con-
sidering both direct and indirect routes associated with attendance to and departure from each node.
Relatively, there is a bias toward ascribing greater centrality to nodes that, alongside primary direct con-
nections, are also linked to other central nodes. This process also accounts for the reach of disconnected
nodes, whose centrality scores are adjusted accordingly. It allows users to pinpoint the nodes within a
network that control a disproportionate amount of the data flow or even dominate the entire network.

The Katz centrality of a node i is given by

KC=(I-aA) e (5)

where I is the identity matrix of order n,« is the attenuation factor with a € (0, ) and X is the
principal eigenvalue of A.

3. Results and Discussion

The focus of this analysis, which determines the location of the main constituents of centrality measure
weighted WSNs, centres on the examination of two network configurations, using one dataset consisting
of 100 nodes and another of 150 nodes. Network configurations are displayed in Figures 1 and 3, while
the calculated centrality measures are shown in Figures 2 and 4. These measures are degree centrality,
betweenness centrality, closeness centrality, eigenvector centrality, and Katz centrality. Each of these
measures the prominence or dominion of a focal node in the network. The centrality measures for 100-
node networks and 150-node networks are presented in Tables 1 and 2, respectively. These tables report
the top 10 ranks for the given constructs of the networks. Such critical nodes in a network are pivotal and
are likely to improve performance in data collection, processing, and transmission. For the next phase
of this research, the centrality values of a network comprising 100 nodes and 150 nodes were cordialized
through three different methods: Pearson’s correlation, the Kendall rank correlation, and the Spearman
correlation, to determine the degree of interdependence among several centrality measures.

3.1. Analysis of Correlation Coefficients

Tables 3 and 4 show the results of the correlation analysis within the 100-node and 150-node networks.
The results also show the strength of correlation between the centrality metrics and the metrics of the
network focus. In the 100-node network, the Pearson correlation coefficients show strong positive corre-
lations for the majority of centrality metrics, especially for degree centrality and betweenness centrality
(0.9771), closeness centrality (0.8603), eigenvector centrality (0.9335), and Katz centrality (0.94748).
This means nodes that have the highest degree are also the most critical nodes in terms of the flow of
information (betweenness centrality), are likely to have the shortest pathways to other nodes (closeness
centrality) and have a connection to other crucial nodes (eigenvector and Katz centrality). Closer exam-
ination of the nodes using Kendall rank, Spearman and other correlation techniques sheds more light on
their ordinal positioning within the network. The approximate 100-node and 150-node networks have a
Pearson correlation of 0.99905 and 0.98581, respectively, demonstrating the near-perfect correlation of
eigenvector centrality and Katz centrality in both networks. This is important because not only does it
show agreement between the two measures, but also that one set of nodes identified as central by one
measure will be equally central by the other, validating their leverage position in the network. Analysis
on the 150-node network still reveals similar trends, which have Pearson showing positive, strong rela-
tions on the centrality metrics. Although the correlation is lower for the degree centrality and closeness
centrality for the 150-node network (0.69889) compared to the 100-node network (0.8603), it does suggest
that the larger the network has to offer, the lesser the degree of relationship there is for the connectivity
and average distance the node has to the remaining nodes. The same is held for the Kendall rank and
Spearman correlation, which confirmed the findings of strong positive correlation for centrality measures,
especially for eigenvector and Katz centrality, which once again have almost perfect correlation. This
serves to demonstrate the effectiveness of these metrics regardless of the network size.
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Figure 1: Network with 100 nodes: graphical illustration
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Figure 2: Network with 100 nodes: graphical illustration of centrality metrics
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Figure 3: Network with 150 nodes: graphical illustration
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Figure 4: Network with 150 nodes: graphical illustration of centrality metrics
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Table 1: Ranking of Nodes: Centrality Measures for 100 nodes

Rank | DC | BC | CC | EVC | KC
1 8 8 4 8 8
2 4 4 8 4 4
3 9 9 9 9 9
4 0 0 0 0 0
5 ) S ) S )
6 14 19 3 3 3
7 3 14 15 1 14
8 19 3 1 15 1
9 24 24 19 14 15
10 1 15 14 7 7

Table 2: Ranking of Nodes: Centrality Measures for 150 Nodes

Rank | DC | BC | CC | EVC | KC
1 5 ) 5 ) 5
2 0 0 0 2 0
3 3 3 3 0 3
4 2 2 2 3 2
5 4 29 4 4 4
6 24 4 15 15 15
7 29 24 16 8 8
8 8 25 8 16 14
9 14 14 12 14 16
10 15 15 29 7 12
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Table 3: Correlation centrality metrics for 100 nodes

Pearson correlation

DC BC CcC EVC KC
DC - 0.9771 0.8603 0.9335 | 0.94748
BC - - 0.82501 | 0.90577 | 0.91959
CcC - - - 0.95822 | 0.95570
EVC - - - - 0.99905
KC - - - - -

Kendall rank correlation

DC BC CC EVC KC
DC - 0.81839 | 0.51712 | 0.55022 | 0.58801
BC - - 0.4173 0.3930 | 0.42655
CC - - - 0.8416 | 0.84237
EVC - - - - 0.96160
KC - - - - -

Spearman correlation

DC BC CC EVC KC
DC - 0.9231 0.6288 | 0.66653 | 0.70751
BC - - 0.5397 | 0.52308 | 0.56969
CC - - - 0.9538 | 0.95575
EVC - - - - 0.99542
KC - - - - -

Table 4: Correlation centrality metrics for 150 nodes

Pearson Correlation

DC BC CC EVC KC
DC - 0.98067 | 0.69889 | 0.86098 | 0.92932
BC - - 0.68510 | 0.86655 | 0.92545
cC - - - 0.88964 | 0.87383
EVC - - - - 0.98581
KC - - - - -

Kendall Rank Correlation

DC BC CC EVC KC
DC - 0.77326 | 0.47470 | 0.43424 | 0.57205
BC - - 0.46400 | 0.37076 | 0.50601
CC - - - 0.82218 | 0.84227
EVC - - - - 0.85553
KC - - - - -

Spearman Correlation

DC BC CC EVC KC
DC - 0.8839 | 0.5882 | 0.5456 | 0.6995
BC - - 0.6237 | 0.5217 | 0.67392
CC - - - 0.9548 | 0.96401
EVC - - - - 0.96586
KC - - - - -
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4. Conclusions

The purpose of this research was to examine the importance of some centrality measures with respect
to the performance of WSNs. Using networks with 100 and 150 nodes created with the Barabdsi-Albert
model as a basis, we showed how degree centrality, betweenness centrality, closeness centrality, eigenvector
centrality, and Katz centrality help find nodes needed for effective data transmission, strong network con-
nectivity, and reliable sensing. The results show a robust relationship between other centrality measures
and degree centrality. Most notably, degree centrality and betweenness centrality were almost perfectly
correlated, with other centrality measures of closeness, eigenvector, and Katz centrality. High correla-
tions between eigenvector and Katz centralities for both network sizes suggest agreement regarding the
importance of nodes. That is, nodes are considered central by one measure, and nodes are considered
central by another measure. This understanding adds to the knowledge on the relationships between
centrality measures and their performance on a network. This research strengthens the role of centrality
measures in WSNs. Also, it offers a centrality-based optimization strategy to WSNs in different domains,
including the scope of the network in practice, such as the case of WSNs in environmental monitoring
and industrial automation. This research can be expanded to the case of WSNs used in dynamic or
heterogeneous networks, thereby increasing the performance and reliability of WSNs further.
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